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a b s t r a c t

This paper proposes the multi-parent partially mapped crossover (MPPMX), which generalizes the par-
tially mapped crossover (PMX) to a multi-parent crossover. The mapping list and legalization of PMX
are modified to deal with the issues that arise from the increase of parents in PMX. Experimental results
on five traveling salesman problems show that MPPMX significantly improves PMX by up to 13.95% in
mean tour length. These preferable results not only demonstrate the advantage of the proposed MPPMX
over PMX, but also confirm the merit of using more than two parents in crossover.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Genetic algorithms (GAs) (Holland, 1975) have effectively
solved a variety of combinatorial and numerical optimization prob-
lems. The operators in GAs include the selection, crossover, muta-
tion, and survivor. Crossover is the most salient GA operator. It
produces offspring by recombining parental genetic material. Tra-
ditionally, the number of parents used in crossover is two. This
idea is reasonable because, to the best of our knowledge, no organ-
isms on Earth apply multi-parent reproduction. In computer simu-
lations, nevertheless, it is not necessary to limit the number of
parents for crossover to two. This idea, to use more than two par-
ents in crossover, is then implemented as multi-parent crossover.
The GAs that use multi-parent crossover are named multi-parent
genetic algorithms (Ting, 2005).

Beyond two parents in binary-coded GAs, Eiben et al. proposed
scanning crossover (Eiben, Raué, & Ruttkay, 1994) and diagonal
crossover (Eiben & van Kemenade, 1997; Eiben, van Kemenade, &
Kok, 1995) as the generalization of uniform crossover and one-
point crossover, respectively. Their experimental results on several
test functions show that, in terms of success rate, both scanning
crossover and diagonal crossover outperform their two-parent ver-
sions, namely uniform crossover and one-point crossover. Mühlen-
bein, Schomisch, and Born (1991) and Voigt and Mühlenbein
(1995) introduced the concept of global recombination into GAs
as gene pool recombination. Instead of two parents, gene pool
recombination samples the genes for crossover from the gene pool,
ll rights reserved.
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which consists of several pre-selected parents. Studies indicate
that gene pool recombination and its variants are easier to analyze
and can converge faster than two-parent recombination. Tsutsui
and Jain (1998) proposed multi-cut crossover and seed crossover,
wherein multi-cut crossover generalizes the classic two-point
crossover and achieves empirically better performance compared
to diagonal crossover.

For real-coded GAs, Tsutsui and Ghosh (1998) presented a series
of multi-parent crossovers: center of mass crossover, multi-parent
feature-wise crossover, and seed crossover. They showed that
these multi-parent crossovers can lead to better performance,
though this performance is problem-dependent. Another multi-
parent crossover, simplex crossover (Tsutsui, Yamamura, & Higu-
chi, 1999), generates offspring using the simplex sampled from
multiple parents. Experimental results show that this method per-
forms well with three or four parents on multimodal and epistatic
problems. Kita, Ono, and Kobayashi (1999) introduced multiple
parents into unimodal normal distribution crossover to enhance
the diversity of the offspring. This multi-parent extension of uni-
modal normal distribution crossover exhibits an improvement in
search ability on highly epistatic problems. Gong and Ruan
(2004) proposed the fitness-weighted crossover. It gives the fitter
parents a bigger influencing factor, which is used to determine
the contribution of parents to their offspring.

The above literature demonstrates the superiority of multi-par-
ent crossover over two-parent crossover. The effectiveness of these
multi-parent crossover operators is validated mostly on numerical
optimization problems (Eiben, 2002; Ting, 2005; Tsutsui & Jain,
1998). As for combinatorial optimization problems, there exists
only the adjacency based crossover (Eiben et al., 1994). Neverthe-
less, experimental results point out that using more than two par-
ents in adjacency based crossover has no tangible benefit. Effective
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multi-parent crossover for combinatorial optimization problems is
still lacking.

