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a b s t r a c t

Extending the lifetime during which a wireless sensor network (WSN) can cover all targets
is a key issue in WSN applications such as surveillance. One effective method is to partition
the collection of sensors into several covers, each of which must include all targets, and
then to activate these covers one by one. Therefore, more covers enable longer lifetime.
The problem of finding the maximum number of covers has been modeled as the SET
K-COVER problem, which has been proven to be NP-complete. This study proposes a
memetic algorithm to solve this problem. The memetic algorithm utilizes the Darwinian
evolutionary scheme and Lamarckian local enhancement to search for optima given the
considerations of global exploration and local exploitation. Additionally, the proposed
algorithm does not require an upper bound or any assumption about the maximum
number of covers. The simulation results on numerous problem instances confirm that
the algorithm significantly outperforms several heuristic and evolutionary algorithms in
terms of solution quality, which demonstrate the effectiveness of the proposed algorithm
in extending WSN lifetime.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Recent advances in hardware miniaturization, communication technologies, and low-cost mass production have facili-
tated the emergence of wireless sensor networks (WSNs) that consist of small, inexpensive, battery-powered, and wirelessly
connected sensors. The WSNs have brought up various new applications, including surveillance, home security, and environ-
mental monitoring [3,4,25,42]. WSN sensors are deployed randomly or systematically to collect information about their sur-
roundings within their sensing range. They can transmit the collected information via wireless communication; some can
even process the data before transmission. Despite their widely varying characteristics, all sensors essentially collect, trans-
mit, and relay information. A promising WSN application is long-term surveillance in hostile or distant environments. Using
WSNs for military surveillance, for example, involves deploying numerous sensors throughout the region of interest by air-
craft to detect enemy activity or equipment. However, a key consideration in the design of WSNs is the power supply since
replacing batteries in sensors is often impractical.

Although a considerable number of studies have addressed energy efficiency issues in generic wireless ad hoc networks,
distributed sensing applications impose new constraints on sensor network coverage [10]. For instance, surveillance appli-
cations may require at least one sensor in each location in a geographic region of interest [8], while object tracking applica-
tions may require at least three sensors [7]. Data sampling applications may require coverage of a given percentage of
monitored regions. In addition to sensing coverage, network connectivity is another important property of WSNs. Connec-
tivity enables sensor nodes to relay collected information back to data sinks. Zhang and Hou [45] proved that if the commu-
nication range is at least twice the sensing range, then full coverage of a convex area implies connectivity of the WSN. Hence,
. All rights reserved.

g), lcch97p@cs.ccu.edu.tw (C.-C. Liao).

http://dx.doi.org/10.1016/j.ins.2010.08.021
mailto:ckting@cs.ccu.edu.tw
mailto:lcch97p@cs.ccu.edu.tw
http://dx.doi.org/10.1016/j.ins.2010.08.021
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


C.-K. Ting, C.-C. Liao / Information Sciences 180 (2010) 4818–4833 4819
the constraints of full coverage and connectivity can be reduced to the full coverage constraint alone. This study adopts this
result and therefore considers the full coverage constraint. The WSN lifetime is accordingly defined as the time span during
which a WSN satisfies the full coverage constraint.

Scheduling sensor activity is an important approach for prolonging WSN lifetime. It involves the scheduling of sensors to
alternate between active and inactive modes so that they can maintain coverage with reduced power requirements [34,36].
More specifically, this approach divides all sensors into disjoint sensor subsets, or sensor covers,1 each of which must satisfy
the full coverage constraint. At any time, only one sensor cover in active mode provides functionality, while the remaining sen-
sor covers stay inactive to save energy. Once any sensor in the active sensor cover runs out of energy and thus cannot maintain
full coverage, one of the inactive sensor covers is selected to enter active mode and continue the functionality. Therefore, iden-
tifying more sensor covers allows the WSN lifetime to be extended further. Recent studies [34,40] indicate that this approach
not only reduces energy consumption, but also prolongs sensor network lifetime.

The problem of finding the maximum number of covers to extend WSN lifetime has been modeled as the SET K-COVER
problem [38]. Provided K covers, the lifetime of WSNs can ideally be extended by a factor of K using the above approach un-
der the coverage constraint. The SET K-COVER problem has been proven to be NP-complete. Under the assumption NP – P,
no exact algorithm can solve this problem in polynomial time. Some heuristic algorithms have been presented, but they gen-
erally suffer from the trade-off between solution quality and running time. Recently, Lai et al. [23] proposed using genetic
algorithm (GA) to deal with this trade-off. The GA achieves near-optimal solutions in acceptable time but requires informa-
tion on the value of K or its upper bound, which is usually unobtainable. Additionally, such approaches rarely yield optimal
solutions. A means of improving solution quality with a short running time is urgently needed.

This study develops a memetic algorithm (MA) to solve the SET K-COVER problem of extending WSN lifetime. Memetic
algorithm is a blooming dialect of evolutionary algorithm (EA). In addition to Darwinism, MA adopts the Lamarckian theory
that offspring can inherit the knowledge or characteristics that their parents acquire during their lifetime. The MA imple-
ments this idea by integrating a local enhancement, such as local search and repair operator, into the canonical EA, and mak-
ing the enhancement inheritable. This integration significantly improves the exploitation ability of EA and has been widely
shown to provide superior solution quality and high convergence speed [16,21,24,27,31–33,37]. The proposed MA is based
on the order-based GA with the compact operator, which is a novel local enhancement operator that is designed to address
the SET K-COVER problem. Furthermore, this study devises a fitness function based on the contribution of sensors to covers.
A series of simulations is conducted to evaluate the performance of the proposed MA in terms of solution quality and running
time, and to verify its superiority over several heuristic and evolutionary algorithms.

The rest of this paper is organized as follows. Section 2 reviews related work on WSN lifetime extension. Section 3 for-
mulates the problem of extending the WSN lifetime. Section 4 sheds light on the proposed MA and its operators. Simulation
results are presented in Section 5. Finally, conclusions are drawn in Section 6.
2. Related work

The many aspects of the WSN lifetime problem include sensor activity scheduling [8,38], network structure [7], data
aggregation [17,20,22], data compression [26], and routing protocol [18,29,35]. (For a complete survey, see [3]). This study
focuses on sensor activity scheduling. The problem of extending WSN lifetime by sensor activity scheduling was first mod-
eled as the SET K-COVER problem by Slijepcevic and Potkonjak [38]. They proved the NP-completeness of this problem by
reduction from the minimum cover problem [13]. To solve this problem, the authors proposed the most constrained-
minimally constraining covering heuristic (MCMCC). This approach runs in polynomial time but often yields unsatisfactory
results. Cardei and Du [8] formulated WSN lifetime extension as the disjoint set covers (DSC) problem, which is analogous to
the SET K-COVER problem. They presented a heuristic algorithm, called maximum covers using mixed integer programming
(MCMIP), to solve the DSC problem. Although the MCMIP method can find the optimal solution, its implicit exhaustive search
requires exponential running time. This high computational cost limits its applicability for large-scale WSNs. Cardei et al. [9]
further considered cases without the disjointedness constraint on sensor subsets. Additionally, Berman et al. [5] took the ini-
tial battery power and energy consumption rate into account. In their study, the constraint on disjointedness is relaxed so
that each sensor can participate in different sensor covers as long as it still has energy. The authors designated this problem
the sensor network lifetime problem (SNLP), which entails finding a monitoring schedule that maximizes the network life-
time. They developed a (1 + ln (1 � q)�1)-approximation algorithm for the case in which a q-portion of the monitored area
must be covered. To cover 95% of the monitored area, for example, their schedule ensures that the obtained lifetime is at
most 3.99 times shorter than the optimal lifetime.

