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a b s t r a c t

The pickup and delivery problem addresses the real-world issues in logistic industry and establishes an

important category of vehicle routing problems. The problem is to find the shortest route to collect and

distribute commodities under the assumption that the total supply and the total demand are in

equilibrium. This study presents a novel problem formulation, called the selective pickup and delivery

problem (SPDP), by relaxing the constraint that all pickup nodes must be visited. Specifically, the SPDP

aims to find the shortest route that can supply delivery nodes with required commodities from some

pickup nodes. This problem can substantially reduce the transportation cost and fits real-world logistic

scenarios. Furthermore, this study proves that the SPDP is NP-hard and proposes a memetic algorithm

(MA) based on genetic algorithm and local search to resolve the problem. A novel representation of

candidate solutions is designed for the selection of pickup nodes. The related operators are also devised

for the MA; in particular, it adapts the 2-opt operator to the sub-routes of the SPDP for enhancement of

visiting order. The experimental results on several SPDP instances validate that the proposed MA can

significantly outperform genetic algorithm and tabu search in terms of solution quality and conver-

gence speed. In addition, the reduced route lengths on the test instances and the real-world application

to rental bikes distribution demonstrate the benefit of the SPDP in logistics.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The pickup and delivery problem (PDP) arises in many real-
world cases such as logistics and robotics. This problem consists
of several nodes classified as pickup customers and delivery

customers. The former supplies while the latter demands a
number of commodities. The goal of the PDP is to find the
shortest route such that the requirement of each customer can
be satisfied. Solving this problem concerns vehicle routing and
commodity distribution. The PDP has been proved to be NP-hard.
Several variants of the PDP consider different requirements for
pickup and delivery customers, assumptions about the transpor-
tation scenario, and constraints on the transportation capacity.
Berbeglia et al. (2007) conducted a comprehensive survey of PDP
formulations and classified them into one-to-one, one-to-many-
to-one, and many-to-many schemes.

Some real-world applications focus on supplying the demands of
delivery customers. The constraint of visiting all pickup customers
can, therefore, be relaxed by gathering sufficient commodities from
some pickup customers. Such a relaxation can substantially reduce
ll rights reserved.

g),
the transportation cost and still satisfy the demands of delivery
customers. An example application is distributing rental bikes for
city traveling, which is greatly promoted in tourism nowadays. The
key is to arrange a route for the vehicle (truck) to transport bikes to
the rental stations that have reservations and to the popular areas
around the city. In this case, visiting all rental stations to pick up
bikes is unnecessary; instead, picking up bikes from some rental
stations and delivering them to the demanded places will be much
more efficient.

This study formulates a new problem, called the selective

pickup and delivery problem (SPDP), considering the above sce-
nario. Distinguished from the PDP, the proposed SPDP holds two
features: First, it relaxes the requirement for visiting all pickup
nodes. Second, the SPDP imposes an additional constraint on the
vehicle load. For the example of distributing bikes, the SPDP is to
find the shortest route that can deliver all demanded bikes
without visiting all pickup nodes. Furthermore, it avoids the
impractical situation that a vehicle attempts to supply a delivery
node with the number of bikes more than its load at some station
or to hold a load exceeding its capacity. According to the
classification of Berbeglia et al. (2007), the SPDP is of many-to-
many scheme, where each node serves as either a source (pickup)
or a destination (delivery) of commodities; and the commodities
collected from pickup nodes can supply any delivery nodes.
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To resolve the SPDP, this study proposes a memetic algorithm
(MA) based on genetic algorithm and local search. Memetic
algorithm is a blooming dialect of evolutionary algorithm (EA).
In addition to Darwinism, MA implements Lamarckian or Baldwi-

nian theory by integrating a local enhancement, such as local
search and repair operator, into the canonical EA. This integration
significantly improves the exploitation ability of EA and has been
widely shown to provide superior solution quality and high con-
vergence speed (Hart et al., 2004; Le et al., 2009; Meuth et al., 2009;
Ong et al., 2006, 2007, 2010; Sinha et al., 2004). The proposed MA
adopts a novel representation of candidate solutions to simulta-
neously deal with the selection of pickup nodes and the visiting
order of nodes. A modified 2-opt operator is presented to improve
the arrangement of visiting order. The fitness function, furthermore,
helps to handle the constraint of vehicle load along the route. This
study conducts a series of experiments to examine the MA
performance on the SPDP. Furthermore, we apply the proposed
method to a real-world rental bikes distribution problem.

The remainder of this paper is organized as follows. Section 2
reviews related work on the PDP. Section 3 presents the formal
formulation of the SPDP and proof of NP-hardness. Section 4
sheds light on the proposed MA. The experimental results are
presented and discussed in Section 5. Finally, we draw conclu-
sions and recommend the directions for future work in Section 6.
2. Related work

The PDP aims for a minimum-cost route to distribute resources
among nodes, including pickup nodes supplying commodity and
delivery nodes requiring commodity. This problem can be viewed
Table 1
Classification of PDP variants. (Sel: selectivity, Dep: depot supply/demand, TW: time w

Scheme Node Vehicle Commodity Variants

Sel Dep TW Cap Num Ho Fr Tr

1-M-1 þ 1 TSPB (Gendreau et al., 1996)

þ þ 1 TSPPD (Gendreau et al., 1999; Berb

SVRPPD (Gribkovskaia et al., 2007)

þ þ n VRPB (Toth and Vigo, 1997; Garcia

VRPPD (Gribkovskaia et al., 2001; H

VRPSPD (Ai and Kachitvichyanukul

þ þ þ n VRPBTW (Duhamel et al., 1997)

FDPPTW (Wang and Chen, in press

þ þ þ 1 SVRPDSP (Gribkovskaia et al., 2008

þ þ þ þ n VRPDSPTW (Gutiérrez-Jarpa et al.,

1-1 1 PDTSP (Renaud et al., 2000, 2002)

TSPPD (Dumitrescu et al., 2010)

TSPPDF (Erdoğan et al., 2009; Cord

TSPPDL (Cordeau et al., 2010b; Tu

þ 1 m-PDTSP (Hernández-Pérez and Sa

þ n Ship Routing Problem (Pang et al.

