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1.  Introduction

Genetic algor ithms (GAs) are 

extensively adopted in various 

aspects of data mining, e.g., asso-

ciation rules, clustering, and classifica-

tion [1, 2, 3]. Instead of applying GAs 

for data mining, this study addresses 

linkage discovery, an essential topic in 

GAs, by using data mining methods. 

Inspired by natural evolution, GAs uti-

lize selection, crossover, and mutation 

operations to evolve candidate solutions 

into global optima [4]. This evolution-

ary scheme can effectively resolve many 

search and optimization problems. As 

the most salient feature of GAs, cross-

over enables the recombination of good 

parts of two selected chromosomes, yet, 

in doing so, may disrupt the collected 

promising segments. 

Linkage discovery (or linkage identi-

fication) attempts to identify the tightly 

linked genes and bind them together to 

form building blocks, which can be 

used to avoid the disruptiveness induced 

by crossover operation [4, 5]. Identifying 

linkage is based on methods classified as 

estimation of distribution algorithms 

(EDAs), perturbation-based methods 

(PMs), and mixed methods. Rather than 

manipulating linked genes deterministi-

cally, EDAs attempt to derive probability 

models from selected chromosomes. 

Related methods include Bayesian opti-

mization algorithm (BOA) [6], factor-

ized distribution algorithm (FDA) [7], 

and extended compact genetic algo-

rithm (ECGA) [8]. While considering 

linkage in a statistical manner, EDAs 

generally tend to neglect building 

blocks with a relatively low fitness con-

tribution. Alternatively, PMs perturb 

certain genes of each chromosome in 

the population and, 

then, identify the 

linkage relationship 

by using the influence 

of perturbation. Re -

lated methods include 

linkage identification 

by nonlinearity check 

(LINC) [9, 10], link-

age identification by 

non-monotonicity 

detection (LIMD) [11], linkage identifi-

cation based on epistasis measures 

(LIEM) [12], and their var iants. 

Although capable of detecting the link-

age with low-contribution building 

blocks, PMs require additional fitness 

evaluations in perturbation. As another 

alternative, a representative of mixed 

methods is the dependency detection 

for distribution derived from fitness dif-

ferences (D5) [13]. This method extracts 

information from subsequently perturb-

ing genes to estimate the linkage rela-

tionship. Tsuji and Munetomo [14] 

indicated that D5 possesses the advan-

tages of EDAs in terms of efficiency and 

of PMs in terms of detecting low-con-

tr ibution building blocks. A more 

detailed survey of linkage discovery 

methods can be found in [14, 15]. 

Rather than deriving the linkage 

relationship, this study proposes min-

ing the interactions between genes for 

linkage. Figure 1 illustrates the meta-

phor that connects linkage discovery 

to data mining. Learning association 

rules involves finding the implicitly 

associated items from transactions, 

which is analogous to discover ing 

the l inked genes 

from chromosomes 

or re lated informa-

tion. There fore, by 

regarding each link-

age between genes as 

an association rule, 

this study adopts data 

mining to learn these 

rules. The rest of this 

paper is organized as 

follows. Section 2 introduces the pro-

posed linkage mining approach. Sec-

tion 3 summarizes the experimental 

results. Conclusions are finally drawn 

in Section 4, along with recommenda-

tions for future research. 

2. Linkage Mining
As an implementation of data mining 

for linkage discovery, this study adopts 

the well-known Apriori algorithm to 

mine the data generated by D5 for asso-

ciation rules. The set of items in an 

association rule corresponds to the set 

of loci in a building block. The disrup-

tiveness caused by crossover can be 

resolved using information on building 

blocks. The major components for min-

ing linkage are described below. 

2.1  D5 Algorithm
The D5 algorithm [13] integrates the 

advantages of PMs and EDAs. For each 

locus, D5 takes three steps: 
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Perturb1)  genes at that locus for 

fitness difference. 

Cluster2)  the population accord-

ing to fitness difference. 

Estimate 3) the linkage from each 

cluster.

In the first step, D5 perturbs (i.e. 

0 S 1 or 1 S 0) all genes at 

locus i in the population and cal-

culates the resulting difference in 

fitness, that is, 

Dfi 1c 2 5 f  1cr 2 2 f  1c 2 , 

where f 1c 2  and f 1cr 2  denote 

the fitness values before and after 

perturbing the gene at locus i, 

respectively. 