Instead of maximizing lifetime, Abrams et al. [1] formulated the problem of finding the maximum average coverage given
the number of covers. They claimed that this problem is more natural than the SET K-COVER problem in that full coverage is
less likely to be achieved when sensors are distributed randomly and heterogeneously. The authors devised three algorithms
to solve this problem. The first is a randomized algorithm with an expected fraction 1� 1

e of the optimum. The second is a
distributed greedy algorithm with a 1

2-approximation ratio. The third is a centralized greedy algorithm, which is a de-
randomized version of the first algorithm and has a ð1� 1

eÞ-approximation ratio. Ai et al. [2] viewed the relationship between
1 In this paper, the two terms ‘sensor cover’ and ‘cover’ are used interchangeably.
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this problem and the optimal solutions as an approximate Nash equilibrium for graphical games. Their proposed DRACo
method achieves near-optimal coverage on test problems.

The above approaches for extending WSN lifetime, however, suffer from the trade-off between solution quality and run-
ning time. For the SET K-COVER problem, the MCMCC takes only polynomial time but often yields unsatisfactory solutions.
On the other hand, the MCMIP ensures optimal solutions but at the cost of exponential time complexity. To address this is-
sue, Lai et al. [23] designed an integer-coded GA in which a gene ci 2 N indicates the group number assigned to sensor Si, and
a chromosome represents the group arrangement of all sensors for covers. In the course of evolution, the groups gradually
form covers, i.e., they satisfy the constraint of full coverage. Studies have demonstrated that this algorithm outperforms
MCMCC in terms of the number of covers and is much faster than MCMIP. Nevertheless, one defect is that, owing to the inte-
ger representation of chromosomes, this GA requires an upper bound on the number of covers, which is usually unobtain-
able. Moreover, like most other GAs, the proposed GA rarely yields optimal solutions. Therefore, an algorithm is still needed
to consistently deliver, within an acceptable running time, good activity schedules for extending WSN lifetime.

3. Problem formulation

This study addresses the SET K-COVER problem of WSN lifetime extension. Suppose n sensors S1, . . . , Sn are deployed to
monitor m targets T1, . . . , Tm. A target Tj is said to be covered if it lies within the sensing range of at least one sensor. Fig. 1
shows a WSN with five sensors and four targets. The relationship between sensors S1, . . . , S5 and targets T1, . . . , T4 is repre-
sented by a bipartite graph G = (V,E), where V = S [ T and eij 2 E if Si covers Tj. Fig. 2 presents the bipartite graph of the WSN in
Fig. 1, where S1 = {T1}, S2 = {T1,T2}, S3 = {T2,T3,T4}, S4 = {T3}, and S5 = {T4}. The maximum number K of disjoint covers in this
example is two. They are C1 = {S1,S3} and C2 = {S2,S4,S5}.

The SET K-COVER problem is to find the maximum number of covers associated with the longest lifetime extension,
which is equivalent to partitioning the set of sensors into the maximum number of covers. The problem is defined formally
below.

Definition (SET K-COVER Problem). Given a collection S = {S1, . . . ,Sn} of subsets of a finite set T = {T1, . . . ,Tm}, find the
maximum number, K, of covers C1, . . . , CK # S with Ci \ Cj = ; for i – j, such that every element of T belongs to at least one
element of Ci.

This problem has been proven to be NP-complete [38]. Cardei and Du [8] also presented an equivalent formulation as the
disjoint set covers (DSC) problem and proved its NP-completeness. This problem has been applied not only to extension of
WSN lifetime, but also to protein and gene networks [6] and database systems [44].

4. Proposed memetic algorithm

This work proposes a novel MA to solve the SET K-COVER problem of maximizing WSN lifetime. The MA implements the
GA scheme and additionally adopts the compact operator, which is a local enhancement operator that is designed specifically
for the SET K-COVER problem. Algorithm 1 presents the framework of the proposed MA. Following the GA scheme, the MA
encodes candidate solutions as chromosomes. The method of encoding chromosomes is referred to as representation, which is
essentially related to the problem to be solved. The fitness function evaluates the quality (fitness) of candidate solutions
(chromosomes). In maximization problems, a better solution corresponds to higher fitness. The EAs, such as GA and MA,
manipulate a set (population) of chromosomes to search for the optimal solution.
T2
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Fig. 1. Example deployment of WSN.
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Fig. 2. Bipartite graph of a WSN.
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Algorithm 1. Memetic algorithm

initialize population P;
evaluate P;
while (not terminated)
{

Ps = Select (P);
Pc = Crossover (Ps);
Pm = Mutate (Pc);
P0 = LocalEnhance (Pm);
evaluate P0;
P = Survival (P,P0);

};

After initializing the population, MA embarks on the evolutionary process. First, the selection operator picks two chromo-
somes from the population to serve as parents. The crossover operator then exchanges the information between these two
parents to produce their offspring. A predetermined crossover rate defines the probability of performing crossover. Analo-
gously, mutation is performed with a probability, called mutation rate, to alter slightly some genes in the offspring. This
study develops the compact operator as a local enhancement operator for the MA to deal with the SET K-COVER problem.
This operator is applied to the offspring after the mutation phase.

The process of reproduction, selection–crossover–mutation–compact, is repeated until the offspring population is filled.
Based on the Darwinian theory of ‘‘Survival of the Fittest”, the survivor operator selects the fittest chromosomes from the

offspring population with or without the parental population. The selected chromosomes constitute the next-generation
population. As the evolution continues, the MA is expected to drive the search toward the global optima. The following sub-
sections describe the elements of the proposed MA in further detail.

4.1. Representation

This study proposes the use of an order-based representation for chromosomes. In the SET K-COVER problem, partitioning
the set of sensors into subsets for covers can be conceptualized as a process of accumulating covers. Accordingly, a gene ci at
locus i indicates that sensor Sci

is collected in the ith order; a chromosome represents the sequence in which all sensors are
collected to form covers. As Fig. 3 shows, S3 initializes the first group G1. When S1 joins this group, it forms a cover since
S1 S2 S3 S4 S5

T1 T2 T3 T4

5 432 1

3 41 5 2

Fig. 3. Order-based chromosome. The number in the circle of sensor node Si denotes the order in which Si is collected.
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group G1 = {S3,S1} includes all elements of T. Next, S4 participates in a new group for another cover. This accumulative process
continues until all sensors have been distributed to groups in order—the number of accumulated covers is therefore the num-
ber K of disjoint covers to be maximized. Like the integer representation used in [23], the order-based representation always
satisfies the ‘‘disjointedness” of covers, in that each gene appears exactly once and can join only one group (cover). Moreover,
a major advantage of the order-based representation is that, unlike integer representation, no upper bound or assumed num-
ber K is required.