þ þ 1 S-DARP (Heilporn et al., 2011)

þ þ n PDPTW (Cheung et al., 2008; Ropk

VRPPD-G (Psaraftis, 2011)

þ n þ PDPTW (Shang and Cuff, 1996)

þ þ n þ PDPT (Cortés et al., 2010)

þ þ n þ m-TSPTW (Zhang et al., 2009, 2011

M-M þ þ 1 þ k-Delivery TSP (Chalasani and Mot

CTSPPD (Anily and Bramel, 1999)

1-PDTSP (Hernández-Pérez and Sal

2009; Louveaux and Salazar-Gonzá

þ þ þ 1 þ 1-TSP-SELPD (Falcon et al., 2010)

þ þ 1 þ SP (Anily and Hassin, 1992; Borden

MSP (Bordenave et al., 2010)

NCSP (Erdoğan et al., 2010)

þ þ 1 þ SPDP
as a synthesis of the vehicle routing problem (VRP) and object
distribution like the knapsack problem. In this study, we classify
the PDP formulations according to the attributes of transporta-
tion, node, vehicle, and commodity. Table 1 summarizes many
variants of PDP and their differences in the setting of these
attributes. The first classification criterion—scheme—is proposed
in the comprehensive survey of Berbeglia et al. (2007), where the
PDP is categorized into one-to-one, one-to-many-to-one, and
many-to-many schemes. The main difference among these three
schemes is transportation endpoint (Parragh et al., 2008a,b): One-
to-many-to-one schemes deliver commodities from the depot to
linehaul customers and from backhaul customers to the depot
(Gribkovskaia and Laporte, 2008), while one-to-one and many-to-
many schemes deal with transportation between customers
(Cordeau et al., 2008). Second, the setting of nodes in the PDP is
associated with selectivity, depot supply/demand, and time win-
dow. Selectivity of nodes relaxes the requirement of visiting all
vertices, depot supply/demand indicates whether the depot
supplies or demands commodities, and time window limits the
time for vehicles to visit nodes. Third, the considerations to
vehicles include vehicle capacity and the number of available
vehicles. Finally, regarding the properties of commodity, some
PDP variants assume that there exists only one type (homoge-
neous) of commodities to be delivered while some consider
multiple types (heterogeneous). The setting of transfer enables
temporary stock of commodities (or passengers) in transshipment
nodes. The fragment allows for partial delivery of commodities.

The one-to-many-to-one (1-M-1) scheme involves two types
of commodities that originate from and terminate at the depot
respectively. This scheme is widely used to deal with the issues in
reverse logistics (Gonzalez-Torre et al., 2004; Mutha and
indow, Cap: capacity, Num: number, Ho: homogeneity, Fr: fragment, Tr: transfer).

eglia and Hahn, 2009)

-Najera, 2012)

off et al., 2009)

, 2009; C- atay, 2010; Subramanian et al., 2010, 2011; Goksal et al., in press)
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lazar-González, 2009)

, 2011)

e and Cordeau, 2009; Baldacci et al., 2011)

)

wani, 1999)
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Pokharel, 2009). An example application is the delivery of soft
drink, where vehicles need to deliver full containers to customers
and retrieve empty containers back to the depot. The 1-M-1 PDP
varies in the solution types such as Hamiltonian (Ai and
Kachitvichyanukul, 2009; Berbeglia and Hahn, 2009; C- atay,
2010; Gendreau et al., 1999; Goksal et al., in press;
Subramanian et al., 2010, 2011; Wang and Chen, in press),
delivery-first pickup-second (Duhamel et al., 1997; Garcia-
Najera, 2012; Gendreau et al., 1996; Toth and Vigo, 1997), lasso
coupling aforementioned types (Gribkovskaia et al., 2001; Hoff
et al., 2009), and the times of visiting customers (Gribkovskaia
et al., 2007). Some 1-M-1 PDP formulations (Gribkovskaia et al.,
2008; Gutiérrez-Jarpa et al., 2010) enable selection of pickup
nodes for additional revenue against delivery cost.

In the one-to-one (1-1) scheme, paired pickup and delivery
nodes are ordinarily considered, and each commodity has its
designate source and destination. Its applications include ship-
ping cargoes (Pang et al., 2011), dial-a-ride system (Heilporn
et al., 2011), etc. The variants of 1-1 PDP impose different
constraints such as vehicle capacity, number of vehicles, and time
window (see Table 1). In addition, some formulations assume that
a batch of request can be fragmented (Zhang et al., 2009, 2011)
and commodities can be transferred among vehicles (Cortés et al.,
2010; Shang and Cuff, 1996).

The many-to-many (M-M) scheme assumes that the vehicle
collects commodities from many pickup nodes and supplies them
to many delivery nodes. Anily and Bramel (1999) proposed the
capacitated traveling salesman problem with pickups and deliv-
eries (CTSPPD) that consists of n pickup customers and n delivery
customers, each of which provides or demands one unit of
commodity. The CTSPPD follows the general framework of equal
amount of total supply and total demand (Berbeglia et al., 2007).
Hernández-Pérez and Salazar-González (2003) formulated the
one-commodity pickup-and-delivery traveling salesman problem
(1-PDTSP). The goal of the 1-PDTSP is to find a minimum-cost
route for a vehicle with a fixed capacity to serve all customers.
Specially, the 1-PDTSP assumes that the depot provides or
consumes an amount of commodities so as to balance total
demand. The vehicle capacity is a key issue of the 1-PDTSP. Due
to the characteristic of depot, the 1-PDTSP with a large enough or
even infinite capacity coincides with the TSP. The swapping
problem (SP) (Anily and Hassin, 1992) allows commodities to
originate from a collection of pickup nodes and terminate at a
collection of delivery nodes, subject to the type of commodities.
This problem has been applied to robotic arm and stacker crane
operations (Anily et al., 2011; Anily and Hassin, 1992; Bordenave
et al., 2009, 2010; Erdoğan et al., 2010). In addition, Falcon et al.
(2010) employed the many-to-many scheme to the carrier-based
coverage repair problem in wireless sensor networks.

The proposed SPDP belongs to the many-to-many scheme.
Table 1 shows that the SPDP is a novel variant of PDP. The
difference between SPDP and other variants of many-to-many
PDP lies in the problem setting for nodes and commodities. For
example, a major difference between the 1-PDTSP and the SPDP is
that the depot in the 1-PDTSP provides commodity whereas that
in the SPDP does not. In addition, both the CTSPPD and the
1-PDTSP do not consider selectivity of pickup nodes.
1 The cost between nodes is ordinarily defined as their distance. This study

also adopts distance metric as cost.
3. The selective pickup and delivery problem

The proposed formulation of the SPDP breaks the assumption
of demand equilibrium and relaxes the requirement for visiting
all pickup nodes. Let G¼ ðV ,EÞ be a complete graph with vertex set
V ¼ ðv0, . . . ,vnÞ and edge set E¼ fðvi,vjÞ9vi,vjAV ,viavjg, in which
each edge ðvi,vjÞ has a cost1 cij40. Each node vi provides or
demands a number di of commodities. The node v0 serves as the
starter (depot) and has d0 ¼ 0; the other nodes are classified into
two sets: V þ ¼ fvi9viAV ,di40g of pickup nodes and V� ¼

fvi9viAV ,dio0g of delivery nodes.
The SPDP seeks for a minimum-cost route for a vehicle to gain

commodities from some pickup nodes and supply the demands of
all delivery nodes, subject to the constraint that the vehicle load
at each node should be non-negative and never exceed the vehicle
capacity Q. Restated, the objective of the SPDP is to find a
permutation p¼ ðv0,vð1Þ,vð2Þ, . . . ,vðmÞÞ such that the overall cost is
minimum, where m is the total number of selected pickup nodes
and delivery nodes, and vðiÞ represents the ith visiting node.
Formally, let xij be the decision variable with

xij ¼
1 vehicle travels from vi to vj

0 otherwise

�

The SPDP can be formulated as the following integer linear
programming model:

min
X

vi ,vj AV

cijxij ð1Þ

s:t:
X

vi AV

xij ¼
X

vi AV

xjir1, 8vjAV þ ð2Þ

X
vi AV

xij ¼
X

vi AV

xji ¼ 1, 8vjAV� [ fv0g ð3Þ

X
vi ,vj A S

xijr9S9�1, 8SDV\fv0g ð4Þ

0r‘ðtÞrQ , 8tAf1, . . . ,mg ð5Þ

xijAf0;1g ð6Þ

The objective function (1) minimizes the traveling cost subject
to load constraint (5), where ‘ðtÞ denotes vehicle load at vðtÞ along
the visiting order, i.e., ‘ðtÞ ¼ ‘ðt�1Þ þdðtÞ with ‘ð0Þ ¼ 0. Inequality (2)
enables selection of pickup nodes; in addition, (2) and (3)
guarantee that the selected pickup nodes and the delivery nodes
are visited exactly once. Constraint (4) eliminates sub-tours
among customers and (6) indicates binary variables.

