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Abstract

Genetic algorithms (GAs) are well-known heuristic algorithms and have been ap-

plied to solve a variety of complicated problems. When adopting GA approaches, two

important issues––selection pressure and population diversity––must be considered.

This work presents a novel mating strategy, called tabu genetic algorithm (TGA), which

harmonizes these two issues by integrating tabu search (TS) into GA’s selection. TGA

incorporates the tabu list to prevent inbreeding so that population diversity can be

maintained, and further utilizes the aspiration criterion to supply moderate selection

pressure. An accompanied self-adaptive mutation method is also proposed to overcome

the difficulty of determining mutation rate, which is sensitive to computing perfor-

mance. The classic traveling salesman problem is used as a benchmark to validate the

effectiveness of the proposed algorithm. Experimental results indicate that TGA can

achieve harmony between population diversity and selection pressure. Comparisons

with GA, TS, and hybrids of GA and TS further confirm the superiority of TGA in

terms of both solution quality and convergence speed.
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1. Introduction

Genetic algorithms (GAs) are well-known heuristic algorithms based on the

imitation of natural systems [1]. Their effectiveness in search and optimization

problems has received extensive attention [2–5]. However, GA has its costs.

Whitley [6] pointed out that there are two major issues in designing GA: se-

lection pressure and population diversity. Selection pressure leads GA to ex-
ploit information inside the fitter individuals and results in more superior

offspring iteratively. The diversity in GA is attributed to the form of popula-

tion, which contains a certain number of encoded individuals for exploration.

Nevertheless, a tradeoff exists between population diversity and selection

pressure. Emphasis on selective pressure accelerates the optimization conver-

gence but potentially causes premature convergence because of hastened loss of

diversity. On the contrary, maintaining diversity can yield a better solution

quality, but often slows down the convergence speed due to the lack of selec-
tion pressure. Therefore, a good GA scheme must simultaneously address these

two issues. On one hand, GA must maintain certain diversity to explore the

unvisited space, and on the other hand, it must have adequate selective pressure

to exploit the relevant solutions. Restated, GA should pursue a good balance

between exploration and exploitation in consideration of both convergence

speed and optimized solution quality.

In this paper, we present a novel heuristic optimization algorithm, called

tabu genetic algorithm (TGA), which incorporates the features of tabu search
(TS) into GA. TS is another class of meta-heuristic algorithms, which are based

on explicit memory structures [7]. It uses memory to record the search tra-

jectory and guide the search in order to consider both intensification and di-

versification. Many studies have verified the encouraging capability of TS in

combinatorial optimization problems [7–9]. In view of this, several researchers

proposed to incorporate TS with GA to enhance the search. Glover and La-

guna [9] inceptively introduced the scatter search toward integrating GA and

TS. Then, several studies proposed various hybrids of GA and TS. For ex-
ample, Handa and Kuga [10] considered the difference between the conver-

gence speed of GA and TS in the first half and that in the second half of the

search process. They suggested an approach of concatenating GA and TS,

which switches the search to TS when GA stops improving solutions. Chin [11]

attempted to increase the search intensity of TS with the convergence of GA’s

population. Another common way of hybridization is to regard TS as a local

enhancement for GA. This approach typically selects the best chromosome or
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random ones from GA’s population, and operates on them with TS to explore

their neighborhood for better solutions. These results generated by TS are then

incorporated into the GA’s population and evolution is resumed [12–15,17].

Nara [16] additionally utilized a tabu list to prohibit the mating of chromo-
somes, whose hamming distances are too close to each other. In general, most

of these hybrid approaches are based on running these two algorithms alter-

nately and passing the computation results from one to the other. The original

structures of GA and TS are not modified in these approaches.

In contrast to running alternately, TGA implants characteristics of TS into

GA’s mating strategy. First, the memory structure in TS, the tabu list, is used

to record the trajectory of evolution and preclude certain mating in consider-

ation of diversification. Second, under the restriction of tabu list, the aspiration
criterion is applied to supply selection pressure for intensification. By incor-

porating the tabu list and the aspiration criterion, the selection of GA is ex-

pected to achieve harmony in exploring the diverse population and exploiting

the superiors. Such a balance of exploration and exploitation has been shown

to be able to effectively improve the performance of GA [2]. In addition to

selection, a self-adaptive mutation operator is proposed so that the mutation is

dynamically performed according to the situation of population rather than a

fixed probability. This self-adaptation ability can also overcome the difficulty
of determining mutation rate, especially when the rate critically affects the

performance.