4.2. Fitness function

The fitness function is vitally important to EAs because it explicitly or implicitly affects the search direction. An effective
fitness function must render sufficient information about the search direction and clearly distinguish between good and bad
candidate solutions. The fitness function is essentially problem-dependent. A fitness function for the SET K-COVER problem
can simply treat the number of covers as the fitness value. Although this method has proven effective in integer-coded GA
[23], it does not account for groups that include several sensors covering the same targets. This redundancy potentially
reduces the number of obtained covers.

This study addresses this issue by considering how each sensor ‘contributes’ to a cover. More specifically, the fitness value
of a chromosome is defined as the sum of contributions of all sensors, where the contribution of a sensor is quantified as the
incremental change in the number of covers to which the sensor leads. For example, in the left part of Fig. 4, the contribution
of S3 is three, and that of S5 is zero. Notably, the contribution of S2 is two, since it covers two targets (T1 and T2) for a new
group G2. The fitness value of the chromosome is therefore 3 + 0 + 0 + 1 + 2 = 6. The proposed fitness function can distinguish
between whether a sensor is contributive or redundant to the formation of a cover. This distinction regarding fitness helps in
directing the evolutionary search. Section 5 will further examine the advantage of this fitness function.

Incidentally, the number of covers can be simply obtained by bf(c)/jTjc, where f(c) denotes the fitness of chromosome c.
For instance, the chromosome in the left part of Fig. 4 has b6/4c = 1 cover.

4.3. Selection

The selection operators, including parent selection and survivor selection, follow the Darwinian principle of survival of the
fittest. First, parent selection is ordinarily based on an alternative explanation of natural selection: fitter individuals should
have a higher probability of reproducing. A common implementation of this principle is fitness-proportionate selection. This
method is also called roulette wheel selection because it selects parents in a manner analogous to the spinning of a roulette
wheel, in which the size of a pocket is proportional to the fitness of an individual. Its main drawbacks are its need for global
fitness information and its sensitivity to the distribution of fitness in the population. The k-tournament selection eliminates
these drawbacks by choosing the winner among k individuals that are drawn randomly from the population. The number k
controls selection pressure: a higher k gives higher selection pressure.

Second, survivor selection genuinely applies the principle of survivor of the fittest. Only the fittest individuals are selected
as parents for the next-generation. The methods of survivor selection can be classified according to the number of parents
who compete for survival. The (l + k) survivor selection merges the parental and the offspring populations to compete for
survival.

The proposed MA is not subject to selection operators: any GA selection operator can be applied to the MA. This study adopts
tournament parent selection and (l + k) survivor selection in experiments because of their recognized good performance.

4.4. Crossover and mutation

The crossover of order-based chromosomes requires a special design to ensure the legality of an order, i.e., containing no
duplicate numbers in an order. Various crossover operators have been proposed for order-based representation. These
S1 S2 S3 S4 S5

T1 T2 T3 T4

3 45 1 2

S1 S2 S3 S4 S5

T1 T2 T3 T4

3 21 5 4
compact

Fig. 4. Example of compact operation.
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operators generally explore the relationships between the two parental orders and then use this information to generate
legal orders. The two main relationships involved are mapping and adjacency. The mapping operation establishes a corre-
spondence of genes at the same locus between parents in the crossover phase. The crossover operators using this technique
include the well-known partially mapped crossover (PMX) [15], order crossover (OX) [11], and cycle crossover (CX) [30]. The
adjacency information, however, is essential in combinatorial problems such as the traveling salesman problem (TSP). Cross-
over operators that adopt this information, such as the series of edge recombinations [28,39,41,43], are widely used to tackle
the TSP, although they are applicable to other combinatorial problems.

The mutation of order-based representation also requires order legality. The bitwise and gene-wise mutation operators
cannot fulfill this requirement since a legal move requires a change in at least two genes. Several mutation operators for
order-based representation, e.g., swap, insertion, scramble, and inversion, have been proposed to deal with the issue of order
legality [12,14].

Any order-based crossover and mutation is applicable to the proposed MA. However, the crossover operators that focus
on mapping relationships are preferred because the key information required for solving the SET K-COVER problem is the
order of collecting sensors rather than adjacency. In the light of its virtue in preserving relative order, order crossover for
order-based EAs is utilized herein. The widely used swap mutation is applied in the experiments. Additionally, an alternative
definition [19] of mutation rate is employed. The original mutation rate for order-based representation is defined as the
probability that a chromosome mutates once. Even the highest mutation rate 1.0 can result in only one swap in a chromo-
some, severely restricting the extent of mutation. To increase the extent of mutation, a Poisson-distributed random gener-
ator is adopted to determine the number of swaps needed to mutate a chromosome, where the mutation rate is given by the
parameter k in the Poisson distribution. Therefore, the number of swaps in a chromosome can exceed one to increase
diversity.

4.5. Compact operator

In the proposed MA, sensor order is key to the cover collection process. A cover that contains redundant sensors inhibits
from using them subsequently and therefore reduces the opportunities to form more covers. To avoid this situation, the com-
pact operator is proposed to adjust the sensor order to increase the number of covers. This operator is applied to every off-
spring after mutation.

For an order-based chromosome, the compact operator checks the sensor groups successively. The redundant sensors of
each cover are moved to the end of the chromosome such that they can later be collected again to form another cover. Re-
stated, the compact operator rearranges the orders of redundant sensors to increase the number of covers. This operation
continues checking the newly formed covers until all redundant sensors have been moved out. For example, the left part
of Fig. 4 displays an offspring after mutation. The compact operator checks the contribution of each sensor, which is
{3,0,0,1 j 2} for the offspring with a single cover C1 = {S3,S5,S4,S1}. Sensors S5 and S4 are made redundant from C1; however,
they are probably helpful for forming another cover. The compact operator then moves sensors S5 and S4 to the end of the
offspring. As the right part of Fig. 4 shows, this operation helps the offspring to compact cover C1 into C01 = {S3,S1} and to form
a new cover C02 = {S2,S5,S4}. The contribution of each sensor becomes {3,1 j 2,1,1}, and the fitness increases accordingly from
6 to 8. This example illustrates the fact that the compact operator can distribute the participation of sensors among covers
and can increase the number of covers.
5. Simulation results

A series of simulations was conducted to evaluate the performance of the proposed MA in extending WSN lifetime, in
comparison with MCMCC [38], MCMIP [8], integer-coded GA (iGA) [23], and order-based GA. To assess the effect of the con-
tribution fitness function, two order-based GAs were considered: oGA1 and oGA2. The former adopts the number of covers as
fitness whereas the latter employs the contribution value that is defined in Section 4.2 as fitness. Table 1 lists the operators
and related parameters used in these algorithms. Notably, the mutation rate for oGA1, oGA2, and MA is the parameter for the
number of swaps in the Poisson-distributed random generator.