This formulation relaxes the requirement of visiting all nodes
by allowing selectivity of pickup nodes. This selectivity severely
increases the complexity of the SPDP, specifically, Oð29V þ 9

�m!Þ.
Note that this complexity is higher than that of an n-city TSP by
approximately 29V þ 9 times. Moreover, the SPDP imposes a con-
straint on the composition of routes: All delivery nodes must be
visited and supplied with enough commodities (‘ðtÞZ0); mean-
while, the vehicle load should not exceed its capacity (‘ðtÞrQ). In
practice, the SPDP is highly relevant to the logistic applications
that focus on supplying demands of all customers (delivery
nodes) from some providers (pickup nodes).
Proposition 1. The SPDP is NP-hard.

Proof. Firstly, a decision version is introduced to determine
whether there exists a feasible route such that the total cost is
less than a predefined cost C. By checking the load constraints
along the planned route and recording the cost to compare with C,
the decision version of the SPDP takes OðnÞ for solution verifica-
tion. The polynomial time verifiability confirms SPDPANP.
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Next, we reduce the TSP to the SPDP given that the TSP is proved to

be NP-hard. The reduction aims to prove the TSP is a special case of

the SPDP, where the starter is a duplicate of the assumed single

pickup node. Given an SPDP instance G¼ ðV ,EÞ, assume vpAV is the

only one pickup node and the cost of an edge incident to starter v0

equals that of an edge incident to vp, i.e., c0i ¼ cpi,8viAV . Here the

constraints of SPDP
P

vi AV diZ0 and Q Zdp need to hold. Note that

v0 must be followed by vp for feasibility in loading. In essence, v0 can

be viewed as a duplicate of vp and a feasible route ðv0,vp,vð1Þ, . . . ,vðnÞÞ

turns out to be ðvp,vð1Þ, . . . ,vðnÞÞ. This reduction transforms a TSP

instance into an SPDP instance by choosing an arbitrary node as the

single pickup node vp and making starter v0 a duplicate of vp. In other

words, there exists a feasible route in the SPDP such that the total

cost is less than C if and only if the corresponding TSP has a route at

the cost less than C. Fig. 1 provides an example.
v2 

v3v1

c 12
 

c31     

c
23

c 10

c
03

0
3

v2             

v3v1 -1-1

c 12

c31       

c
23

0

v0         

Fig. 1. Example reduction of the TSP to the SPDP. (a) A TSP instance. Each edge is

associated with a cost indicated aside. (b) The corresponding SPDP instance

(Q Z3) using the proposed reduction method. The figure inside a circle represents

demand di, and v2 is the only one pickup node. The edge cost (dashed lines)

incident to v0 equals that incident to v2.

Fig. 2. An example representation for an SPDP instance with n¼6 nodes. The

number inside a circle denotes demand di.
Since the decision version of the SPDP can be verified in

polynomial time and there exists a polynomial-time reduction

transforming the TSP to the SPDP, the decision version of the SPDP

is NP-complete. The SPDP is at least as hard as its decision

version; hence, the SPDP is proved to be NP-hard. &

4. The proposed memetic algorithm

This study proposes an MA to solve the SPDP. Algorithm 1
presents the framework of the proposed MA. The MA implements
the GA scheme and additionally adopts a local search operator
65-43-12

563-421

56-43-12

653-42-1

Fig. 3. Example of OX operation. The black arrow indicates the direction of

determining offspring genes.

65-43-12 6-13-452

Fig. 4. Example of inversion mutation.

Fig. 5. An example route (top) and the corresponding variation of vehicle load ‘ðiÞ
(bottom). The number inside a circle represents demand dðiÞ and the number above

an edge denotes load ‘ðiÞ .
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designed for the SPDP. Following the GA scheme, the MA
represents candidate solutions as chromosomes. The fitness func-
tion evaluates the quality (fitness) of candidate solutions (chro-
mosomes). Evolutionary algorithms, such as GA and MA,
manipulate a set (population) of chromosomes to search for the
optimal solution. After initializing the population, MA embarks on
the evolutionary process. First, the selection operator picks two
Table 2
Parameter setting in the experiments.

MA

Representation

Initialization

Population/neighborhood size

Mutation/neighborhood function

Selection Binary tournament

Crossover Order crossover (pc ¼ 1:0)

Survival ðmþlÞ
Local search 2-opt

Tabu tenure –

Termination (#generations) 3000

Table 3
Average route lengths and average numbers (after slash marks) of selected pickup nod

Instance Q g¼ 100

n100mosA(91)/42 200 5354.16/2.10

400 5274.23/2.17

600 5232.19/2.20

1000 5243.14/2.27

n100mosB(92)/47 200 5365.42/3.00

400 5272.99/3.00

600 5261.24/3.00

1000 5263.58/3.00

n200mosA(181)/94 200 8837.58/5.00

400 7646.87/5.03

600 7560.72/5.07

1000 7549.46/5.00

n200mosB(184)/88 200 9523.21/5.07

400 8329.73/5.00

600 8289.96/5.00

1000 8211.91/5.00

n300mosA(277)/141 200 12 033.74/7.17

400 9613.65/7.00

600 9321.98/7.03

1000 9239.73/7.03

n300mosB(279)/138 200 12 884.81/7.47

400 9807.71/7.17

600 9476.11/7.23

1000 9412.23/7.20

n400mosA(358)/172 200 21 590.76/9.93

400 13 303.94/9.57

600 11 802.30/9.40

1000 11 912.59/9.50

n400mosB(364)/183 200 22 264.16/10.07

400 13 338.54/10.03

600 11 687.35/9.67

1000 10 996.21/9.77

n500mosA(453)/232 200 33 833.22/12.37

400 19 272.46/12.57

600 14 664.66/12.23

1000 13 965.66/12.33

n500mosB(454)/228 200 32 295.67/11.60

400 18 430.17/11.57

600 14 450.89/11.23

1000 13 477.41/11.13
chromosomes from the population to serve as parents. The cross-

over operator then exchanges the information between these two
parents to produce their offspring. A predetermined crossover rate
defines the probability of performing crossover. Analogously,
mutation is performed with a probability, called mutation rate,
to alter slightly some genes in the offspring. Afterward, the local
search is performed to improve the chromosome.
GA TS