The rest of this paper is organized as follows. In Section 2, related works on

mating schemes are reviewed. In Section 3, we propose the TGA algorithm and

give detailed descriptions. Section 4 discusses the effectiveness of TGA’s

schemes and the comparisons of performance with GA, TS, and hybrids of GA

and TS. Finally, conclusions are drawn in Section 5.
2. Related work

In the conventional GA, no mating strategy is applied to the results of se-

lection; that is, parents are approved without any further examination after they

are chosen at random or just by fitness. Indeed, mating in nature is more
complicated. For example, with respect to human beings, as well as specific

factors such wealth and appearance that objectively contribute to fitness, some

implicit factors also potentially guide mating, such as race, bloodline, and

others. Inspired by this observation, a number of mating strategies for GA have

been proposed to deal with the issues of population diversity or selection

pressure in a natural way. According to the adopted metrics used to measure

implicit factors, we classify these approaches into two major categories––

computation-based and memory-based mating strategies. They are reviewed
below.
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2.1. Computation-based mating

The most common computation-based approach is to distinguish the degree

of similarity among individuals by calculating genotype or phenotype char-
acteristics, and then mate the individuals according to different strategies.

Genotype holds the information embedded in individuals; thus it is used to

specify mating individuals. Hamming distance is the most popular metric for

similarity (or dissimilarity) between two individuals. De Jong [18] introduced

the concept of niching and subsequently presented the crowding method to

remove the most similar individual when a new one enters a subpopulation.

The sharing function [2] takes fitness as a resource and distributes it over all

niches, which are delimited by individuals’ similarity. Instead of sharing the
resources, Petrowski [19] suggested the clearing policy, which encourages the

winner to take all resources in a niche. Mauldin [20] proposed the k-bits de-

creasing uniqueness method in which members of a population must have at

least k-bits of differences. The method decreases this uniqueness with evolu-

tion. Thus, population diversity is controlled and premature convergence is

avoided.

The work on incest prevention [21] introduced a direct way for mating to

restrain assimilation from premature convergence. It suggested that individuals
with a short hamming distance might be related. Hence mating is only allowed

if their hamming distance is above a threshold, which decreases as evolution

proceeds. The results show that incest prevention can really avoid premature

convergence and improve the solution at the expense of convergence speed.

Shimodaira [22] employed the concept of incest prevention in survival selection

and increased the diversity by giving individuals with farther hamming dis-

tances from the best solution a higher probability of survival. Incorporating

with tournament selection, correlative tournament selection (CTS) [23] chooses
the mate with higher fitness and hamming distance from a set of candidates.

Fernandes and Rosa [24] introduced an analogous concept, called negative

assortative mating, into GA with varying population size (GAVaPS). They

found that the number of candidates was directly proportional to the perfor-

mance of the Royal Road function [25]. Bian et al. [26] proposed a strategy of

choosing different crossover methods on the basis of the couple’s hamming

distance in order to prevent premature convergence.

In contrast to incest prevention, De et al. [27] tried to mimic inbreeding in
nature and proposed assortative mating, which restricts individuals to mate

with one separated by a minimal hamming distance. They stated that this

strategy could enhance exploitation and reduce the disruption of schema.

Experimental results demonstrated the strategy’s effectiveness over both con-

ventional GA and incest prevention in certain problems. The work in [28]

used different assortative mating strategies to deal with vector quantization

problems, and obtained an opposite outcome: positive assortative mating
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(inbreeding) did not improve GA performance and was inferior to negative

assortative mating (incest prevention). That work revealed that an all-out effort

on selection pressure, such as inbreeding, might lead to premature convergence

due to the rapid loss of diversity.
Another significant field in computation-based mating concerns individuals’

phenotype information. Phenotype enables individuals to be evaluated by their

external or expressed features; mating strategies can be based on such infor-

mation. The most straightforward metric is fitness. Fitness scaling [2] provides

a stable rating and a simple way to prevent super-fit individuals from domi-

nating the population and causing premature convergence. Another way to use

fitness is to devise mating schemes according to the differences in individuals’

fitness. The phenotypic assortative mating in [27] exactly measures the simi-
larity by fitness. Chakraborty and Chakraborty [29] judged the allowance of

mating by a normal function of the normalized fitness. This function gives a

higher probability of crossover to the partner with a closer fitness.

In addition to fitness, Ronald [30] proposed the concept of seduction, which

can be viewed as a secondary fitness function. It encourages GA to consider

more phenotypic features in mating strategies. For example, the first parent can

be selected according to fitness, and the second by seduction based on the

Royal Road function. Ratford et al. [31] extended the use of seduction for a
parallel GA to combine the effects of incest prevention and assortative mating.

Mori et al. [32] restated the objective as minimizing free energy. Entropy, de-

fined by the loci of genes, can be regarded as the phenotypic estimate con-

sidered in the mating scheme.

2.2. Memory-based mating

Incest prevention through genotypic or phenotypic metrics has been shown

to maintain population diversity and improve the solution. However, these

computation-based mating schemes must distinguish individuals’ similarities at

the cost of additional computation. Furthermore, the employed metrics sig-

nificantly influence the results of mating. Motivated by human beings’ ances-

try, a supplementary memory structure is appended to individuals to enable

their ancestry to be recognized. Consequently, the determination of incest is
neutral to the genotype or phenotype metrics, and does not require extra

computation to measure similarity.