The simulation instances of WSN are generated randomly; specifically, sensors and targets are deployed at random
over a 500 � 500 area. Each simulation setting includes 100 test instances and one run for each instance. The follow-
ing subsections present and discuss the simulation results regarding the sensing range r, the number of targets jTj,
and the number of sensors jSj. Here, two factors qt and qs are defined to characterize the test instances. Let T(s) be
the target set that is covered by sensor s, and let S(t) be the sensor set that covers target t. The two factors are
defined by
qt ¼
1
jSj
X

s2S

TðsÞj j; ð1Þ

qs ¼
1
jTj
X

t2T

SðtÞj j; ð2Þ



Table 1
Operators and parameters used in simulations.

iGA oGA1 oGA2 MA

Representation Integer Order Order Order
Fitness #Covers #Covers Contribution Contribution
Population size 100
Parent selection 2-tournament selection
Crossover Uniform Order Order Order
Crossover rate 1.0
Mutation Bit-flip Swap Swap Swap
Mutation rate 0.01 1.0 1.0 1.0
Local enhancement None None None Compact
Survivor selection (l + k)
Termination 1000 generations
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where j � j denotes the cardinality. An upper bound on the number of covers K that is used in iGA [23] is determined as
ub ¼min
t2T

SðtÞj j: ð3Þ
The value of ub gives the range of possible group numbers to which a target can be assigned, and thereby determines the
problem space of a SET K-COVER problem of extending WSN lifetime. Notably, for randomly generated test instances, qs

and ub are related: a large qs implies a large ub. The factor D is defined as the difference between qs and ub:
D ¼ qs � ub: ð4Þ
This measure represents the average number of sensors that should be excluded with respect to a single target when sensors
are partitioned to maximize the number of covers. A larger value of D implies that the algorithm should pay more attention
to picking out suitable sensors to maximize the number of covers.

Three measures are used for performance evaluation.

� Number of covers K: This number determines the maximum extension of WSN lifetime. The average and standard devi-
ation are considered for the stochastic nature of test algorithms.
� Hit rate (HR): Since the maximum number, K, of covers in the test instances is unknown, the upper bound ub is used here

as a basis for evaluating solution quality. The hit rate is defined as the percentage of runs that achieve ub covers:
HR ¼ #runs that achieve ub covers
#runs

; ð5Þ
where ub is decided by the smallest degree of target vertices in the bipartite graph of WSN.
� Running time: This time is measured on a simulation platform that uses C code on a Windows XP/Intel Core 2 Duo E6320

1.86 GHz machine.

5.1. Simulations with different sensing ranges

The purpose of the first simulation was to investigate the performance of the proposed MA for different sensing ranges. As
Table 2 shows, extending the sensing range increases qt, qs, and ub. Notably, qs is related to ub for randomly generated test
instances. The simulation considers two sizes of WSN: the smaller WSN consists of 90 sensors and 10 targets, which size has
also been used in [8]; the larger WSN consists of 300 sensors and 500 targets, and was simulated to examine scalability.

Table 3 compares the solution quality of the six test algorithms. The implicit exhaustive search ensures that the MCMIP
always achieves the maximum number of covers; however, its exponential time complexity forbids experiments in which
sensing range exceeds 300 in the smaller WSN and all sensing ranges in the larger WSN. Table 4 further presents the results
of a one-tailed paired t-test of the numbers of covers obtained using the test algorithms.

On the obtained number of covers, this study explored the effects of four elements in the proposed MA, namely evolu-
tionary scheme, order-based representation, contribution fitness, and local enhancement operator. First, the four EAs, viz
iGA, oGA1, oGA2, and MA, outperformed MCMCC in terms of the number of covers obtained, except for iGA with r P 300
in both WSNs and oGA1 with r 6 400 in the larger WSN. This superior performance of EAs over MCMCC shows the effective-
ness of the evolutionary scheme in maximizing the number of covers. Second, the performance of iGA degrades as the sens-
ing range r increases and is even worse than that of MCMCC for r P 300. This weakness of iGA is caused by the use of ub to
indicate the range of potential values of genes, even though it may not equal the maximum number K, especially in large qs

WSNs. The error in estimating K incurs trivial representation space in iGA and a subsequent inefficient search for the optimal
solution. The order-based representation used in oGA1, oGA2, and MA, nevertheless, overcomes this weakness by removing
the need for ub, which is beneficial for large sensing ranges. Third, the number of covers achieved by oGA2 is larger than or at
least comparable to that achieved by oGA1. This outcome confirms that the contribution fitness improves the performance of



Table 2
Average (Avg.) and standard deviation (S.D.) of qt, qs, ub, and D over 100 problem instances for different sensing ranges r with jSj sensors and jTj targets.

jSj jTj r qt qs ub D

Avg. S.D. Avg. S.D. Avg. S.D. Avg.

90 10 100 1.04 0.14 9.32 1.26 4.13 1.61 5.19
150 2.15 0.26 19.35 2.36 9.84 2.64 9.51
200 3.44 0.32 30.94 2.90 16.77 4.47 14.17
250 4.79 0.44 43.07 3.98 25.18 4.82 17.89
300 6.12 0.54 55.09 4.85 34.78 6.13 20.31
350 7.35 0.48 66.16 4.32 45.54 6.84 20.62
400 8.43 0.37 75.89 3.30 58.31 6.55 17.58
450 9.26 0.24 83.31 2.19 70.37 5.98 12.94
500 9.74 0.12 87.64 1.07 80.53 4.20 7.11

300 500 100 52.52 0.93 31.51 0.56 8.69 2.17 22.82
150 107.55 2.20 64.53 1.32 20.20 3.35 44.33
200 172.69 3.75 103.61 2.25 36.01 4.38 67.60
250 241.01 4.72 144.61 2.83 58.16 5.04 86.45
300 309.15 5.34 185.49 3.20 84.71 5.81 100.78
350 371.62 5.18 222.97 3.11 115.57 6.85 107.40
400 425.36 4.34 255.22 2.60 151.43 6.73 103.79
450 464.60 2.82 278.76 1.69 193.62 6.38 85.14
500 487.67 1.20 292.60 0.72 238.08 6.24 54.52

Table 3
Average (Avg.), standard deviation (S.D.), and hit rate (HR) of the number of covers obtained for different sensing ranges (r) with jSj sensors and jTj targets.
Boldface denotes the best result among the six test algorithms.

jSj jTj r ub MCMIP MCMCC iGA oGA1 oGA2 MA

Avg. (S.D.) Avg. (S.D.) HR Avg. (S.D.) HR Avg. (S.D.) HR Avg. (S.D.) HR Avg. (S.D.) HR

90 10 100 4.13 4.13 4.13 1.00 4.13 1.00 4.12 0.99 4.13 1.00 4.13 1.00
(1.61) (1.61) (1.61) (1.60) (1.61) (1.61)

150 9.84 9.84 9.78 0.95 9.84 1.00 9.79 0.95 9.84 1.00 9.84 1.00
(2.64) (2.58) (2.64) (2.54) (2.64) (2.64)

200 16.77 16.77 16.41 0.75 16.77 1.00 16.67 0.92 16.77 1.00 16.77 1.00
(4.47) (4.15) (4.47) (4.34) (4.47) (4.47)

250 25.18 25.18 24.55 0.66 25.18 1.00 25.15 0.91 25.18 1.00 25.18 1.00
(4.82) (4.43) (4.82) (4.79) (4.82) (4.82)