Modified permutation

Random

500

Bit-flip (pm ¼ 1=9V þ 9) þ inversion (pm ¼ 1:0)

Binary tournament –

Order crossover (pc ¼ 1:0) –

ðmþlÞ –

– –

– 10

10 000 10 000

es obtained from MA for different capacities Q and gain g values.

g¼ 200 g¼ 300 g¼ 400

– – –

5268.42/2.00 5177.06/1.00 –

5215.64/2.00 5167.87/1.00 5170.98/1.00

5189.47/2.00 5167.87/1.00 5167.87/1.00

– – –

5231.55/2.00 5200.73/1.00 –

5236.76/2.00 5166.53/1.00 5172.61/1.00

5185.84/2.00 5164.74/1.00 5160.39/1.00

– – –

7715.88/3.00 7638.32/2.00 –

7515.59/3.00 7467.33/2.03 7581.82/2.00

7457.90/3.00 7418.36/2.00 7418.96/2.00

– – –

8433.09/3.00 8411.98/2.00 –

8233.01/3.00 8205.01/2.03 8292.87/2.00

8187.13/3.00 8125.90/2.00 8149.09/2.03

– – –

9612.50/4.00 9741.63/3.00 –

9289.82/4.00 9281.69/3.00 9228.90/2.00

9148.37/4.00 9123.31/3.00 9104.33/2.00

– – –

9816.74/4.03 9984.83/3.00 –

9377.53/4.00 9420.21/3.00 9376.53/2.03

9270.51/4.00 9206.01/3.00 9189.70/2.00

– – –

12 940.68/5.07 13 306.66/4.00 –

11 447.40/5.03 11 841.61/4.00 11 781.90/3.00

10 972.00/5.00 11 025.52/4.00 11 018.23/3.07

– – –

12 937.36/5.07 13 157.84/4.00 –

11 311.26/5.07 11 690.35/4.07 11 652.05/3.00

10 694.08/5.00 10 708.42/4.00 10 772.36/3.00

– – –

18 218.14/6.33 17 521.97/4.20 –

14 321.33/6.40 13 820.93/4.20 13 691.69/3.20

12 151.28/6.00 12 023.86/4.07 12 347.79/3.10

– – –

18 041.28/6.23 17 646.08/4.13 –

14 363.94/6.23 14 075.24/4.03 13 752.26/3.13

12 455.25/6.07 12 343.47/4.00 12 350.01/3.03
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The process of reproduction, i.e., selection–crossover–mutation–
local-search, is repeated until the offspring population is filled. The
Lamarckism, implemented by local search, enhances the search
ability of MA. Based on the Darwinian theory of ‘‘Survival of the
Fittest’’, the survival operator selects the fittest chromosomes from
the offspring population with or without the parental population.
The selected chromosomes constitute the next-generation popula-
tion. For the SPDP, the components of MA need to be modified.
Restated, this study presents a novel representation of candidate
solutions and related operators to address the constraints on the
vehicle load. A local search operator is devised to enhance the
visiting order for the SPDP. More details about the proposed MA are
described below.

Algorithm 1. Memetic algorithm.
200 400 600 800 1000
Q

 25000

 30000

 35000

ou
te

 le
ng

th

γ = 100
γ = 200
γ = 300
γ = 400
initialize population P;
evaluate P;
while (not terminated)
{

Ps ¼ SelectðPÞ;
Pc ¼ CrossoverðPsÞ;
Pm ¼MutateðPcÞ;

P0 ¼ LocalSearchðPmÞ;

evaluate P0;

P¼ SurviveðP,P0Þ;
};
 10000

 15000

 20000

200 400 600 800 1000

r

Q

Fig. 6. Variation in route length with respect to Q. (a) n100mosA(91) and

(b) n500mosA(453).
4.1. Representation

This study modifies the order-based representation of chromo-
somes to indicate both the visiting order and the selection of pickup
customers in the SPDP. Specifically, for an SPDP with n nodes
(except the depot v0), we use a permutation of n integers to
represent the visiting order of all pickup and delivery nodes. In
addition, the selection of a pickup node is designated by the sign of
its order in the chromosome, where a positive integer indicates the
node is selected and a negative integer indicates it is omitted from
the route. Fig. 2 illustrates a chromosome for an SPDP with n¼6. In
the example route, the genes valued �1 and �4 represent that
pickup nodes v1 and v4 are excluded from the route, respectively.
An important feature of this fixed-length representation is its
capability to handle the varying number of selected pickup nodes
and guarantee that each node occurs at most once in the route.

4.2. Fitness evaluation and constraint handling

The fitness function is vitally important to EAs because it explicitly
or implicitly affects the search direction. An effective fitness function
must render sufficient information about the search direction and
clearly distinguish between good and bad candidate solutions. The
fitness function is problem-dependent in essence. In this study, we
use the objective function (1) as the fitness function f ðpÞ for the MA.

In the SPDP, some chromosomes may be infeasible due to
violation of the constraint on vehicle load, i.e., the vehicle load
should not exceed its capacity and must be non-negative at each
node. Comparison among feasible and infeasible chromosomes
becomes an issue at fitness evaluation for the constrained optimi-
zation problems. To address this issue, this study adopts the
method of Deb (2000). For minimization of route cost in the SPDP,
chromosome p1 is considered to be better than chromosome p2 if
1.
 both p1 and p2 are feasible and f ðp1Þo f ðp2Þ, or

2.
 p1 is feasible while p2 is infeasible, or
3.
 both p1 and p2 are infeasible and p1 has less serious constraint
violation than p2.

The above criteria prefer low-cost feasible solutions; in addition,
they eliminate the need for parameter tuning in the penalty
function that is commonly used for constraint handling. Notably,
the third criterion requires an evaluation measure for violation of
constraint. This study presents a violation measure

gðpÞ ¼ ‘excþ9‘neg9 ð7Þ

with

‘exc ¼ max
iA f1,...,mg

ð‘ðiÞ,Q Þ�Q

‘neg ¼ min
iA f1,...,mg

ð‘ðiÞ,0Þ

where ‘exc represents the amount of load exceeding the vehicle
capacity and ‘neg denotes the shortage of vehicle load. According to
(7), the violation measure gðpÞ considers both the exceeding and
short amounts of vehicle load along the route. As the basis of parent
selection and survivor selection, this fitness evaluation handles the
constraint by leading the search toward feasible solutions.

4.3. Genetic operators

The proposed MA is based on the evolutionary scheme of
GA. In the reproduction phase, the selection operator chooses



0

7

9

-1

9

4

1

-5

-1 2

5

-1

-6

-4

4

-2

-8

-3

-2

9

6

-8
6

-3

-5
-7

-4

-8

8

-1

-1

7

4

8

5

-7

1

2

-5

3

-7

-3

9

5
8

-1

1

8

-1

-1

-10

-1
-5

7

4

-4

-3
-3

7

6

1

1

5-9 -4

-3

-6

2

-1

-4

2

-9

5

-4

8

1

-7

4

-8

8

1
-8

-3

-3

-9

8

4

-5

9

-4

-6

pickup
delivery

pickup
delivery

pickup
delivery

pickup
delivery

Fig. 7. Routes obtained from MA for different capacities and gains on n100mosA(91). (a) Node distribution. (b) Route for g¼ 0 and Q¼200. (c) Route for g¼ 100 and

Q¼200. (d) Route for g¼ 100 and Q¼1000.