Based on fitness difference, D5 

partitions the population into 

 several sub-populations Ci1, 

Ci2, c, CiNi
. For a sub-popula-

tion Cij larger than a predefined 

size, D5 constructs the largest set 

of loci, denoted by Vij, that con-

tains locus i and holds the minimum 

entropy for the genes at these loci. The 

set Vij serves as an estimated dependency 

set for further deriving linkage sets, i.e. 

building blocks. The derivation of link-

age sets in D5 depends on the following 

problem types: For non-overlapping 

functions, linkage set Vi for locus i is the 

estimated dependency set Vij* with the 

smallest entropy, i.e. j*5 argminj E 1Vij 2 , 

where E 1  2  refers to the entropy. As for 

overlapping functions, the enhanced D5 

[16] investigates the mutual dependency 

relationship among the unions of esti-

mated dependency sets V|i5 d jVij for 

all locus i to determine the linkage sets. 

This study examines the feasibility 

of using the Apriori algorithm to mine 

the estimated dependency sets for 

building blocks. This mining approach 

can identify building blocks precisely 

and improve the performance of GAs 

on both the non-overlapping and over-

lapping functions. 

2.2  Apriori Algorithm
Association rules are commonly ex pres-

sed in the form of X S Y, representing 

whenever itemset (i.e. set of items) X  is 

in a transaction, itemset Y  is also in the 

transaction. With respect to the meta-

phor in Fig. 1, the elements (loci) of an 

estimated dependency set are regarded 

as the items of a transaction. Moreover, 

association rules refer to the strong 

connections of certain items, which is 

analogous to the linkage relationship of 

particular genes. Based on this analogy, 

this study applies the Apriori 

algor ithm, a well-established 

method for mining association 

rules, to mine the estimated 

dependency sets generated by D5 

for building blocks in GAs. 

Some related terms in data 

mining are def ined before 

introducing the Apriori algo-

rithm. The support of an itemset 

X  represents the number of 

transactions in which the mem-

bers of X  all exist. Additionally, 

Ck denotes the collection of 

candidate itemsets of size k, 

and Lk represents the collection 

of large itemsets of size k, 

which have a support exceed-

ing the predefined minimum 

support minsup. 

The Apriori algorithm was 

proposed by Agrawal et al. [17, 

18]. Starting with k5 1, Apriori 

incrementally generates candidate 

itemsets Ck and finds out large 

itemsets Lk from Ck, until Lk is empty. 

This algorithm can effectively reduce 

the computational effort in checking 

various combinations of itemsets for 

large itemsets. 

Figure 2 illustrates use of the Aprio-

ri algorithm to mine for linkage. The 

database consists of four transactions, 

Information Data
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 R3   …  …  … 

Investigation Mining

FIGURE 1 Metaphor connecting linkage discovery to data 
mining. 
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FIGURE 2 Generation of candidate itemsets and large itemsets.
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where the first transaction represents an 

estimated dependency set, including 

loci 51, 3, 4, 56. Apriori first scans for 

candidate itemsets C1 and then deter-

mines large itemsets L1 from them. In 

the example, given (number of transac-

tions) 3 minsup5 2, only the itemsets 

in C1 that appear at least twice among 

all transactions in the database are 

placed into L1. The candidate itemsets 

C2 are formed by joining and pruning 

the itemsets in L1. Apriori continues 

with this procedure to generate C2,  

L2, C3, and L3. We posit that each large 

itemset is a building block, except for 

the subsets of higher-order itemsets. 

Hence, the large itemsets 52, 56, 
54, 56, and 51, 3, 46  are obtained as 

building blocks. 

3.  Experimental 
Results
This study conducts 

exper iments on the 

non-overlapping trap5 

function and the func-

tion with stochastic 

circularly overlapping 

sub-functions (SCOS) 

[16]. Performance of 

the proposed mining 

approach based on 

Apriori is compared with that of D5. 

The GA uses the context dependent 

crossover (CDC) [16] and no muta-

tion for both methods. Notably, the 

population size is the same for both 

the linkage discovery phase and evo-

lution phase. The minimum support is 

empirically set in the range of 30, 0.1 4. 

Each experimental setting includes 30 

independent runs of 200 generations 

concerning the stochastic nature of 

GAs. Performance measures include 

success rate (SR) and the number of 

evaluations (NES) to achieve the opti-

mal solutions for all 30 runs. 

Table 1 compares the performances 

of D5 and the proposed mining 

approach on the trap function. The 

mining approach yields 100% SR on all 

test instances except for l5 400 and 

outperforms D5 in SR on all test 

instances. Additionally, the approach 

requires significantly fewer evaluations 

to achieve the optima solutions than D5 

does, where the statistical significance is 

examined by a one-tailed t-test with a 

confidence level of 0.05. The preferable 

experimental results demonstrate the 

advantage of the proposed mining 

approach over D5 in terms of solution 

quality and efficiency. 