300 34.78 – 33.97 0.61 34.75 0.97 34.64 0.89 34.75 0.98 34.76 0.98
(5.62) (6.09) (5.99) (6.09) (6.10)

350 45.54 – 44.67 0.64 45.12 0.89 45.20 0.85 45.27 0.88 45.28 0.87
(6.16) (6.33) (6.40) (6.48) (6.49)

400 58.31 – 56.70 0.47 56.64 0.66 57.26 0.62 57.29 0.62 57.39 0.67
(5.88) (5.74) (5.89) (5.87) (5.89)

450 70.37 – 69.12 0.55 68.54 0.66 69.37 0.64 69.36 0.64 69.39 0.66
(5.82) (6.12) (5.80) (5.81) (5.81)

500 80.53 – 80.03 0.73 79.75 0.75 80.06 0.76 80.06 0.76 80.06 0.76
(4.27) (4.55) (4.27) (4.27) (4.27)

300 500 100 8.69 – 8.28 0.67 8.65 0.97 7.43 0.40 8.67 0.98 8.69 1.00
(1.93) (2.11) (1.08) (2.13) (2.17)

150 20.20 – 19.64 0.71 20.07 0.94 18.43 0.37 20.16 0.96 20.20 1.00
(3.01) (3.19) (1.98) (3.31) (3.35)

200 36.01 – 35.59 0.76 35.87 0.92 34.32 0.34 35.96 0.96 36.00 0.99
(4.15) (4.21) (3.20) (4.29) (4.36)

250 58.16 – 56.46 0.37 57.46 0.73 55.90 0.28 57.87 0.78 58.15 0.99
(4.42) (4.32) (3.59) (4.76) (5.03)

300 84.71 – 80.55 0.24 78.85 0.32 80.37 0.13 83.26 0.42 84.59 0.89
(4.01) (4.04) (3.68) (4.75) (5.66)

350 115.57 – 110.34 0.23 100.07 0.04 109.50 0.05 112.44 0.24 114.92 0.69
(4.40) (5.57) (4.07) (4.74) (6.02)

400 151.43 – 142.51 0.07 125.18 0.01 142.75 0.02 144.75 0.06 148.74 0.26
(4.09) (7.02) (4.37) (4.53) (4.99)

450 193.62 – 174.71 0.00 149.43 0.00 175.76 0.00 176.58 0.00 178.66 0.01
(4.41) (8.04) (4.13) (4.11) (4.00)

500 238.08 – 207.86 0.00 179.30 0.00 208.93 0.00 208.98 0.00 209.20 0.00
(5.29) (8.73) (5.26) (5.35) (5.28)
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order-based GA. Finally, the compact operator enables the MA to improve significantly oGA2 in terms of the number of cov-
ers and to yield the same number of covers as obtained using MCMIP. This demonstrates that the MA is highly capable of



Table 4
Results of one-tailed paired t-test of the numbers of covers obtained from X and Y algorithms (denoted by X vs. Y) for different sensing ranges r with jSj sensors
and jTj targets. Positive p-values indicate that X is superior to Y, and vice versa. Boldface denotes that X is significantly better than Y. N/A indicates that X and Y
yield identical results in all test instances.

jSj jTj r iGA vs.
MCMCC

oGA1 vs.
MCMCC

oGA1 vs.
iGA

oGA2 vs.
MCMCC

oGA2 vs.
iGA

oGA2 vs.
oGA1

MA vs.
MCMCC

MA vs.
iGA

MA vs.
oGA1

MA vs.
oGA2

90 100 100 N/A �1.60E�01 �1.60E�01 N/A N/A 1.60E�01 N/A N/A 1.60E�01 N/A
150 1.66E�02 3.70E�01 �1.23E�02 1.66E�02 N/A 1.23E�02 1.66E�02 N/A 1.23E�02 N/A
200 3.00E�07 1.61E�05 �3.45E�03 3.00E�07 N/A 3.45E�03 3.00E�07 N/A 3.45E�03 N/A
250 2.40E�07 1.51E�07 �4.16E�02 2.40E�07 N/A 4.16E�02 2.40E�07 N/A 4.16E�02 N/A
300 7.20E�10 8.84E�09 �3.50E�03 1.41E�09 5.00E�01 3.50E�03 7.15E�10 1.60E�01 1.15E�03 2.83E�01
350 8.29E�05 9.93E�08 9.79E�02 5.09E�08 1.07E�02 3.52E�02 1.15E�08 1.29E�02 5.35E�03 3.28E�01
400 �3.73E�01 1.17E�07 8.14E�05 7.93E�08 2.89E�05 2.35E�01 8.96E�09 2.30E�06 3.00E�04 1.71E�03
450 �5.28E�04 1.68E�05 6.35E�07 1.70E�05 8.47E�07 �2.83E�01 5.63E�06 2.95E�07 7.92E�02 4.16E�02
500 �9.46E�04 4.16E�02 2.49E�04 4.16E�02 2.49E�04 N/A 4.16E�02 2.49E�04 N/A N/A

300 500 100 9.87E�08 �7.25E�12 �3.50E�15 8.15E�09 2.08E�01 1.90E�15 4.52E�09 5.14E�02 4.69E�15 7.92E�02
150 3.09E�05 �4.33E�11 �2.71E�15 8.22E�07 7.52E�02 1.51E�15 4.35E�07 2.09E�02 2.25E�15 2.25E�02
200 1.53E�03 �1.21E�11 �7.52E�16 4.18E�06 4.16E�02 1.09E�15 1.17E�06 5.81E�03 1.94E�15 5.14E�02
250 2.33E�07 �2.28E�03 �3.80E�16 2.63E�12 9.14E�04 5.63E�20 1.24E�14 2.77E�05 1.47E�19 1.39E�05
300 �3.96E�04 �2.49E�01 8.53E�04 1.68E�14 6.92E�13 3.59E�24 5.76E�19 3.75E�14 3.06E�27 3.17E�13
350 �7.16E�25 �2.12E�03 4.67E�23 1.04E�09 3.82E�27 3.45E�23 5.69E�19 5.42E�28 6.03E�32 2.25E�21
400 �5.53E�43 1.87E�01 1.01E�41 1.63E�12 4.90E�44 1.47E�13 3.87E�35 3.19E�46 8.13E�42 9.82E�32
450 �1.45E�63 1.48E�07 1.04E�62 1.54E�19 1.06E�64 9.89E�08 2.64E�44 4.43E�69 3.65E�38 3.44E�32
500 �2.44E�74 6.84E�18 3.23E�74 1.19E�19 2.34E�75 2.39E�01 3.32E�26 5.46E�76 1.66E�06 3.32E�06
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achieving global optimal solutions. The MA substantially outperforms all other test algorithms except MCMIP in terms of the
number of covers obtained. The advantage of oGA2 and MA over the other test algorithms increases with the WSN size.