C.-K. Ting, X.-L. Liao / Int. J. Production Economics 141 (2013) 199–211 205
chromosomes as parents from the population; then the crossover
and mutation operators alter the genetic information in the parents
to generate offspring. Afterward, the survival operator selects the
chromosomes that can survive into the next generation. These
genetic operators, to wit, selection, crossover, mutation, and survi-
val, need to be designed for the MA to address the SPDP.

The selection operator is ordinarily based on fitness and
enables fitter chromosomes to have a higher probability to be
selected as parents. Several selection operators have been pro-
posed (Bäck et al., 1997; Eiben and Smith, 2003). In this study, we
adopt the binary tournament selection in view of its recognized
good performance. The binary tournament selection operator
chooses the better of two random chromosomes as a parent.
Performing this selection twice yields a pair of parents for
subsequent reproduction, i.e., crossover and mutation.

Next, the crossover operation exchanges and recombines the
genetic information of parents. The crossover operator for order-
based representation requires a special design to ensure the
legality of an order, i.e., no duplicate numbers. This study uses
the well-known order crossover (OX) (Davis, 1985) to manipulate
the order-based chromosomes for the SPDP. This crossover
randomly chooses two cut points to divide each parent into two
segments. An offspring directly inherits the first segment of one
parent and fills the remainder genes with the genes of the other
parent in order. This crossover can avoid duplicate numbers in a
chromosome and thus satisfies the requirement for a permuta-
tion. Regarding the selection of pickup nodes, the signs are kept in
the crossover operation to reserve information of being selected
or omitted. As Fig. 3 illustrates, this crossover operator can deal
with both the visiting order and selection of pickup nodes.

The mutation operation slightly changes the composition of
offspring to introduce diversity. For the SPDP, the mutation operator
needs to be specially designed for two aspects: one for selection of
pickup nodes and another one for permutation of visiting order. For
the former, the bit-flip mutation for binary GA is applicable. This
mutation randomly changes the selection of pickup nodes by
flipping the sign of corresponding genes. For the latter, the mutation
operators for order-based GA are considered, which afford to slightly
change the route without violating the legality of a permutation.
This study adopts the inversion operator, which inverts the sub-
string between two randomly picked genes (see Fig. 4).

The survival operator genuinely implements the principle of
survival of the fittest: Only the fittest individuals are selected as
parents for the next generation. The methods of survivor selection
can be classified according to the number of parents who compete for
survival. For example, the (m,l) survivor selection considers only the
offspring population, whereas the (mþl) survivor selection merges
the parental and the offspring populations to compete for survival.
This study uses the (mþl) survivor selection in the experiments.

4.4. Local search

The MA employs the 2-opt operator to enhance the arrangement
of visiting order. The original 2-opt operator inverts segments for
a shorter route iteratively. However, for the SPDP, the 2-opt
operator needs to be adapted in that the constraint of vehicle load,



Table 4
Average route lengths obtained from TS, GA, and MA for different capacities Q and gains g. The figure after the slash mark represents the average number of selected pickup

nodes over 30 trials. Boldface denotes the shortest route among the three methods.

Instance g Q TS GA MA

n100mosA(91)/42 100 400 5264.27/2.57 5442.64/2.33 5274.23/2.17

600 5278.90/2.70 5445.00/2.53 5232.19/2.20
1000 5272.44/2.43 5394.89/2.63 5243.14/2.27

200 400 5247.61/2.00 5430.93/2.00 5268.42/2.00

600 5257.72/2.03 5433.85/2.03 5215.64/2.00
1000 5224.41/2.00 5394.85/2.00 5189.47/2.00

400 600 5248.93/1.00 5366.06/1.00 5170.98/1.00
800 5214.57/1.03 5442.21/1.00 5168.91/1.00

1000 5228.33/1.00 5459.30/1.00 5167.87/1.00

n100mosB(92)/47 100 400 5289.23/3.00 5476.93/3.00 5272.99/3.00
600 5250.85/3.00 5460.65/3.00 5261.24/3.00

1000 5251.75/3.00 5432.92/3.00 5263.58/3.00

200 400 5297.03/2.00 5478.77/2.03 5231.55/2.00
600 5260.83/2.07 5467.76/2.00 5236.76/2.00

1000 5231.18/2.03 5359.74/2.00 5185.84/2.00
400 600 5297.72/1.00 5436.45/1.00 5172.61/1.00

800 5247.98/1.03 5393.40/1.00 5156.03/1.00
1000 5262.79/1.07 5412.67/1.00 5160.39/1.00

n200mosA(181)/94 100 400 8232.43/5.17 8558.26/5.07 7646.87/5.03
600 8231.82/5.23 8300.09/5.23 7560.72/5.07

1000 8195.95/5.40 8368.36/5.03 7549.46/5.00
200 400 8293.84/3.10 8780.34/3.07 7715.88/3.00

600 8162.07/3.33 8468.49/3.20 7515.59/3.00
1000 8121.85/3.40 8200.15/3.07 7457.90/3.00

400 600 8320.76/2.00 8770.12/2.00 7581.82/2.00
800 8237.71/2.00 8494.05/2.03 7471.26/2.03

1000 8113.91/2.10 8314.63/2.07 7418.96/2.00

n200mosB(184)/88 100 400 8994.44/5.23 9329.64/5.13 8329.73/5.00
600 8937.45/5.23 9159.83/5.10 8289.96/5.00

1000 8927.34/5.23 9116.48/5.13 8211.91/5.00
200 400 8995.63/3.03 9909.09/3.07 8433.09/3.00

600 8885.00/3.33 9302.96/3.20 8233.01/3.00
1000 8838.65/3.47 9164.78/3.10 8187.13/3.00

400 600 9049.66/2.00 9822.91/2.00 8292.87/2.00
800 8960.64/2.10 9383.16/2.07 8178.86/2.00

1000 8890.76/2.27 9146.73/2.10 8149.09/2.03

n300mosA(277)/141 100 400 10 312.13/7.30 12 844.86/7.33 9613.65/7.00
600 10 337.44/7.17 12 389.25/7.20 9321.98/7.03

1000 10 286.04/7.20 12 185.67/7.33 9239.73/7.03
200 400 10 344.39/4.03 14 292.87/4.07 9612.50/4.00

600 10 244.07/4.20 12 696.50/4.13 9289.82/4.00
1000 10 122.08/4.23 12 140.47/4.30 9148.37/4.00

400 600 10 254.53/2.10 13 447.19/2.10 9228.90/2.00
800 10 233.89/2.17 12 659.25/2.07 9156.36/2.00