This paper proposes the multi-parent partially mapped crossover
(MPPMX) for combinatorial optimization problems. Specifically,
MPPMX generalizes the partially mapped crossover (PMX) (Gold-
berg & Lingle, 1985), which is widely used for combinatorial opti-
mization problems, e.g., Drechsler, Becker, and Göckel (1997),
Skliarova and Ferrari (2002) and Tseng, Wang, and Shih (2007).
The traveling salesman problem (TSP) is an important representa-
tive of combinatorial optimization problems. Many practical prob-
lems, such as scheduling (Ho & Ji, 2009; Pan & Huang, 2009),
manufacturing control system (Skliarova & Ferrari, 2002), and bio-
informatics (Ezziane, 2006), can be transformed into the TSP. In
this paper, the evaluation of the proposed MPPMX will focus on
the performance on the TSP.

The remainder of this paper is organized as follows. Section 2
gives a brief review of GAs for combinatorial optimization prob-
lems. In Section 3, we describe in detail the proposed MPPMX. Sec-
tion 4 presents a performance evaluation. Finally, conclusions are
drawn in Section 5.

2. Genetic algorithms for combinatorial optimization problems

The basic idea of GAs is to enhance candidate solutions by sim-
ulating the mechanisms of natural evolution, such as selection,
crossover, and mutation. The operation of crossover is subject to
chromosome representation, which can be binary, integer, real,
or order.

Order (or permutation) is the most common representation of
chromosomes with combinatorial optimization problems that
GAs have to tackle. In a 9-city TSP, for example, a visiting schedule
5–9–7–4–1–2–8–3–6 can be simply represented as a chromosome
in the form of order (5,9,7,4,1,2,8,3,6). GAs that use order repre-
sentation for chromosomes are called order-based GAs.

Even though order representation facilitates GAs to handle
combinatorial optimization problems, it also causes an intrinsic
constraint in the operation of chromosomes, because no duplicate
numbers are allowed in a chromosome. Therefore, the crossover
for binary-coded GAs, such as one-point, two-point, and uniform
crossovers, cannot be directly applied to order-based GAs. Fig. 1
illustrates the failure of two-point crossover for the TSP. The
Fig. 1. Failure of two-point crossover in order-based GAs.

Fig. 2. Exampl
two-point crossover yields duplicate genes 1, 2, 5 in Offspring 1
and 4, 6, 7 in Offspring 2. Thus, both offspring are illegal, i.e. infea-
sible for being a visiting schedule.

To address the issue of the legality of an order, several crossover
operators for order-based GAs are proposed. Partially mapped
crossover (PMX) (Goldberg & Lingle, 1985) is one of the most pop-
ular and effective crossovers for order-based GAs to deal with com-
binatorial optimization problems, especially the TSP. In view of the
operation, PMX can be regarded as a modification of two-point
crossover but additionally uses a mapping relationship to legalize
offspring that have duplicate numbers. The algorithm of PMX is gi-
ven below.
e o
Algorithm 1. Partially mapped crossover (PMX)

1. Substring selection: Cut each parent into two sub-
strings, and then select one substring for each parent at
random.

2. Substring exchange: Exchange the two selected sub-
strings to produce proto-offspring.

3. Mapping list determination: Determine the mapping
relationship based on the selected substrings.

4. Offspring legalization: Legalize proto-offspring with the
mapping relationship.
Fig. 2 illustrates how PMX legalizes the offspring in Fig. 1. As-
sume that the selected substrings in Step 1 are [4 3 7 6] for Parent
1 and [1 2 5 3] for Parent 2. These two substrings are then ex-
changed to produce proto-offspring in Step 2. Note that the pro-
to-offspring are possibly illegal. Steps 3 and 4 in PMX then fix
the illegal offspring. In Step 3, the mapping relationship is estab-
lished according to the selected substrings, e.g., ‘1’ to ‘4’, ‘2’ to ‘3’
until ‘6’, and ‘5’ to ‘7’ in Fig. 2. To legalize the proto-offspring, the
fourth step of PMX replaces the duplicates genes with the corre-
sponding genes in the mapping relationship.