In terms of hit rate, the comparative results somewhat differ between the smaller and larger WSNs. In the smaller WSN,
the MA, iGA, and oGA2 perform best, followed by oGA1 with only a slightly poorer performance; MCMCC yields relatively
low hit rates, especially for 200 6 r 6 450. Fig. 5, which plots the variation of hit rate against sensing range, indicates that
MA and iGA yield similar hit rates, while MCMCC has a low hit rate for most of the test sensing ranges. Notably, the low
hit rates for r P 400 do not imply poor performance of the test algorithms. Rather, they reflect the significant difference
between the optimal number K and the upper bound ub. Hence, given the definition of hit rate, the algorithm cannot have
a high hit rate, even though it can achieve the maximum number of covers. In the larger WSN, the compact operator in the
MA is very effective in increasing the hit rate, which fact is reflected by the apparent discrepancy between the HR of the MA
and those of all other test algorithms. Moreover, oGA2 outperforms oGA1 and iGA. This outcome verifies the utility of the
contribution fitness in increasing the number of covers obtained. The oGA1 performs poorly in the larger WSN, revealing
the need for order-based representation to improve the fitness function or perform local enhancement, as in the proposed
MA.

Table 5 lists the running time of the six test algorithms for different sensing ranges. For all test algorithms, the running
time generally increases with sensing range. Owing to its implicit exhaustive search, MCMIP requires much longer running
time than the other algorithms. MCMCC has the shortest running time. The EAs require somewhat more time than MCMCC,
but much less time than MCMIP. The difference between the running time of oGA1 and that of oGA2 reflects the effect of the
fitness function. At small sensing ranges (r 6 200), oGA2 achieves shorter running time by using contribution fitness, and
yet, as r P 250, the contribution fitness of oGA2 results in longer running time than oGA1. Concerning the cost of local
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Fig. 5. Hit rates of MCMCC, iGA, oGA1, oGA2, and MA for different sensing ranges (r) with jSj = 90 and jTj = 10 (left) and with jSj = 300 and jTj = 500 (right).



Table 5
Running time of MCMIP, MCMCC, iGA, oGA1, oGA2, and MA for different sensing ranges (r) with jSj sensors and jTj targets.

r jSj = 90, jTj = 10 jSj = 300, jTj = 500

MCMIP MCMCC iGA oGA1 oGA2 MA MCMCC iGA oGA1 oGA2 MA

100 0.33 0.00 2.13 1.69 1.47 2.16 2.20 32.08 158.99 115.51 170.39
150 13.99 0.00 3.47 1.87 1.74 2.46 8.09 58.46 166.48 165.66 225.80
200 208.17 0.01 4.49 2.01 1.94 2.54 16.20 90.23 185.26 212.93 236.75
250 1174.10 0.02 2.39 2.13 2.11 2.57 41.45 126.35 202.33 250.21 262.00
300 – 0.03 6.40 2.17 2.25 2.53 68.35 164.74 210.35 269.64 296.61
350 – 0.05 7.09 2.21 2.45 2.63 89.33 203.39 213.84 280.41 284.79
400 – 0.05 8.08 2.23 2.60 2.75 103.52 242.26 212.21 281.68 291.35
450 – 0.05 8.66 2.23 2.73 2.88 115.62 305.61 209.08 281.97 293.52
500 – 0.06 9.96 2.25 2.86 3.02 112.03 374.68 212.70 295.91 300.45
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enhancement, i.e., the compact operator, the MA requires more running time than oGA2 does. However, the increase in run-
ning time associated with compact operation gradually declines as the sensing range increases. The iGA has longer running
time than MCMCC, order-based GAs, and the MA. Increasing the sensing range has a strongly negative effect on iGA running
time since its search space depends on ub, which increases with the sensing range r.
5.2. Simulations with different numbers of targets

The second simulation tested the performance of the MA on WSNs with different numbers of targets. This simulation con-
sidered two settings for the number of sensors and sensing range of each. The first involved a WSN comprising 90 sensors
with r = 250, which was used in [8]. The second involved jSj = 300 sensors with a sensing range of r = 400 to check the sca-
lability of the test algorithms. Table 6 lists the characteristics of these problem instances for different numbers of targets, and
demonstrates that adding targets in the WSN does not affect qs, but does reduce ub and increase qt and D. Increasing the
sensing range from 250 to 400 also increases qs. The effects of these changes are discussed below.

Table 7 compares the number of covers and hit rate obtained for different numbers of targets. The table shows only a few
results for MCMIP because, as indicated by Table 9, its high cost limits the number of targets in the experiments. For the
smaller sensing range (r = 250), the results in Table 7 demonstrate that iGA, oGA2, and MA perform very well for all tested
numbers of targets. Notably, MA can achieve a number of covers that equals the upper bound ub. The t-test results in Table 8
reveal no significant variation among the results obtained using iGA, oGA2, and MA. Additionally, oGA1 generates signifi-
cantly fewer covers than the above three algorithms. The difference between the simulation results for oGA1 and oGA2,
moreover, validates the advantage of using contribution fitness. The four EAs (iGA, oGA1, oGA2, and MA) all outperform
Table 6
Average (Avg.) and standard deviation (S.D.) of qt, qs, ub, and D over 100 problem instances for different numbers jTj of targets to be covered by jSj sensors with
sensing range r.

jSj r jTj qt qs ub D

Avg. S.D. Avg. S.D. Avg. S.D. Avg.

90 250 10 4.79 0.44 43.07 3.98 25.18 4.82 17.89
20 9.66 0.66 43.49 2.96 21.31 3.77 22.18
30 14.52 0.87 43.56 2.60 21.13 3.91 22.43
40 19.33 1.05 43.50 2.36 19.59 3.71 23.91
50 24.12 1.19 43.41 2.15 19.41 3.10 24.00
75 36.17 1.74 43.40 2.09 18.58 2.95 24.82
100 48.35 2.06 43.52 1.86 17.85 2.83 25.67
150 72.42 2.57 43.45 1.54 17.26 2.67 26.19
200 97.11 3.30 43.70 1.48 16.55 2.61 27.15
250 120.79 4.14 43.49 1.49 16.20 2.38 27.29
500 241.52 7.94 43.47 1.43 15.54 2.26 27.93

300 400 10 8.45 0.38 253.45 11.38 193.67 21.10 59.78
20 16.98 0.57 254.66 8.48 181.94 17.13 72.72
30 25.59 0.73 255.88 7.34 178.43 17.01 77.45
40 34.05 0.74 255.38 5.55 173.02 15.13 82.36
50 42.51 0.94 255.09 5.62 167.79 13.82 87.30
75 63.74 1.19 254.94 4.76 167.39 10.90 87.55
100 84.73 1.32 254.20 3.97 162.87 9.58 91.33
150 127.71 1.88 255.41 3.76 159.84 8.00 95.57
200 170.14 2.25 255.21 3.38 157.96 9.09 97.25
250 212.60 2.47 255.12 2.97 155.91 6.92 99.21
500 425.36 4.34 255.22 2.60 151.43 6.73 103.79



Table 7
Average (Avg.), standard deviation (S.D.), and hit rate (HR) of the number of covers obtained for different numbers of targets (jTj) with jSj sensors and sensing
range r. Boldface denotes the best result among the six test algorithms.

jSj r jTj ub MCMIP MCMCC iGA oGA1 oGA2 MA

Avg. (S.D.) Avg. (S.D.) HR Avg. (S.D.) HR Avg. (S.D.) HR Avg. (S.D.) HR Avg. (S.D.) HR