1000 10 147.08/2.30 12 347.45/2.20 9104.33/2.00
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i.e., 0r‘ðiÞrQ , may be violated by inversion. To address this issue,
we look into the variation of vehicle load (Fig. 5) and notice that the
peaks and valleys of vehicle loads along a feasible route, e.g., ‘0, ‘ð1Þ,
‘ð3Þ, ‘ð6Þ, and ‘ð9Þ, must be bounded by ½0,Q �. Following this
limitation can achieve the feasibility of routes. In addition, permu-
tation of nodes in a segment between peaks or valleys will not
affect the feasibility since the subtotal of demands will keep fixed
within a segment. Accordingly, the modified 2-opt operator parti-
tions the route into several segments by the positions of peaks and
valleys of vehicle loads. Note that peaks and valleys appear at the
transition from pickup to delivery nodes and that from delivery to
pickup nodes, respectively. For the example route in Fig. 5, the
2-opt operation is performed on the nodes within segments
fvð2Þ, . . . ,vð3Þg, fvð4Þ, . . . ,vð6Þg, and fvð7Þ, . . . ,vð9Þg.
5. Experimental results

This study conducts a series of experiments to evaluate the
effectiveness of the proposed MA on the SPDP, in comparison
with GA and tabu search (TS). The benchmark instances of the
SPDP are modified from the PDP instances TS2004t2 and
TS2004t3 used in (Hernández-Pérez and Salazar-González,
2004b; Hernández-Pérez et al., 2009). In modifying these
instances for the SPDP, we set d0 ¼ 0 for starter v0 and adjust
demand dn of vn to satisfy

Pn
i ¼ 0 di ¼ 0. Additionally, the nodes

with zero demand, i.e., di ¼ 0, are removed from the SPDP
instances. Here the SPDP instances are denoted by X(Y)/Z, where
X is the original instance name of PDP, Y is the number of nodes in
the SPDP instance, and optional Z is the number of pickup nodes.
For example, n200mosA(181) denotes a 181-node SPDP instance
modified from n200mosA. The cost between two nodes is defined
as their distance. Hence, the SPDP seeks for the shortest route that
can supply all delivery nodes with some selected pickup nodes.
The experiments include several sizes of vehicle capacity. To
investigate the characteristics of the SPDP, we further introduce
parameter g as a gain in supply for each pickup node, that is,
d0i ¼ diþg for all viAV þ .

The test algorithms include the proposed MA, GA, and TS.
Table 2 summarizes their parameter setting in the experiments.



Table 5
Average route lengths obtained from TS, GA, and MA for different capacities Q and gains g. The figure after the slash mark represents the average number of selected pickup

nodes over 30 trials. Boldface denotes the shortest route among the three methods.

Instance g Q TS GA MA

n300mosB(279)/138 100 400 10 485.94/7.67 13 776.30/7.57 9807.71/7.17
600 10 447.02/7.50 12 617.50/7.47 9476.11/7.23

1000 10 411.95/7.43 12 780.34/7.67 9412.23/7.20
200 400 10 498.41/4.23 14 589.01/4.07 9816.74/4.03

600 10 380.38/4.13 13 142.27/4.17 9377.53/4.00
1000 10 297.00/4.27 12 407.35/4.17 9270.51/4.00

400 600 10 464.34/2.10 13 833.61/2.10 9376.53/2.03
800 10 383.55/2.27 12 893.38/2.07 9189.02/2.00

1000 10 247.41/2.30 12 690.50/2.10 9189.70/2.00

n400mosA(358)/172 100 400 14 481.88/10.03 24 680.78/9.93 13 303.94/9.57
600 14 284.20/10.00 22 108.25/10.23 11 802.30/9.40

1000 14 245.97/9.80 20 980.95/10.37 11 912.59/9.50
200 400 14 691.80/5.10 28 103.77/5.23 12 940.68/5.07

600 14 174.06/5.40 23 605.40/5.37 11 447.40/5.03
1000 14 066.04/5.50 21 606.74/5.57 10 972.00/5.00

400 600 14 502.50/3.00 28 117.26/3.00 11 781.90/3.00
800 14 239.25/3.10 25 107.62/3.13 11 259.50/3.00

1000 14 129.12/3.27 23 230.26/3.13 11 018.23/3.07

n400mosB(364)/183 100 400 14 598.81/10.07 24 817.27/10.33 13 338.54/10.03
600 14 305.98/10.23 21 890.27/10.50 11 687.35/9.67

1000 14 399.51/10.07 21 517.26/10.50 10 996.21/9.77
200 400 14 808.38/5.13 28 749.01/5.20 12 937.36/5.07

600 14 372.97/5.47 24 867.95/5.43 11 311.26/5.07
1000 13 990.26/5.57 21 118.43/5.63 10 694.08/5.00

400 600 14 586.65/3.00 28 693.80/3.00 11 652.05/3.00
800 14 310.83/3.13 25 007.68/3.13 11 030.08/3.03

1000 14 212.90/3.33 23 720.46/3.30 10 772.36/3.00

n500mosA(453)/232 100 400 21 280.82/12.40 38 981.51/12.63 19 272.46/12.57
600 20 123.01/12.37 34 415.62/12.93 14 664.66/12.23

1000 20 149.26/12.53 32 113.63/13.07 13 965.66/12.33
200 400 22 406.07/6.10 48 620.13/6.43 18 218.14/6.33

600 20 627.82/6.47 39 491.62/6.67 14 321.33/6.40
1000 19 545.91/6.93 33 675.57/7.33 12 151.28/6.00

400 600 21 893.33/3.67 46 407.06/3.40 13 691.69/3.20
800 20 666.93/3.70 40 865.75/3.47 12 444.84/3.00

1000 20 072.16/3.93 37 751.00/3.83 12 347.79/3.10

n500mosB(454)/228 100 400 21 612.45/11.67 41 197.12/11.83 18 430.17/11.57
600 20 668.00/11.43 36 085.44/12.50 14 450.89/11.23

1000 20 612.56/11.67 33 475.65/12.57 13 477.41/11.13
200 400 22 798.68/6.20 49 710.06/6.27 18 041.28/6.23

600 20 994.43/6.33 40 617.13/6.53 14 363.94/6.23
1000 20 188.55/6.80 35 044.03/7.47 12 455.25/6.07

400 600 22 248.14/3.23 48 411.66/3.17 13 752.26/3.13
800 21 168.54/3.40 41 682.90/3.43 12 883.73/3.03

1000 20 570.37/3.73 38 689.85/3.53 12 350.01/3.03
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The GA follows the evolutionary framework and operators of MA
but does not apply local search. The TS utilizes the mutation
operator as its neighborhood function, i.e., flipping a pickup node
selection and inverting a random sub-route. The neighborhood
size of TS is set to be 500 such that the numbers of fitness
evaluations in each generation are equal for GA, MA, and TS.
The tabu tenure is empirically set to be 10. Each test includes
30 independent runs concerning the stochastic nature of test
algorithms.