Furthermore, Table 2 presents the 

SR and NES for D5 and the proposed 

mining approach on the SCOS func-

tion. Notably, a large var iance s2 

incurs highly complex and overlap-

ping interactions between building 

blocks in the SCOS function. Exper-

imental results indicate that the min-

ing approach can achieve better SR 

with a lower NES than D5 on most 

test instances. Moreover, the mining 

approach using a relatively small popu-

lation is comparable with D5 using a 

relatively large population in terms of 

SR on several instances. Regarding 

algor ithmic efficiency, the mining 

approach uses a significantly lower 

NES than D5 does. In addition to vali-

dating the capability of superior SR, 

these outcomes indicate that the min-

ing approach can substantially decrease 

the required computational resources 

of D5 with respect to population size 

and number of evaluations. 

TABLE 2 Success rate (SR) and the number of evaluations (NES) to achieve the 
optimal solutions for D5 and the proposed mining approach on the SCOS function 
with variance s2, chromosome length l, and population size p. Boldface signifies a 
superior SR or a significantly lower NES.

  

s2 l p D5 MINING D5 MINING

12 60 500 100.0 100.0 51,617 46,867
1,000 100.0 100.0 84,000 83,400

90 500 76.7 93.3 93,483 81,950
1,000 100.0 100.0 122,400 122,200

120 500 63.3 83.3 126,017 112,333
1,000 100.0 100.0 161,700 161,833

22 60 500 13.3 90.0 125,317 68,250
1,000 100.0 100.0 108,600 88,233

90 500 0.0 60.0 145,500 113167
1,000 70.0 96.7 204,133 145,267

120 500 0.0 23.3 160,500 148,650
1,000 46.7 93.3 276,800 183,967

52 60 1,000 46.7 96.7 216,633 122,367
2,000 100.0 100.0 213,467 199,000

90 1,000 0.0 50.0 291,000 249,267
2,000 86.7 90.0 386,933 360,667

120 2,000 16.7 60.0 622,267 550,800
3,000 63.3 86.7 801,400 741,600

102 60 1,000 46.7 100.0 211,933 104,467
2,000 100.0 100.0 199,133 195,533

90 1,000 0.0 53.3 291,000 238,500
2,000 70.0 83.3 428,000 374,200

120 2,000 23.3 60.0 619,133 534,867
3,000 70.0 83.3 817,600 756,000

TABLE 1 Success rate (SR) and the number of evaluations 
(NES) to achieve the optimal solutions for D5 and the 
proposed mining approach on the trap5 function with 
chromosome length l and population size p. Boldface 
signifies a superior SR or a significantly lower NES.

SR (%) NES

l p D5 MINING D5 MINING

200 400 50.0 100.0 132,840 108,560
400 400 10.0 80.0 235,880 218,360
600 600 60.0 100.0 447,240 451,620
800 800 50.0 100.0 770,400 742,800
1,000 1,000 70.0 100.0 1,157,500 1,140,000

Instead of applying GAs for data mining, this study 
addresses linkage discovery, an essential topic in GAs, 
by using data mining methods.

SR (%) NES



FEBRUARY 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    13

4.  Conclusions
Instead of applying GAs to data mining, 

this study identifies the linkage rela-

tionship in GAs through data mining. 

Based on the analogy between building 

blocks and association rules, this study 

utilizes the Apriori algorithm to mine 

the estimated dependency sets generat-

ed by D5 for the large itemsets as build-

ing blocks. 

Experimental results of non-overlap-

ping and complex overlapping functions 

indicate that the proposed mining 

approach can improve D5 in terms of 

solution quality and efficiency. Specifi-

cally, the mining approach achieves a 

higher success rate with significantly 

fewer evaluations to achieve the optimal 

solutions than D5 does. With a smaller 

population, the mining approach can 

also yield a success rate comparable with 

D5 using a larger population. These 

superior outcomes validate the effective-

ness and efficiency of the proposed 

approach in linkage discovery. 

In addition to enhancing D5, linkage 

mining paves the way for a new field of 

research. We recommend the following 

directions for future research. First, 

future studies should attempt to obtain 

the data to be mined for building blocks 

from methods other than D5. Second, 

given the availability of a considerable 

number of association rules learning 

methods, more effective methods should 

be adopted for linkage mining applica-

tions. Finally, as well as association rules, 

other data mining tasks, such as classifi-

cation and clustering, are highly promis-

ing for use in linkage discovery. 
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