Craighurst and Martin [33] considered the family tree to disallow incest by

adhering to the ancestry-based incest law. The levels of the incest law define

different numbers of members in a family tree among whom mating is for-

bidden. A higher level of the incest law corresponds to a more widely en-

compassing restriction. Experimental results validated its effectiveness on

solution quality and diversity maintenance. Although the incest law yielded
satisfactory results, it slowed convergence and was sensitive to the mutation
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rate. Fernandes and coworkers [24,34] further implemented this ancestry table

upon GA with variable population size for preserving diversity. The non-incest

method obtained better outcomes than the simple GA when applied to the

Royal Road function. The improvement increased with the level of incest
prevention. The capability of maintaining genetic diversity was also ensured.

Another way of using additional memory tags to handle diversity is to view

the subpopulation as a race. Mating is allowed only between individuals with

the same racial tag. The coexistence of diverse races (subpopulations) enables

individuals to be distributed in a more dispersed fashion and certain diversity

to be maintained; meanwhile, the evolution within respective races can also

improve the solution quality. These characteristics make it adequate to solve

multi-modal problems and reduce the computational cost of measuring dis-
tance, as required, for example, by the sharing function. Spears [35] devised

three subpopulation schemes to control mating in different ways. The results

show that replacing distance metrics with tag bits to estimate similarity is

feasible. Ryan [36] proposed the races genetic algorithm (RGA), which applies

crossbreeding among different races by a meta-GA in order to improve the

possibility of convergence toward global peaks. Bandyopadhyay and Pal

[39,40] developed the genetic algorithm with chromosome differentiation

(GACD). GACD distinguishes chromosomes into two categories (M and F),
labeled by two class bits, and allows crossover only between different catego-

ries. GACD’s superior performance was verified through many function op-

timization and pattern classification problems.

Although memory-based mating schemes can prevent premature conver-

gence and relieve computational overhead in determining bloodline, they have

some flaws. First, from the viewpoint of maintaining diversity, restricted mating

has side effects on the selection pressure; that is, an over-restricted strategy

diminishes the selection pressure and then results in slower convergence.
Therefore, designing a harmonious way to restrain mating without sacrificing

selection pressure is very important. Second, the aforementioned works [24,33]

demonstrate that ancestry-based mating schemes are sensitive to mutation rate.

Hence, a self-adaptive mutation is suggested to overcome the difficulty of de-

termining the rate and to enhance the solution quality. This paper focuses on

developing a novel mating scheme to meet the above requirements.
3. Tabu genetic algorithm

The proposed TGA is built upon the evolutionary structure of GA and the

restrictive characteristics of TS. Rather than alternately running GA and TS,

the mating schemes of GA are combined with a memory structure and the

search strategy of TS to augment the salient features of both algorithms si-
multaneously.
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Fig. 1 illustrates the flowchart of the proposed approach in which most

procedures of TGA follow the original architecture of GA. If the part of TS,

highlighted in gray, is ignored, TGA degenerates into a simple GA. The

components of TS supervise the reproduction of GA. After being produced by
genetic operators, each pair of offspring undergoes the steps of TS, specifically,

the tabu list and aspiration criterion, to check whether their parents are al-

lowed to mate. If the mating does not violate the tabu restriction or is good
Tabu Search

TGA1. Initialization

TGA10. Mutation

TGA6. Crossover

TGA5. Select parent.2

TGA3. New
generation

TGA2. Evaluation

TGA7. Tabu?

TGA8. Aspiration?

TGA9. Deadlock?

TGA11. Sub-population
filled?

TGA12. Survive

TGA13. Evaluation

TGA14. Termination?

Yes

Yes

No

No

No
No

Yes
Yes

No

TGA
complete

Accept

Reject

TGA4. Select parent.1

Fig. 1. Flowchart of TGA.
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enough to meet the aspiration criterion, it is classified as acceptable and the

children are delivered to the subpopulation. Otherwise, the reproduced chil-

dren are rejected and this mating process returns to the step of selecting a mate.

Such a process is repeated until the mating is acceptable. Namely, courtship
continues until a potential parent finds its ideal mate. If the number of trials

exceeds a predefined threshold, the attempt is classified as a deadlock. In such a

case, the selected individuals will be mutated. They are then regarded as ac-

ceptable and delivered to the subpopulation as well.

In TGA, besides the partial variation of the original GA process, the

components of TS should be redesigned. The following subsections consider

the design approaches in great detail.
3.1. Representation

In TGA, a clan number is introduced into chromosomes to identify indi-

viduals. Additionally, a tabu list is appended to each chromosome in order to

record the trajectory of evolution and carry out the TS strategy. Therefore, a

chromosome in TGA is represented as a triple, (G; k; T ), where G is a set of

original genes; k is a clan number of chromosome, and T is a set of tabu list.

The clan number k is assigned uniquely at the initialization stage. During

reproduction offspring inherit the clan number k from one of its parents.

Chromosomes with the same clan number indicate that they have the same
ancestry; namely, they are genetically identical by descent [41,42].