Mutation is another important operator in GAs. This operator
changes a small amount of genes to activate the population diver-
sity. Several mutation operators have been proposed for order-
based GAs. This study adopts the well-known swap mutation
(Syswerda, 1991), which swaps genes at two randomly chosen loci.

3. Multi-parent partially mapped crossover

In light of the considerable success of PMX in combinatorial
optimization problems, this paper proposes the multi-parent par-
tially mapped crossover (MPPMX) to extend PMX into a multi-par-
ent crossover for better performance. Satisfying the legality of
offspring is key to the design of the crossover for order-based rep-
resentation. The increase of parents, however, complicates the
determination of the mapping relationship and the legalization
f PMX.
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process in PMX. For this, we have devised an approach for MPPMX,
wherein it constructs a unique mapping relationship in order to
legalize the proto-offspring reproduced from more than two
parents.

The proposed MPPMX follows the four-step procedure of PMX,
as shown in Algorithm 1. Nonetheless, MPPMX constructs a unique
circular list as the basis of mapping the relationship for all parents,
which is different from the mapping list of PMX. Detailed descrip-
tions of each step are given in the following subsections.

3.1. Substrings selection

For an n-parent MPPMX, the substrings selection imitates n-
point crossover. It randomly selects n crossover points to cut each
Fig. 3. Substrings selection.

Fig. 4. Substrings exchange.

Fig. 5. Pseudocode of mapp
parent into nþ 1 substrings. Fig. 3 illustrates the case of three par-
ents. The substrings selection cuts each parent into four substrings
at three random crossover points.

3.2. Substrings exchange

This step exchanges the selected substrings to create proto-off-
spring. The method for exchanging substrings is analogous with
that of multi-cut crossover (Tsutsui & Jain, 1998). As shown in
Fig. 4, MPPMX picks and recombines the substrings from each par-
ent in a diagonal way to form an offspring. Note that both PMX and
MPPMX have one-child and multiple-children versions, where the
one-child version can be simply obtained by randomly choosing
one from n children.

3.3. Mapping list determination

Determining the mapping list is the key point in MPPMX. To
construct a mapping list for more than two parents, MPPMX must
first randomly choose a parent as the start parent, and a locus as the
start locus. Second, a parent different from the start parent is then
chosen at random as the end parent. The end locus is the locus in
which the gene in the end parent is the same as the gene at the
start locus. Next, a parent different from the end parent is picked
at random to serve as the start parent for the next round. The gene
of the new start parent at the locus corresponding to the end locus
is determined as the element of the mapping list. This process re-
peats until the mapping list is completed. The pseudocode of the
mapping list determination is presented in Fig. 5.

Fig. 6 gives an example of mapping list determination in
MPPMX. First, Parent 2 is randomly chosen as the start parent
and the second locus as the start locus. The gene ‘4’ at the start lo-
cus is therefore the first element of the mapping list. Afterwards,
Parent 1 is randomly chosen as the end parent, and its third locus
is the end locus because the gene at this locus corresponds to ‘4’.
ing list determination.



Fig. 6. Example of mapping list determination in MPPMX.
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Next, we randomly choose Parent 3 as the second start parent. By
mapping from Parent 1 to 3 at the third locus, gene ‘8’ is deter-
mined to be the second element of the mapping list, as shown in
Fig. 6b. Through this process, we can obtain a unique mapping list
for the three parents.

In MPPMX, a deadlock may occur when there is no parent qual-
ified to be a start parent. When this happens, MPPMX breaks the
deadlock by randomly choosing a gene from all that are available
as the next start parent and start locus. Fig. 6h shows that MPPMX
encounters a deadlock when there is no suitable start parent for
the element ‘2’. MPPMX would then randomly choose gene ‘3’ at
Parent 2 as the next start parent and start locus. Subject to the
way of breaking the deadlock, two-parent MPPMX is not exactly
equivalent to PMX. More precisely, MPPMX is not an exact, but
an approximate, generalization of PMX in terms of the number of
parents.