90 250 10 25.18 25.18 24.55 0.66 25.18 1.00 25.15 0.91 25.18 1.00 25.18 1.00
(4.82) (4.43) (4.82) (4.79) (4.82) (4.82)

20 21.31 21.31 20.80 0.72 21.30 0.99 21.23 0.95 21.31 1.00 21.31 1.00
(3.77) (3.45) (3.76) (3.69) (3.77) (3.77)

30 21.13 21.13 20.50 0.63 21.04 0.95 20.87 0.82 21.09 0.96 21.13 1.00
(3.91) (3.39) (3.73) (3.59) (3.85) (3.91)

40 19.59 – 18.98 0.66 19.58 0.99 19.45 0.87 19.58 0.99 19.59 1.00
(3.22) (3.69) (3.56) (3.69) (3.71)

50 19.41 – 18.84 0.66 19.40 0.99 19.29 0.90 19.41 1.00 19.41 1.00
(2.68) (3.09) (2.94) (3.10) (3.10)

75 18.58 – 18.04 0.65 18.52 0.96 18.40 0.88 18.57 0.99 18.58 1.00
(2.56) (2.87) (2.73) (2.93) (2.95)

100 17.85 – 17.40 0.69 17.78 0.95 17.67 0.87 17.85 1.00 17.85 1.00
(2.44) (2.71) (2.59) (2.83) (2.83)

150 17.26 – 16.73 0.65 17.23 0.97 17.05 0.81 17.26 1.00 17.26 1.00
(2.32) (2.64) (2.46) (2.67) (2.67)

200 16.55 – 16.03 0.67 16.52 0.99 16.33 0.82 16.54 0.99 16.55 1.00
(2.35) (2.56) (2.37) (2.60) (2.61)

250 16.20 – 15.82 0.71 16.20 1.00 16.11 0.91 16.20 1.00 16.20 1.00
(2.24) (2.38) (2.28) (2.38) (2.38)

500 15.54 – 15.17 0.71 15.51 0.97 15.42 0.89 15.54 1.00 15.54 1.00
(2.15) (2.24) (2.15) (2.26) (2.26)

300 400 10 193.67 – 189.23 0.44 188.16 0.56 189.76 0.46 189.93 0.43 190.93 0.59
(19.39) (18.81) (18.98) (19.07) (19.34)

20 181.94 – 176.72 0.41 173.40 0.43 176.62 0.38 177.15 0.49 178.54 0.55
(13.93) (13.02) (13.71) (13.88) (13.99)

30 178.43 – 171.56 0.26 167.25 0.26 171.79 0.20 172.38 0.24 174.49 0.47
(13.27) (11.46) (12.98) (13.03) (13.26)

40 173.02 – 165.69 0.21 160.38 0.11 166.08 0.18 167.07 0.20 169.47 0.38
(11.81) (10.12) (11.70) (11.79) (12.04)

50 167.79 – 160.78 0.22 154.94 0.15 160.98 0.13 162.09 0.18 164.55 0.37
(10.19) (8.01) (10.29) (10.33) (10.72)

75 167.39 – 158.77 0.11 148.73 0.09 158.71 0.07 160.08 0.10 163.35 0.29
(7.91) (9.35) (7.72) (7.63) (8.20)

100 162.87 – 154.59 0.11 144.30 0.03 154.83 0.03 156.19 0.08 159.78 0.35
(7.36) (8.17) (7.19) (7.08) (7.42)

150 159.84 – 150.54 0.12 137.20 0.04 151.05 0.05 152.45 0.08 156.46 0.18
(5.78) (8.40) (5.39) (5.79) (6.38)

200 157.96 – 148.98 0.09 133.93 0.02 148.65 0.02 150.55 0.09 154.39 0.25
(6.04) (6.67) (6.15) (6.19) (6.76)

250 155.91 – 147.01 0.10 131.10 0.01 147.01 0.02 148.42 0.03 152.80 0.24
(4.93) (7.45) (4.73) (4.76) (5.15)

500 151.43 – 142.51 0.07 125.18 0.01 142.75 0.02 144.75 0.06 148.74 0.26
(4.09) (7.02) (4.37) (4.53) (4.99)
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MCMCC in terms of the number of covers obtained and the hit rate. This superiority of EAs reconfirms the benefit of the evo-
lutionary scheme in extending WSN lifetime with small sensing ranges.

As the sensing range r increases to 400, the hit rate of the test algorithms apparently decreases, and this decline is further
intensified by the increase of targets. In the problem instances considered herein, the reduction in the hit rate corresponds to
the increase in D, implying that more sensors should be excluded when sensors are arranged to cover a certain target. In
addition, overestimating the maximum number K using ub still impairs the performance of iGA. The order-based EAs, includ-
ing oGA1, oGA2, and MA, resolve this issue by eliminating the need for an upper bound on or an assumption about the max-
imum number of covers. Further, the proposed MA can achieve significantly more covers than the other test algorithms can,
and this significance increases with the number of targets. Fig. 6 further shows that the MA achieves the highest hit rates for
all tested numbers of targets. These experimental results demonstrate the excellent performance of the proposed MA in gen-
erating covers for extending the WSN lifetime.

Table 9 compares the running time of the six test algorithms in this simulation. The required running time of all test algo-
rithms increases with the number of targets. The MCMCC is the fastest of all the test algorithms; however, its unsatisfactory
solution quality detracts greatly from its efficiency. The comparison of test EAs indicates that iGA requires less running time
than oGA1, oGA2, and MA for problem instances with a small sensing range (r = 250). Conversely, for problem instances with
r = 400, iGA has longer running time than oGA1, oGA2, and even the MA, for all numbers of targets except jTj = 500. This



Table 8
Results of one-tailed paired t-test of the numbers of covers obtained from X and Y algorithms (denoted by X vs. Y) for different numbers jTj of targets with jSj
sensors and sensing range r. Positive p-values indicate that X is superior to Y, and vice versa. Boldface denotes that X is significantly better than Y. N/A indicates
that X and Y have identical results in all test instances.

jSj r jTj iGA vs.
MCMCC

oGA1 vs.
MCMCC

oGA1 vs.
iGA

oGA2 vs.
MCMCC

oGA2 vs.
iGA

oGA2 vs.
oGA1

MA vs.
MCMCC

MA vs.
iGA

MA vs.
oGA1

MA vs.
oGA2

90 250 10 2.40E�07 1.51E�07 �4.16E�02 2.40E�07 N/A 4.16E�02 2.40E�07 N/A 4.16E�02 N/A
20 6.40E�07 1.48E�06 �2.59E�02 6.57E�07 1.60E�01 1.59E�02 6.57E�07 1.60E�01 1.59E�02 N/A
30 1.83E�09 1.52E�06 �1.79E�03 2.63E�09 1.39E�01 5.03E�05 2.37E�09 4.74E�02 3.80E�05 2.25E�02
40 2.42E�08 1.65E�07 �1.06E�04 2.42E�08 N/A 1.06E�04 4.11E�08 1.60E�01 1.67E�04 1.60E�01
50 5.49E�08 2.29E�07 �3.50E�03 9.55E�08 1.60E�01 2.08E�03 9.55E�08 1.60E�01 2.08E�03 N/A
75 2.27E�08 2.51E�06 �3.33E�03 7.30E�09 2.92E�02 4.20E�04 6.23E�09 2.87E�02 5.92E�04 1.60E�01
100 1.60E�07 1.51E�05 �3.52E�04 5.09E�08 1.71E�02 3.96E�04 5.09E�08 1.71E�02 3.96E�04 N/A
150 1.32E�07 2.30E�05 �3.72E�05 2.16E�08 4.16E�02 6.14E�06 2.16E�08 4.16E�02 6.14E�06 N/A
200 1.97E�08 3.15E�05 �8.49E�05 3.05E�08 2.65E�01 1.39E�05 3.60E�08 1.60E�01 1.57E�05 1.60E�01
250 2.60E�07 8.60E�05 �1.15E�03 2.60E�07 N/A 1.15E�03 2.60E�07 N/A 1.15E�03 N/A
500 1.80E�07 4.19E�05 �5.91E�03 2.89E�08 4.16E�02 5.38E�04 2.89E�08 4.16E�02 5.38E�04 N/A