The tabu list T records several clans that are forbidden to mate. In contrast

to a unitary table used in the conventional TS, tabu list T with clan number k is

appended to the end of the genes in each chromosome. Such a new chromo-

some structure thus can accommodate the form of multiple agents in a pop-

ulation and the evolution in GA. Fig. 2 presents an example of representation

for the traveling salesman problem (TSP). The genes represent a sequence of

cities that the salesman must visit. An additional clan (7) with the tabu list (2,
8) carries the evolutionary information of this chromosome.
3.2. Tabu list

The tabu list adopted in TGA contributes to preventing incest in a memory-

based manner. Within the mating pool, each successful mating in GA can be
8 26 7 16 …… 22 7 2 8

genes (cities for TSP) tabu listclan

Fig. 2. Example of representation for TSP.
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regarded as a move in TS. Just as TS uses the tabu list to prevent some moves

from being trapped in local optima, TGA utilizes it to track propagation and

forbid incest. Accordingly, assimilation caused by inbreeding can be avoided,

and the loss of population diversity can be restrained during evolution.
In practice, if one ignores internal processes of recombination such as

crossover and mutation, the external behaviors of selection and reproduction

can be viewed as a move. Like the move in TS, the selection is monitored and

restricted by the tabu list; restated, mating with a chromosome labeled as tabu

is forbidden. Formally, the following function can be defined to determine

whether two chromosomes CiðGi; ki; TiÞ and CjðGj; kj; TjÞ are tabu.
TabuðCi;CjÞ ¼
true; if ki 2 Tj or kj 2 Ti;
false; otherwise:

�
ð1Þ
In contrast to the incest law [33], prohibitive context in TGA is updated

when the parents mate, instead of when the offspring inherit their genes. In

TGA, after a successful mating, each parent updates its tabu list with the

mate’s clan so that the marriage is traceable. Offspring then inherit the clan and

the updated tabu list entirely from one of the parents, rather than from a

combination of both parents. Therefore the restriction in TGA is more con-

cerned with the mating relationship than ancestry.
Offspring in TGA inherit the clan identification from one of its parents. This

rule differs from that of incest law, which assigns each individual a unique

identification. In other words, the tabu list of TGA plays the role of the pat-

rilineal or matrilineal clan pedigree, which tracks of the trajectory of marriage

and inheritance, and prevents incest in a broad sense that includes the step-

father or stepmother.

The size of a tabu list is proportional to the size of the population, and can

be defined as follows:
NT ¼ d� N ; ð2Þ
where NT is the size of the tabu list in TGA, d is the parameter of propor-

tionality (06 d < 1), and N is the size of the population. The parameter of

proportionality, d, controls the tendency of the search toward exploration or
exploitation. A larger proportion corresponds to a larger tabu list, and thus a

longer history for tracking and prohibition makes the selection stricter in

preventing inbreeding and encourages mating with new mates. Consequently,

the search focuses on exploration. On the contrary, a smaller parameter of

proportionality loosens the restriction and supports the search exploitation. As

the proportion decreases to zero, TGA degenerates into GA.

The operation of updating the tabu list works as a queue: a newly forbidden

clan is inserted in the first position of the tabu list, and the other clans are
shifted to the right by one rank. The formerly last clan will be released from the

tabu list and regains the qualification to be mated. This process meets the
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Fig. 3. Updating the tabu list in TGA.
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requirement of degeneration of tabu tenure, as defined in TS [24]. Fig. 3 il-

lustrates the operation of updating the tabu list in TGA.

Fig. 4 depicts a more complete process in which TGA applies the tabu list in

a permutation problem. The process can be divided into two parts: the left part

performs the genetic operators on the genes as in the conventional GA, and the
right part handles the clan and the tabu list according to TS. In the right part,

TGA first checks whether the mating is acceptable. If the mating does not

violate the tabu restriction or satisfies the aspiration criterion, it is classified as

acceptable and the reproduced children will be passed to the offspring popu-

lation. Thereafter, the tabu list is updated in two stages. First, each parent adds

the clan number of its mate to its tabu list. This kind of tabu list prevents

duplicated mating, which leads to the decreasing of diversity in offspring

population. Second, the offspring copies the updated clan number and the tabu
list from one of its parents. It inherits the information about ancestry to pre-

vent inbreeding from causing assimilation, which would severely reduce the

diversity of the population.
3.3. Aspiration criterion

As well as the tabu list, the aspiration criterion is another measure used

to judge mating. The criterion is designed to allow superior solutions to
override the tabu restriction. Assuming that the fitness of offspring C0i is F 0i
and that the best solution so far obtained is S; then the aspiration criterion is

defined as,
AspirationðC0iÞ ¼
true; if F 0i > S;
false; otherwise:

�
ð3Þ
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If a trial mating could produce the offspring superior to the best solution so far,

this mating is allowed despite its being taboo. The criterion thereby encourages

intensification under the consideration of diversification. Consequently, the

aspiration criterion supplies a moderate selection pressure to overcome the

slow convergence, which is the cost of maintaining diversity. Thus it can bring
mating into harmony between selection pressure and population diversity. The

next section discusses experiments to validate the effectiveness of the aspiration

criterion.
3.4. Self-adaptive mutation

In nature, the probability of mutation is typically not fixed. Organisms

undergo mutation to adapt to the environment, especially when they suffer a

great environmental change. Therefore, the mutation rate should depend on

the organism’s surroundings. In GA, the mutation rate is generally defined as a

fixed probability. This kind of setting does not support proper response to a

change in environment and does not reflect the reality of nature. The strategy

of adaptive parameters has been shown to be a promising way to enhance
evolutionary algorithms [43–46]. Additionally, as stated in previous work
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[24,33], the performance of memory-based incest prevention is sensitive to the

mutation rate. It is suggested that a self-determined mutation is necessary.