3.4. Offspring legalization

In this paper, MPPMX starts legalization from the second sub-
string even though the starting substring can be any of those avail-
able. As a result, it is not necessary for the second substring of the
Fig. 7. Offspring legali
proto-offspring to be legalized since there are no duplicate genes in
it at all. The remainder of the proto-offspring, on the other hand,
needs to be legalized through the mapping list and order array.
The order array is an integer string used to indicate the sequence
of loci in a certain substring that needs to be checked for legality.
Here, the array is generated randomly in order to diversify the
legalization results. The process of legalization examines the off-
spring genes in the sequence indicated in the order array. If a gene
appears only once in the proto-offspring, it is then legal and so will
bypass the legalization process. Otherwise, the gene is illegal and
needs to be legalized. MPPMX will legalize it with an unused sub-
sequent gene from the mapping list.

Fig. 7 gives an example of offspring legalization. According to
the order array, MPPMX first checks the first element of the third
substring for legality, namely gene ‘3’. Since gene ‘3’ appears only
once in the offspring, it is determined to be legal and thus bypasses
legalization. The next gene, ‘2’, is illegal in that it also appears in
the second substring. To legalize gene ‘2’, MPPMX searches the
genes subsequent to ‘2’ in the mapping list for an unused one. Gene
‘6’ would therefore be picked as the gene in place of ‘2’. By applying
the same procedures on the first substring, as shown in Figs. 7d–f,
we can legalize the complete proto-offspring.
zation in MPPMX.
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Fig. 8. Inheritance proportions from each parent for one offspring reproduced by PMX and MPPMX using 2, 3, and 10 parents.
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3.5. Complexity of MPPMX

In this paper, we conduct a worst-case complexity analysis of
MPPMX. With respect to complexity, the key steps of MPPMX are
mapping list determination and offspring legalization. In the for-
mer, the worst case of creating the list needs OðnlÞ steps for n par-
ents with chromosome length l. In the latter, the worst case is
when n substrings have equal length l=n, wherein all genes need
to be legalized except those in the second substring. Thus, the
number of times that MPPMX needs to check the mapping list, in
the worst case, is

l
n
� l
n
þ l

n
� 2l

n
þ � � � þ l

n
� ðn� 1Þl

n
¼ nðn� 1Þl2

2n2 ;

which accounts for the complexity of Oðl2Þ. To summarize the com-
plexity in mapping list determination and offspring legalization for
n < l, we have the worst-case complexity Oðl2Þ in MPPMX.
1 For a more detailed description of these operators, see Bäck and Michalewicz
(1997) and Eiben and Smith (2003).
4. Performance evaluation

This work conducted a series of experiments to analyze the
inheritance and evaluate the performance of MPPMX. First, we
empirically analyzed the inheritance proportion of genes in PMX
and MPPMX in Section 4.1. Second, the performance of MPPMX
is evaluated by experiments on the traveling salesman problem
(TSP). The experimental results and discussion are presented in
Section 4.2.
4.1. Empirical analysis

The inheritance proportion is defined as the percentage of genes
that the offspring inherit from their parents. This number serves as
a measure of a crossover’s level of exploitation. This study analyzes
the inheritance proportion of chromosomes with length l ¼ 100
and fixed crossover points for equal-length substrings.

Fig. 8 shows that, in PMX, all of the genes of the second sub-
string inherit from Parent 2. Only half of the genes of the first sub-
string inherit from Parent 1, while the other half is generated
through legalization process. This situation also occurs in two-par-
ent MPPMX, but in the inheritance proportion, 30% of the first sub-
strings are lower than 50% of PMX. As explained in Section 3.4, this
difference is caused by the deadlock in MPPMX, which decreases
the inheritance proportion. In addition, the inheritance proportion
decreases with the order of substrings since the succeeding sub-
strings are legalized later and thus more likely to induce deadlock.