5.1. Influence of Q and g

The purpose of the first experiment is to investigate the
influence of vehicle capacity Q and gain g on the route length.
Table 3 presents the results for MA on the ten SPDP instances
with different Q and g values. Some experimental settings (e.g.,
Q¼200 with gZ200) are omitted in that they cannot yield
feasible solutions. The table shows that the route length decreases
with the increase in g, which allows more pickup nodes to be
omitted from the route. Fig. 6 plots the route lengths with respect
to capacity Q for different g values. The plots reconfirm that the
SPDP results in shorter routes as g increases. Regarding the
influence of capacity Q, the decrease in capacity intensifies the
restriction on both the permutation of route and the selection of
pickup nodes for a feasible solution. This restriction becomes
particularly serious as Q approaches the upper limit of diþg; for
example, the setting of g¼ 100 with Q¼200 gives a drastic
increase in route length.

Fig. 7 illustrates the routes obtained from the proposed MA on
n100mosA(91) instance, of which g¼ 0 is a PDP instance and
g¼ 100 is an SPDP instance. These results exhibit the benefit of
the SPDP: The SPDP renders a shorter route than the PDP does,
which is of great help for the applications that emphasize
supplying all the demands. Notably, the route in Fig. 7(b) with
‘crosses’ seems to be an imperfect route in the sense of the TSP.
However, given the constraint on the vehicle load, this cross is of
necessity for the optimal route. Figs. 7(c) and 7(d) demonstrate
that the increase in capacity Q relaxes the constraint on vehicle



Table 6
Results of one-tailed paired t-test of the route lengths obtained from X and Y algorithms (denoted by X vs. Y) for different capacities Q and gains g. Positive p-values indicate

that X is superior to Y, and vice versa. Boldface denotes that X is significantly better than Y with confidence level a¼ 0:05.

g Q Instance TS vs. GA MA vs. GA MA vs. TS Instance TS vs. GA MA vs. GA MA vs. TS

100 400 n100mosA(91) þ1.92E�06 þ9.51E�06 �3.21E�01 n100mosB(92) þ1.24E�04 þ3.07E�05 þ2.72E�01

600 þ8.05E�06 þ6.27E�08 þ7.36E�03 þ3.45E�06 þ1.03E�05 �3.29E�01

1000 þ3.50E�04 þ1.23E�05 þ8.13E�02 þ6.25E�06 þ2.42E�05 �3.04E�01

200 400 þ6.86E�07 þ9.74E�06 �1.67E�01 þ3.18E�04 þ4.94E�07 þ3.28E�02
600 þ5.91E�05 þ1.99E�06 þ2.50E�02 þ9.74E�07 þ8.35E�08 þ1.42E�01

1000 þ2.66E�05 þ9.70E�07 þ1.42E�02 þ8.54E�04 þ2.08E�05 þ5.72E�03
400 600 þ2.45E�03 þ2.50E�06 þ1.20E�04 þ1.95E�03 þ9.01E�08 þ1.01E�05

800 þ1.34E�08 þ3.44E�10 þ2.02E�07 þ5.29E�05 þ6.53E�09 þ6.97E�07
1000 þ9.95E�08 þ8.81E�10 þ5.99E�05 þ7.07E�05 þ1.57E�09 þ1.14E�05

100 400 n200mosA(181) þ1.14E�04 þ1.18E�13 þ9.94E�25 n200mosB(184) þ7.56E�04 þ3.85E�12 þ1.98E�27
600 þ1.29E�01 þ3.74E�16 þ2.25E�25 þ1.94E�03 þ1.53E�14 þ1.15E�25

1000 þ1.36E�02 þ5.17E�13 þ8.93E�30 þ5.31E�03 þ1.25E�14 þ9.97E�32
200 400 þ7.12E�05 þ4.11E�11 þ2.80E�22 þ1.17E�08 þ1.28E�13 þ2.13E�21

600 þ3.06E�04 þ1.09E�13 þ6.67E�30 þ1.04E�04 þ2.65E�12 þ1.77E�31
1000 þ1.17E�01 þ3.74E�14 þ3.29E�27 þ4.75E�05 þ6.16E�15 þ3.64E�30

400 600 þ2.40E�04 þ5.93E�12 þ1.45E�28 þ2.84E�07 þ7.97E�14 þ7.45E�35
800 þ4.69E�03 þ9.89E�13 þ6.92E�32 þ9.67E�06 þ9.40E�16 þ2.08E�29

1000 þ1.49E�03 þ4.01E�16 þ5.31E�33 þ2.06E�03 þ1.49E�13 þ9.10E�40

100 400 n300mosA(277) þ4.02E�15 þ3.31E�18 þ1.19E�21 n300mosB(279) þ2.89E�20 þ4.13E�24 þ5.97E�16
600 þ1.70E�15 þ4.82E�20 þ1.32E�31 þ5.10E�18 þ1.03E�22 þ6.26E�31

1000 þ7.04E�15 þ5.17E�20 þ4.90E�38 þ5.81E�18 þ2.26E�22 þ2.48E�34
200 400 þ2.78E�19 þ1.50E�22 þ2.31E�15 þ2.62E�20 þ2.16E�22 þ5.25E�19

600 þ2.93E�16 þ4.51E�20 þ6.54E�37 þ5.16E�18 þ1.02E�21 þ7.50E�36
1000 þ1.10E�15 þ3.55E�20 þ2.22E�35 þ3.85E�15 þ1.26E�19 þ2.74E�33

400 600 þ2.45E�17 þ1.19E�20 þ1.13E�32 þ3.86E�20 þ1.33E�23 þ4.82E�30
800 þ3.87E�15 þ3.83E�19 þ2.18E�29 þ1.60E�17 þ5.93E�22 þ1.22E�36

1000 þ2.00E�14 þ9.55E�19 þ2.16E�31 þ1.47E�17 þ9.32E�22 þ3.79E�35

100 400 n400mosA(358) þ2.03E�31 þ3.01E�40 þ4.14E�13 n400mosB(364) þ1.84E�30 þ2.67E�35 þ2.33E�18
600 þ8.13E�25 þ5.50E�29 þ2.34E�39 þ3.36E�23 þ1.69E�27 þ4.72E�42

1000 þ7.66E�23 þ8.65E�29 þ9.92E�28 þ5.98E�25 þ2.27E�29 þ2.51E�48
200 400 þ5.40E�28 þ8.03E�32 þ3.00E�20 þ6.81E�31 þ2.86E�33 þ3.79E�31

600 þ6.77E�25 þ6.84E�28 þ8.12E�49 þ1.45E�29 þ1.20E�32 þ7.06E�54
1000 þ6.89E�24 þ9.43E�28 þ1.49E�46 þ1.90E�25 þ2.77E�29 þ4.50E�42

400 600 þ2.79E�27 þ1.44E�29 þ1.10E�46 þ1.29E�31 þ6.77E�34 þ3.14E�48
800 þ2.88E�28 þ4.27E�31 þ1.15E�51 þ3.69E�30 þ1.06E�32 þ1.46E�46

1000 þ8.10E�24 þ2.98E�27 þ3.87E�51 þ4.30E�24 þ1.12E�27 þ7.09E�51

100 400 n500mosA(453) þ2.68E�39 þ1.04E�51 þ2.45E�13 n500mosB(454) þ7.11E�36 þ5.23E�45 þ2.82E�21
600 þ4.53E�34 þ4.75E�41 þ1.53E�43 þ2.89E�38 þ1.94E�40 þ3.53E�52