Accordingly, we propose a self-adaptive mutation to determine the mutation

rate in response to the changing environment.
In TGA, when the population diversity is too low to achieve an acceptable

couple, the selection will be repeated indefinitely, causing a deadlock. Tech-

nically, according to genetic drift [2,41,42], the number of clans, or the diver-

sity, inevitably shrinks with evolution. The population will eventually converge

to a single member or clan. Then, chromosomes can no longer support suc-

cessful mating, and deadlock occurs. To avoid this, a threshold (TH) is used to

limit the number of repeated trial mating (r). When an individual courts more

often than this threshold allows, but still cannot find an acceptable mate, it is
determined that deadlock has occurred.
Deadlock ¼ true; if rPTH;
false; otherwise:

�
ð4Þ
At this time the mutation operator is performed to vitalize the population to

remedy the lack of diversity. Hence, TGA dynamically and adaptively per-

forms the mutation operator according to population diversity. The proba-

bility of mutation, triggered by deadlock, varies with evolution, and is

therefore not fixed. Moreover, mutation disrupts genetic information and so

the mutated individual is viewed as newborn and is assigned a new clan
number. The clan identification thus can correspond with the genetic infor-

mation. The characteristics of dynamic adaptation in response to population

circumstances are expected to enhance performance.

3.5. TGA algorithm

Based on the above definitions and discussion, the proposed algorithm TGA

is formulated as follows.
Algorithm TGA. Assume that the population P consists of N chromosomes

C1; . . . ;CN , with fitness F1; . . . ; FN , respectively. The best fitness S is recorded in

each generation t. The genetic operators are performed to produce offspring

C01; . . . ;C
0
N , and the deadlock criterion TH is defined to prevent infinite loop.

The algorithm terminates at tmax generations, at which point the obtained best

fitness S is the optimized result.

TGA1. [Initialization.] Set t 0, and initialize population Pt.
TGA2. [Evaluation.] Evaluate population Pt and result in F1; . . . ; FN . Set

S  maxðF1; . . . ; FN Þ.
TGA3. [New generation.] Set n 0 and r  0. (Where n is the number of

produced offspring, and r is the repeated times of deadlock.)

TGA4. [Select parent 1.] Set i randomð1; . . . ;NÞ. (Select parents Ci.)

TGA5. [Select parent 2.] Set j randomð1; . . . ;NÞ. (Select parents Cj.)
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TGA6. [Crossover.] Set p randomð Þ. If p > pc, ðC0i ;C0jÞ  CrossoverðCi;CjÞ.
TGA7. [Tabu?] If TabuðCi;CjÞ ¼ false, go to step TGA11. (Check parents Ci

and Cj to see if they are forbidden to mate.)

TGA8. [Aspiration?] If AspirationðC0i ;C0jÞ ¼ true, go to step TGA11. (Check
if offspring C0i or C

0
j can override the tabu criterion.)

TGA9. [Deadlock?] Set r r þ 1. If r < TH, go to step TGA5.

TGA10. [Mutation.] ðC0i ;C0jÞ  MutationðC0i;C0jÞ. (If deadlock occurs, perform

the mutation to activate the subpopulation.)

TGA11. [Subpopulation filled?] Insert the offspring C0i and C0j into Ptþ1, and set

n nþ 2. If n < N , set r  0 and return to step TGA4.

TGA12. [Survive.] Set Ptþ1  SurviveðPt; Ptþ1Þ and t t þ 1.

TGA13. [Evaluation.] Evaluate population Pt, and set S  maxðF1; . . . FN Þ.
TGA14. [Termination?] If t < tmax, return to step TGA3. Otherwise the algo-

rithm TGA is complete.
4. Performance evaluation

In this paper, several comprehensive experiments are conducted to evaluate

the performance of TGA. The impacts of the elements of TGA––tabu list,

aspiration criterion, and self-adaptive mutation––are first investigated. The

variation in population diversity is also examined to verify the diversification.

The superiority of TGA is then confirmed by comparing its performance with

that of GA, TS, and hybrids of GA and TS.