4.2. Experimental results on the TSP

This section examines the performance of MPPMX on five TSP
instances from TSPLIB (Reinelt, 1995): eil51, st70, pr76, lin105,
and d198. Table 1 lists the setting1 for the GA employed in our
experiments. The number of parents for MPPMX ranges from 2 to
10. Seven mutation rates ðrmÞ are tested: 0, 0.005, 0.01, 0.02, 0.03,
0.04, and 0.05. Each setting includes 30 independent runs.



Table 1
Parameter setting for GA.

Parameter Value

Representation Order
Population size 100
Population model Generational
Parent selection Roulette wheel selection
Crossover PMX

MPPMX ðn ¼ 2; . . . ;10Þ
Crossover rate rc 1.0
Mutation Swap
Mutation rate rm 0, 0.005, 0.01, 0.02, 0.03, 0.04, and 0.05
Survivor selection lþ k
Termination 5000 generations
Number of runs 30 runs
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Fig. 9 compares the mean best tour length obtained from PMX
and MPPMX with 2–10 parents. Due to the similarity of results
from different test problems, we present here the results of the
lin105 problem only. Here, the results of three representative
mutation rates are compared: MPPMX’s best ðrm ¼ 0:005Þ, PMX’s
Table 2
Mean and standard deviation (in parenthesis) of the tour length over 30 trials of PMX and
over PMX.

rm

0 0.05 0.01

PMX 70339.0 28735.3 28565.3
(4918.5) (2592.6) (1846.1)

MPPMX ðn ¼ 2Þ 62663.0 29034.4 28935.1
(4287.9) (2454.5) (2641.1)

MPPMX ðn ¼ 3Þ 58222.9 28645.5 27049.8
(2919.5) (2956.8) (2545.3)

MPPMX ðn ¼ 4Þ 54437.1 27563.0 27276.8
(4561.1) (2374.4) (2290.8)

MPPMX ðn ¼ 5Þ 49943.8 25958.1 26427.1
(3608.5) (1776.2) (2343.2)

MPPMX ðn ¼ 6Þ 47667.9 26733.7 25899.2
(3034.5) (2434.6) (2536.7)

MPPMX ðn ¼ 7Þ 45480.1 25584.5 25404.7
(3207.1) (1941.3) (2330.2)

MPPMX ðn ¼ 8Þ 44761.6 25366.8 25680.7
(2647.2) (2572) (2168.1)

MPPMX ðn ¼ 9Þ 44035.7 26540.7 24885.6
(2902.8) (2173.3) (1923.8)

MPPMX ðn ¼ 10Þ 43164.6 24444.9 25333.8
(2655.6) (2013.7) (2546.0)
best ðrm ¼ 0:02Þ, and the common setting ðrm ¼ 1=l � 0:01Þ. The
miniature figure at the right top of Fig. 9 applies to all test muta-
tion rates. The figure demonstrates that MPPMX with more than
two parents outperforms PMX and two-parent MPPMX. Roughly,
the performance of MPPMX improves along with the increase of
parents from the three representative mutation rates. This discrep-
ancy between PMX and two-parent MPPMX reveals the influences
of deadlock in the mapping list determination of MPPMX.

Table 2 lists the mean and standard deviation of the best tour
lengths over 30 trials of PMX and MPPMX using different mutation
rates and numbers of parents. In terms of the respective best re-
sults for all test mutation rates, MPPMX (24444.9) enhances PMX
(28409.2) by 13.95% in solution quality. In addition, the experi-
mental results show that the suitable numbers of parents are
dependent on the adopted mutation rate. For mutation rates
rm ¼0–0.02, MPPMX using 3–10 parents can outperform PMX as
well as achieve the best performance with n ¼ 9 or 10. The
improvements of MPPMX over PMX range from 12.88% to
38.63%, and all have statistical significance, which is validated by
the one-tailed t-test with a confidence level of 0.05. However, for
rm ¼ 0:04 or 0.05, MPPMX is inferior to PMX due to excessive
mutation. These phenomena occur in population sizes of 100 and
500 in our experiments.