1000 þ5.54E�31 þ6.65E�36 þ5.57E�50 þ6.59E�30 þ5.86E�41 þ1.55E�40
200 400 þ1.30E�44 þ1.66E�53 þ1.03E�26 þ1.86E�42 þ2.03E�58 þ6.76E�27

600 þ2.54E�37 þ3.26E�42 þ1.23E�50 þ5.34E�33 þ4.26E�37 þ1.96E�58
1000 þ7.00E�32 þ5.01E�36 þ2.85E�55 þ4.93E�32 þ4.41E�37 þ3.36E�74

400 600 þ2.97E�37 þ2.28E�43 þ1.26E�52 þ1.49E�46 þ7.05E�48 þ1.17E�59
800 þ7.93E�42 þ4.57E�43 þ9.33E�55 þ1.35E�37 þ5.70E�41 þ4.83E�64

1000 þ7.40E�35 þ3.62E�39 þ1.05E�66 þ6.05E�33 þ7.04E�37 þ4.64E�61
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load and, therefore, encourages selecting the pickup nodes with
large number of commodities to reduce the route length. These
outcomes also show that the proposed MA can select required
pickup nodes and arrange visiting order to resolve the SPDP
effectively.

5.2. Performance comparison

The second experiment examines the performance of the
proposed MA in comparison with GA and TS. Tables 4 and 5
compare the experimental results from the three test algorithms
on ten SPDP instances with different values of capacity Q and gain
g. The results show that, in general, MA outperforms GA and TS,
while TS outperforms GA. In addition, MA obtains the shortest
routes on 86 instances and TS does on 4 out of 90 instances.
Table 6 further presents the results of one-tailed paired t-test on
the route lengths obtained from the test algorithms. With con-
fidence level a¼ 0:05, the t-test results demonstrate that MA
achieves significantly shorter routes than GA on all instances and
than TS on 83 out of 90 instances; the difference between MA and
TS are insignificant on the remaining seven instances. These
outcomes validate the effectiveness of MA on the SPDP. The
comparative results, moreover, confirm the advantage of the
modified 2-opt operator in improving MA upon route length.

Next, we look into the anytime behavior of the three test
algorithms. The experiments are conducted on Intel core i7-920
machines. Due to space limitation, this paper presents only the
results on n100mosA(91) and n500mosA(453). Fig. 8 depicts the
progress of fitness value against the number of generations and
running time. The figure shows that MA and TS converge much
faster than GA does in terms of generations and running time.
This advantage of MA over GA demonstrates that the modified
2-opt operator can substantially increase the efficiency of MA.
Further, MA converges faster in terms of generations but slower
than TS in terms of running time on n100mosA(91). This reversal
of outcome reveals the influence of additional computation cost
of local search on the efficiency of MA. However, as the problem
size increases (e.g., on n500mosA(453)), MA leads to faster
convergence than TS over both generations and running time. In
the light of superior solution quality and fast convergence, the
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Fig. 8. Anytime behavior over generations (left) and running time (right) for MA, GA, and TS on n100mosA(91) and n500mosA(453) with Q¼1000. (a) n100mosA(91) with

g¼ 200. (b) n100mosA(91) with g¼ 200. (c) n500mosA(453) with g¼ 400. (d) n500mosA(453) with g¼ 400.

Fig. 9. Routes obtained from MA for bike distribution with Q¼10 and 90 (yellow: depot, red: delivery node, blue: selected pickup node, cyan: omitted pickup nodes). (a)

Q¼10. (b) Q¼90. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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merit of 2-opt local search in enhancement still outweighs its
increased cost in running time for the SPDP.

5.3. Real-world application

In this study, we further apply the proposed MA to deal with a
real-world SPDP in logistics—bikes distribution for the public
bike-rental service of Kaohsiung city in Taiwan. The public bike-
rental service has 51 rental stations around the Kaohsiung city,
among which the depot is the staff-assisted station. The bikes
distribution aims to transport bikes to supply the demand for
bikes of some rental stations (delivery nodes) from others (pickup
nodes), which corresponds exactly with the SPDP. The demand di
of a station (node) for bikes is determined by the differential
between the number of bikes on one day and the average number
of bikes over two months at the station.

Fig. 9 plots the routes obtained from MA for transporting bikes
using vehicles with capacity Q¼10 and 90. The routes pass through
all delivery nodes and some pickup nodes, while a certain number
of pickup nodes are omitted from the route for shorter length. These
preferable results confirm the advantage of the SPDP formulation
and the effectiveness of the proposed MA in selecting pickup nodes
and arranging the visiting order. For low vehicle capacity Q¼10, a
route occasionally needs to detour for a delivery node due to excess
of vehicle load. As capacity Q increases, the constraint on the
vehicle load is relaxed. As Fig. 9 shows, such flexibility can reduce



Table 7
Average route lengths and average numbers (after

slash marks) of selected pickup nodes obtained

from MA for the Kaohsiung city public bike

distribution.

Q Route length (km)

10 90.29/17.50

30 52.69/16.10

60 51.00/16.10

90 50.50/16.17
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detour and contribute to shorter routes. The results in Table 7
further validate the effect that the average route lengths decrease
with the increase in vehicle capacity.
6. Conclusions

This study presents a novel PDP variant—the SPDP—which
seeks for a minimum-cost route for a vehicle to gain commodities
from some pickup nodes and supply the demand of all delivery
nodes, subject to the constraint on the vehicle load. There exist
two major differences between the PDP and the SPDP:
�
 The requirement of visiting all pickup nodes is relaxed by
allowing some pickup nodes omitted in the SPDP.

�
 The SPDP imposes a constraint that the vehicle load should be

greater than zero and lower than the capacity at every node.

This study proves that the SPDP is an NP-hard problem. To tackle the
problem, we proposed an MA based on GA and local search. In the
MA, the modified order-based representation enables indication of
varying number of selected pickup nodes with fixed chromosome
length. The fitness function takes the feasibility of solutions into
account. A modified 2-opt operator is devised to improve the
arrangement of visiting order without destroying the route feasibility.

A series of experiments was conducted to examine the
performance of the proposed MA on the SPDP. The empirical
analysis shows that the selection feature of the SPDP does lead to
shorter routes, which is very useful for the real-world applica-
tions that focus on supplying all demands with the commodities
gathered from some nodes. Furthermore, the comparative results
validate that the proposed MA achieves significantly shorter
routes than TS and GA. The results also confirm the advantage
of local search in improving the search ability and convergence
efficiency of the MA. In addition, this study presents a real-world
logistic application of the proposed method. These preferable
outcomes show the utility of the SPDP and validate the effective-
ness of the proposed MA in solving it.

Future work may further consider different aspects of the SPDP,
for example, multi-vehicle or multi-objective SPDP. The uncertainty
and dynamics will also be important topics of future work. More-
over, enhancing the search ability of the EA or the local search
operator will improve the performance of the MA on the SPDP.
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Hernández-Pérez, H., Salazar-González, J., 2004b. Heuristics for the one-commod-
ity pickup-and-delivery traveling salesman problem. Transportation Science
38 (2), 245–255.
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