The traveling salesman problem (TSP), a classical combinatorial optimi-

zation problem, is used as a benchmark to evaluate performance. This
problem involves a number of random cities, and the objective is to find the

shortest path that passes through every city once. In the experiments, the

cities are generated according to the 8th DIMACS Implementation Challenge

[37] for generalization and comparability. Chromosomes are encoded by the

classical permutation representation [2,3], as illustrated in Fig. 2. A popula-

tion size of 100 chromosomes is used. The crossover operator adopted here

follows the partially matched crossover (PMX), which is commonly used to

handle TSP for GA [2]. The mutation operator follows the displacement
mutation [3], which randomly displaces an arbitrary section of chromosomes.

In the experiments on TGA, the probability of crossover (Pc) is set to 1.0, and

that of mutation is neglected because an adaptive mechanism is used to de-

termine when the mutation should be performed. Each experiment includes 20

trials. The following subsections provide more details of the evaluation ex-

periments. Section 4.1 examines the effect of the tabu list on GA’s conver-

gence and population diversity. Section 4.2 presents the impact of the

aspiration criterion upon intensification of TGA. Section 4.3 reveals the
role of self-adaptive mutation to improve TGA’s performance. Section 4.4
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compares the performance of GA, TS, Hybrids of GA and TS, and the

proposed TGA.

4.1. Tabu list

In TGA, the tabu list supports diversification. Its restrictive characteristics

protect diversity through strategic mating and further prevent premature

convergence. Several experiments are performed on the tabu list to confirm the
effectiveness. In these experiments, TGA�� denotes that the aspiration criterion

and self-adaptive mutation in TGA are both disabled in order to remove their

influences on selection pressure and mutation. At first, the probability of

mutation (PM) is set to zero in order to identify the effect of the tabu list on

convergence. As illustrated in Fig. 5, though both GA and TGA�� are trapped

into premature convergence due to the lack of mutation, TGA�� yields better

solutions than GA. This improvement is attributed to the tabu list that can

maintain diversity during evolution. Second, the performance is compared in a
general situation, in which the mutation rate is set to a fixed probability,

PM ¼ 0:005, for both GA and TGA. Fig. 5 shows that TGA�� converges more

slowly than GA. Such a defect is expected because the tabu list attempts to
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maintain diversity at the expense of the selection pressure. The next subsection

discusses an aspiration criterion, accompanied with the tabu list, to comple-

ment selection pressure and thereby overcome this defect.

A measurement of the variation in the population diversity during evolution
is required to quantify the capacity of maintaining diversity. With respect to

order-based encoding, the metrics must account for cyclic and inverse char-

acteristics. Accordingly, Ronald [38] proposed a distance function to measure

such a cyclic-TSP as,
di;j ¼ l� ei;j; ð5Þ
where di;j is Ronald’s proposed distance between two chromosomes Ci and Cj; l
is the number of genes, which equals the number of cities, c; ei;j is the number
of common edges between the corresponding tours constituted by two chro-

mosomes. Furthermore, the degree of diversity in the whole population, D, can
be defined as,
D ¼ 2

NðN � 1Þ
XN
i¼1

XN
j¼iþ1

di;j: ð6Þ
Fig. 6 plots the variation of population diversity with and without mutation

for GA and TGA. A higher degree corresponds to a more diverse population.

The degree of population diversity for TGA declines more slowly than that for

GA, independently of whether mutation is performed. This result confirms the

fact that selection with the tabu list restrains inbreeding from leading to as-

similation and a monotonous population. This outcome demonstrates that
TGA with the tabu list can retard the lost of diversity.

Next, the impact of the size of tabu list on the performance of TGA is

considered. The parameter of proportionality, d, determining the size of tabu

list, is experimentally changed from 0.1 to 0.6 in increments of 0.1. Two

population sizes (N ¼ 20 and N ¼ 100) are tested. The other parameters are

crossover rate ðPcÞ ¼ 1:0, aspiration criterion enabled, and self-adaptive mu-

tation enabled. Table 1 lists the number of deadlocks per generation and the

percentage of deadlock occurrences in each selection. The results demonstrate
that the probability of deadlocks increases with the parameter of proportion-

ality till d ¼ 0:4. When the parameter exceeds 0.4, the probability is nearly

fixed. Fig. 7 shows an outcome consistent with the direct proportionality be-

tween the probability of deadlock and the size of tabu list in Table 1. More-

over, this figure shows that the probability of deadlock increases as evolution

proceeds, rather than being uniform. This phenomenon occurs in response to

the decreasing diversity. Section 4.3 further examines the interaction between

the probability of deadlock and self-adaptive mutation.
The effect of different sizes of tabu list on convergence is also examined. Fig.