Table 3 summarizes the best tour lengths for PMX and n-parent
MPPMX among all test mutation rates on the five TSP instances
with population size of 100. The best numbers of parents for
MPPMX on each test TSP instance are shown in boldface. The
experimental results show that MPPMX can outperform PMX in
solution quality by 3.68% (eil51), 7.53% (st70), 5.82% (pr76),
13.95% (lin105), and 13.32% (d198). The significance of the
improvement of MPPMX over PMX is further validated by the sta-
tistical one-tailed t-test. With a confidence level 0.05, the p-values
in Table 4 indicate that MPPMX with 4–10 parents can lead to sig-
nificant improvement over PMX on all test TSP instances.

Fig. 10 depicts the convergence of PMX and MPPMX at
rm ¼ 0:01. Owning to the similarity of results in different test prob-
lems, only the results of the lin105 problem are presented here.
The figure shows that GAs using PMX converge faster than those
using MPPMX at the cost of solution quality. On the other hand,
the increase of parents in MPPMX slows the convergence but gives
better solution quality.
n-parent MPPMX on lin105. The boldface denotes significant improvement of MPPMX

0.02 0.03 0.04 0.05

28409.2 28989.6 30243.9 33499.4
(2527.5) (2055.0) (2225.7) (2405.7)
28759.3 31685.1 40199.3 49268.3
(2652.8) (2384.5) (2887.3) (3090.8)
27685.8 29429.3 39213.7 52148.4
(2499.0) (2681.6) (3170.2) (4337.3)
25768.0 28360.8 41508.8 51193.6
(2267.6) (2453) (5226.8) (5011.1)
25995.8 27913.7 40989.5 49122
(1875.9) (3405.5) (4795.5) (4729.6)
26247.1 25111.6 35654.2 43268.4
(1912.6) (2636.9) (6101.7) (4495.6)
25045.3 25507.5 38338.2 46421.7
(2310.7) (2948.2) (5309.6) (4638.3)
25176.9 25810.9 37521 46825.8
(2045.2) (2923.0) (5885.7) (5033.2)
24566.2 25730.8 38755.2 47253.6
(1561.9) (2225.1) (5542.9) (4689.7)
24558.8 26953.8 37574.3 46225.3
(1765.1) (4135.0) (4768.5) (4240.5)



Table 3
Mean, standard deviation (in parenthesis), and the mutation rate (marked by an asterisk) corresponding to the best tour length over 30 trials of PMX and n-parent MPPMX. The
boldface denotes the best result with respect to the TSP instance.

eil51 st70 pr76 lin105 d198

PMX 533.52 (31.56) 1015.90 (68.79) 162172.2 (9898.4) 28409.2 (2527.5) 37275.8 (4472.8)
0.04* 0.05* 0.03* 0.02* 0.005*

MPPMX ðn ¼ 2Þ 541.71 (30.74) 1039.51 (72.28) 163586.6 (10820.0) 28759.3 (2652.8) 37838.7 (4518.4)
0.06* 0.03* 0.03* 0.02* 0.006*

MPPMX ðn ¼ 3Þ 527.18 (28.93) 1002.48 (73.47) 161547.9 (11214.7) 27049.8 (2545.3) 36049.1 (2803.7)
0.05* 0.05* 0.03* 0.01* 0.01*

MPPMX ðn ¼ 4Þ 522.28 (28.93) 973.89 (67.54) 157436.3 (11099.9) 25768.0 (2267.6) 34812.9 (3669.4)
0.06* 0.04* 0.04* 0.02* 0.01*

MPPMX ðn ¼ 5Þ 513.86 (28.31) 962.79 (66.38) 154115.7 (10660.5) 25958.1 (1776.2) 34220.0 (3371.5)
0.04* 0.04* 0.04* 0.005* 0.01*

MPPMX ðn ¼ 6Þ 520.19 (32.03) 959.57 (63.46) 156310.9 (11335.8) 25111.6 (2636.9) 34163.2 (3004.0)
0.05* 0.05* 0.04* 0.03* 0.01*

MPPMX ðn ¼ 7Þ 517.77 (26.58) 956.28 (81.60) 155252.7 (10066.9) 25045.3 (2310.7) 33398.7 (3253.1)
0.06* 0.05* 0.04* 0.02* 0.005*

MPPMX ðn ¼ 8Þ 516.41 (28.27) 951.51 (66.56) 155301.8 (10731.1) 25176.9 (2045.2) 33371.0 (3240.0)
0.06* 0.05* 0.04* 0.02* 0.01*

MPPMX ðn ¼ 9Þ 519.09 (35.58) 939.41 (63.71) 152737.9 (9697.3) 24566.2 (1561.9) 32309.6 (3459.1)
0.05* 0.03* 0.04* 0.02* 0.004*

MPPMX ðn ¼ 10Þ 514.01 (30.48) 947.07 (59.42) 153161.7 (11058.6) 24444.9 (2013.7) 33365.0 (3912.9)
0.06* 0.04* 0.04* 0.005* 0.004*
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Fig. 10. Convergence of GAs using PMX and n-parent MPPMX at rm ¼ 0:01 on the
lin105.

Table 4
The p-values of t-test on the best tour length between n-parent MPPMX and PMX in
the TSP. The boldface denotes significant improvement of MPPMX over PMX. The
negative p-values mean that MPPMX is inferior to PMX.

n eil51 st70 pr76 lin105 d198

2 �3.2E�02 �9.5E�03 �1.7E�01 �3.0E�01 �3.1E�01
3 7.0E�02 9.2E�02 3.4E�01 2.1E�02 1.0E�01
4 4.6E�03 1.1E�05 8.4E�04 3.8E�05 1.1E�02
5 3.2E�06 4.4E�08 4.8E�08 3.2E�05 2.1E�03
6 1.7E�03 4.2E�09 6.8E�05 3.6E�06 1.3E�03
7 9.1E�05 3.9E�08 9.9E�07 7.1E�07 1.7E�04
8 3.9E�05 9.1E�11 2.4E�06 6.1E�07 1.5E�05
9 1.4E�03 2.0E�14 5.8E�11 2.6E�09 6.1E�06
10 7.3E�06 7.3E�13 3.2E�09 5.3E�09 3.3E�04
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5. Conclusions

This paper presents MPPMX, a multi-parent extension of PMX.
A key point for extending PMX into a multi-parent version is to
determine the mapping relationship between more than two par-
ents. For this, a novel approach to establish a global mapping list
for all parents is proposed. The resultant mapping list provides a
basis for offspring legalization in MPPMX. The analysis shows that
MPPMX has the worst-case complexity of Oðl2Þ.

A series of experiments were carried out to evaluate the perfor-
mance of MPPMX. Experimental results on the TSP demonstrated
that, when comparing the best performance in tour length, MPPMX
can improve PMX by 3.68–13.95% on the five test TSP instances.
The significance of such improvement is validated by a t-test. Addi-
tionally, the experimental results reveal that a suitable number of
parents for MPPMX is closely related to mutation rate.

In conclusion, MPPMX is capable of further improving the pres-
ent performance of GAs using PMX on combinatorial optimization
problems. Nonetheless, experiments on more problems, such as
scheduling problems, are necessary to verify the advantage and
versatility of MPPMX. The reduction of time complexity in MPPMX
would be beneficial to enhance it, and this could be studied in fu-
ture works.
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