8 depicts the convergence of TGA for different parameters of proportionality
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Table 1

Average number of deadlocks per generation for various d at c ¼ 100

d 0.1 0.2 0.3 0.4 0.5 0.6

Number of deadlocks at N ¼ 20 1.72 5.86 7.61 8.19 8.46 8.46

Number of deadlocks at N ¼ 100 15.68 30.32 35.20 36.80 37.24 36.97
�Percentage of deadlocks at N ¼ 20 17.2% 58.6% 76.1% 81.9% 84.6% 84.6%
�Percentage of deadlocks at N ¼ 100 31.3% 60.6% 70.4% 73.6% 74.5% 73.9%

�Percentage¼ (number of deadlocks)/(number of selections).
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of the tabu list with a population size of 100. Although the algorithm with a

proportionality parameter exceeds 0.4 performs as well as one with d ¼ 0:4, it
takes more time to check the tabu condition, thus being less efficient. For this

reason, the parameter of proportionality, d ¼ 0:4, is suggested and adopted in

following experiments.
4.2. Aspiration criterion

The experimental results in Section 4.1 have shown the capacity of the tabu
list to maintain population diversity. However, the tabu list achieves this goal
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through restrictive mating at the expense of selection pressure. It causes the

search to focus on exploration and mitigate exploitation, and then leads to

slower convergence. The aspiration criterion is proposed to supply moderate

selection pressure to yield a good balance between exploration and exploita-
tion.

Experiments are conducted on TGA with and without the aspiration cri-

terion to verify the algorithm’s effectiveness. At first the offspring has higher

probability to meet aspiration criterion. As evolution proceeds, the offspring is

harder and harder to be superior to the best solution, and the aspiration thus

occurs less often. In terms of the influence on convergence speed, Fig. 5 shows

that TGA with the aspiration criterion, TGA�, converges faster in spite of the

application of mutation. Without mutation, TGA with the aspiration criterion
converges faster at the cost of solution quality. The reason is that the lack of

mutation reduces diversification although the tabu list provides a mechanism

to maintain diversity. This makes TGA with the aspiration criterion tend to

over-exploitation and causes premature convergence. The other results with

mutation (PM ¼ 0:005) validate this inference. TGA with the aspiration crite-

rion (TGA�) converges faster than GA and TGA without the aspiration cri-

terion (TGA��). Moreover, it does not suffer from premature convergence

because diversification is maintained by mutation.

4.3. Self-adaptive mutation

In TGA, self-adaptive mutation dynamically performs the mutation oper-

ator in response to population diversity rather than with a fixed probability.

Mutation is performed to activate the population and continue the evolution
when the diversity is so low that the individual cannot find an acceptable mate.

A threshold number of trial mating determines whether the diversity is too low

and when mutation should be performed. A higher threshold gives individuals

more opportunities to find an acceptable mate, but too many trials may in-

crease the time taken in mating. As well as the deadlock threshold, the size of

the tabu list also affects the occurrence of deadlock. The descriptions in Section

3.2 and the results in Section 4.1 indicate that a larger tabu list restricts mating

more. Thus, the number of trails is prone to exceed the deadlock threshold, and
the chances of deadlock are correspondingly increased. The size of tabu list is

set as 0.4 of the population size according to the suggestion in Section 4.1 for a

better performance.

The sensitivity of the deadlock threshold (TH) to the search performance is

investigated as follows. Fig. 9 plots the convergence and the consumed time is

given in parentheses. These results show that the performance increases with

the level of threshold, as does the consumed time. Thus the threshold can be

determined as follows: a lower threshold is suited to faster convergence at the
expense of solution quality, whereas a higher threshold obtains better solution



Fig. 9. Comparison of different levels of deadlock thresholds (TH) at c ¼ 100, N ¼ 100.
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but slower convergence. In the following experiments, the highest threshold,

equaling the population size, N , is adopted for a better solution quality. Fur-

thermore, the worthiness of taking this extra computation effort is verified in

Section 4.4.

Fig. 10 compares different mutation rates with self-adaptive mutation. In the

case of fixed probabilities of mutation, the performance deteriorates with the

mutation rate as the rate exceeds 0.002. Eventually the search approaches a
random search when the mutation rate increases beyond 0.01. However, the

results in this figure clearly demonstrate that TGA with self-adaptive mutation

outperforms TGA with any fixed mutation rate. In terms of solution quality

and convergence speed, the self-adaptation not only overcomes the difficulty of

determining an optimal mutation rate, but its dynamically adaptive nature also

enhances the performance.

The variation in the mutation occurrence probability for self-adaptive

mutation is further examined. As Fig. 11 shows, self-adaptation involves dy-
namic mutation rather than mutation with a fixed probability. Initially, the



Fig. 10. Comparison of different mutation rates (PM) and self-adaptive mutation at c ¼ 100,

N ¼ 100.
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probability is low. As the information contained inside the population is ex-

ploited stepwise, diversity is gradually lost. The population eventually becomes

uniform and stops improving. Hence, the self-adaptive mutation in TGA is

performed with increasing frequency as a gradually strengthening force to

activate the population. The outcome presented in Fig. 11 is consistent with

this suggestion. The improved performance further confirms the effectiveness

of this self-adaptive mutation strategy.

4.4. Performance comparison

TGA is compared with GA, TS, and GA+TS, which alternately run GA

and TS, to further establish the better performance of TGA. The 100-city

TSP is used as benchmark [37]. The population size (N ) is set to 100 chro-

mosomes. For GA, GA+TS, and TGA, the crossover operator adopted here
is PMX; the mutation operator is displacement mutation. TS sequentially



Fig. 11. Variation in the probability of mutation occurrence during evolution at c ¼ 100, N ¼ 100.
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performs the move operator on all adjacent solutions to generate the neigh-

borhood, and the best solution is selected as the current solution. The optimal

parameters, obtained by our many experiments, are set as crossover rate

ðPcÞ ¼ 1:0 and mutation rate ðPMÞ ¼ 0:002 for GA, and the tabu list has size

12 for TS. The hybrid approach, (GAn1 þ TSn2), alternately runs n1 gener-
ations of GA and n2 generations of TS. Three settings are proposed to

simulate the typical hybrid of GA and TS: GA10+TS10, GA100+TS100,

and GA100+TS10. Their parameters are set as those of GA and TS. In

regard to TGA, it uses the same population size and crossover rate as GA,

but dynamically performs the proposed self-adaptive mutation. The size of

the tabu list for TGA is set to 0.4 of the population size, as suggested in

Section 4.1. Experiments run 1000 generations and 20 trials for each set of

parameters.
Table 2 compares solution quality. TGA achieved the best solution on av-

erage. t-test is further used to test for statistical significance of the difference.

The null and alternative hypotheses are as follows.



Table 2

Average (X ) and standard deviation (S) of best solutions

GA TS GA10+TS10 GA100+TS100 GA100+TS10 TGA

X 11935491 12795811 10533845 10283457 10051794 8724187

S 499557 1068378 433165 653625 446210 356133

Table 3

Results of statistical test for significance (a ¼ 0:05)

X Y df t tdf;0:05 H0

TGA GA 34.35 (35) )23.41 )1.645 Reject

TS 23.17 (24) )16.17 )1.711 Reject

GA10+TS10 36.63 (37) )14.43 )1.645 Reject

GA100+TS100 29.37 (30) )9.37 )1.645 Reject

GA100+TS10 36.23 (37) )10.40 )1.645 Reject

df: degrees of freedom.
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H0 : X � Y P 0;
H1 : X � Y < 0:

�

TGA is tested as X with other algorithms as Y to confirm the superiority of

TGA. Table 3 displays the statistical results of t-test, based on the data in Table

2. Given a significance level (a) of 0.05, each t value is less than the critical

value tdf;0:05; the null hypothesis is thus rejected. These results establish that the

superiority of TGA over other algorithms (GA, TS, and hybrids) in terms of

solution quality is statistically significant.

Fig. 12 compares the convergence of TGA with that of GA, TS, and
GA+TS. The plot shows that TGA outperforms the three hybrid approaches,

which nevertheless yielded superior solutions to those obtained by running GA

or TS individually. Moreover, TGA and GA+TS converge faster than GA,

but slower than TS in the first half of convergence.

The comparative results in Fig. 12 concern convergence speed in number of

iterations. However, an algorithm may spend more time on computation, while

nevertheless converging faster with respect to iterations. Each algorithm con-

ducts a different number of computations in each iteration, and so comparing
speeds only by iterations is unfair. Thus, the time taken in each generation,

instead of the number of iterations, is recorded and represented on the x-axis.
Each algorithm takes 20 trials to obtain the average trajectory of the conver-

gence.

Fig. 13 compares convergence speed in terms of running time. Clearly, the

interval between two TGA samples is longer than that between two GA

samples, indicating that TGA takes more time in each generation. However,

TGA still converges faster than GA in spite of requiring more computation.
This improvement suggests that the TGA strategy does make evolution more
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efficient; in other words, it enhances intensification. Also, a solution of higher

quality reflects the effectiveness of the diversification in TGA. Consequently,

the extra computation cost of TGA is worthwhile in terms of solution quality

and convergence speed.
5. Conclusions

This work presents a novel heuristic optimization algorithm, called TGA,

which incorporates the characteristics of TS into the mating strategy of GA.

First, an additional memory structure, which consists of a clan number and a

tabu list, is appended to each chromosome to record the trajectory of evolution
as a basis for the mating strategy. The tabu list contributes TGA to maintain

diversity through broad-sense incest prevention. Second, the aspiration crite-

rion for overriding the restriction of tabu list is used to supply a moderate

selection pressure and to overcome the retardation caused by restrictive mat-

ing. As well as promoting intensification and diversification in the mating

strategy, TGA applies a self-adaptive mutation approach to dynamically per-

form the mutation operator according to the situation of the population. The

traveling salesman problem is used as a benchmark to evaluate TGA. The
comprehensive experimental results confirm the effectiveness of the elements of

TGA: tabu list, aspiration criterion, and self-adaptive mutation. The com-

parisons demonstrate that TGA outperforms GA, TS, and conventional hy-

brids of GA and TS, in terms of solution quality and convergence speed. These

favorable results show that the tabu list and the aspiration criterion constitute

a harmonious mating strategy for TGA in regard to population diversity and

selection pressure. They also show that the self-adaptive mutation in TGA

effectively enhances the performance. Altogether, these results demonstrate the
superiority of TGA due to the integration of tabu search and genetic algorithm

in the mating strategy.
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