300 400 10 �1.48E�02 1.10E�02 1.36E�04 2.34E�03 4.57E�05 9.49E�02 8.12E�10 3.30E�08 1.76E�11 6.50E�13
20 �8.46E�08 �2.50E�01 1.56E�07 5.35E�03 1.03E�08 1.85E�05 1.98E�13 2.90E�12 3.92E�16 1.50E�13
30 �1.71E�08 1.29E�01 2.97E�09 4.19E�04 4.14E�11 2.63E�04 2.39E�17 7.90E�16 4.04E�21 7.38E�19
40 �4.71E�12 4.90E�02 9.93E�14 8.96E�09 1.07E�15 1.20E�07 3.91E�20 6.85E�21 5.47E�23 1.03E�21
50 �2.75E�13 2.32E�01 5.32E�14 5.29E�07 4.00E�17 2.36E�09 4.37E�20 3.65E�21 3.50E�26 3.96E�22
75 �2.12E�20 �4.05E�01 3.81E�20 5.88E�06 1.85E�22 3.13E�09 1.23E�28 3.21E�27 1.43E�34 1.25E�28
100 �4.95E�25 1.37E�01 1.51E�23 2.79E�10 7.08E�27 1.80E�10 7.78E�31 7.94E�32 5.27E�40 1.22E�29
150 �6.59E�32 �2.56E�02 1.13E�31 1.09E�09 1.21E�33 1.12E�09 6.09E�31 9.90E�36 6.83E�38 3.72E�28
200 �6.72E�36 �9.52E�02 8.80E�34 2.83E�10 1.11E�38 2.00E�14 5.82E�33 2.36E�41 5.89E�40 4.95E�30
250 �1.32E�35 5.00E�01 1.77E�34 8.59E�07 2.21E�37 4.09E�10 2.22E�32 4.18E�41 2.59E�41 7.30E�32
500 �5.53E�43 1.87E�01 1.01E�41 1.63E�12 4.90E�44 1.47E�13 3.87E�35 3.19E�46 8.13E�42 9.82E�32
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outcome reveals that overestimation of K by upper bound in iGA degrades not only solution quality but also running time.
The results in Table 9 also demonstrate that using contribution fitness or the compact operator increases running time. How-
ever, the merits of these two elements, i.e., higher number of covers obtained and higher hit rate, still outweigh their slightly
increased cost in running time.
5.3. Simulations with different numbers of sensors

The third simulation compared the performance of the MA across different numbers of sensors. This simulation used two
WSN settings: one with ten targets and a sensing range of 250 and the other with 500 targets and a sensing range of 400.
Similarly, the former was used in [8] and the latter was applied to examine scalability. Table 10 demonstrates, although qt is
unchanged, qs, ub, and D increase with the number of sensors jSj. Extending the sensing range from 250 to 400 further in-
creases qs. Increasing the number of targets from 10 to 500 considerably augments qt.

Table 11 shows that the EAs outperform MCMCC in terms of the obtained number of covers in all except the two cases of
jSjP 200 with jTj = 500 and r = 400, in which iGA is inferior to MCMCC. These simulation results verify not only the
effectiveness of the evolutionary scheme but also the advantage of the order-based representation over the integer
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Fig. 6. Hit rates of MCMCC, iGA, oGA1, oGA2, and MA for different numbers of targets (jTj) with jSj = 90 and r = 250 (left) and with jSj = 300 and r = 400
(right).



Table 9
Running time of MCMIP, MCMCC, iGA, oGA1, oGA2, and MA for different numbers of targets (jTj) with jSj sensors and sensing range r.

jTj jSj = 90, r = 250 jSj = 300, r = 400

MCMIP MCMCC iGA oGA1 oGA2 MA MCMCC iGA oGA1 oGA2 MA

10 1234.63 0.02 2.39 2.13 2.11 2.54 1.85 53.41 7.04 8.44 8.82
20 1729.11 0.05 2.65 3.36 3.43 4.05 4.10 62.54 11.55 14.18 14.47
30 18024.71 0.08 3.01 4.60 4.87 5.55 6.35 69.43 16.45 19.96 20.23
40 0.11 3.30 5.75 6.22 7.26 8.27 74.28 20.20 25.58 25.95
50 0.14 3.64 7.01 7.73 8.72 10.45 77.61 24.44 30.89 31.56
75 0.20 9.25 9.94 11.46 12.69 15.59 87.46 35.36 45.44 46.09
100 0.27 11.24 12.80 15.17 16.79 20.42 100.92 46.00 58.95 60.27
150 0.42 14.96 18.61 22.62 25.90 31.51 134.72 66.82 86.39 89.19
200 0.51 17.03 24.05 29.84 33.86 41.05 143.55 87.92 114.26 117.67
250 0.63 20.65 34.93 37.31 41.60 52.47 149.51 110.67 141.98 144.75
500 1.24 36.60 63.20 76.96 84.77 103.52 242.26 212.21 281.68 291.35

Table 10
Average (Avg.) and standard deviation (S.D.) of qt, qs, ub, and D over 100 problem instances for different numbers jSj of sensors with sensing range r to cover jTj
targets.

jTj r jSj qt qs ub D

Avg. S.D. Avg. S.D. Avg. S.D. Avg.

10 250 90 4.79 0.44 43.07 3.98 25.18 4.82 17.89
100 4.86 0.46 48.56 4.57 28.76 6.75 19.80
200 4.84 0.47 96.76 9.41 57.98 11.89 38.78
300 4.86 0.42 145.83 12.73 88.92 14.86 56.91

500 400 90 426.24 6.81 76.72 1.23 43.88 3.49 32.84
100 426.13 6.73 85.23 1.35 48.63 3.47 36.60
200 424.34 5.34 169.74 2.14 101.08 5.50 68.66
300 425.36 4.34 255.22 2.60 151.43 6.73 103.79

Table 11
Average (Avg.), standard deviation (S.D.), and hit rate (HR) of the number of covers obtained for different numbers of sensors (jSj) with jTj targets and sensing
range r. Boldface denotes the best result among the six test algorithms.

jTj r jSj ub MCMIP MCMCC iGA oGA1 oGA2 MA

Avg. (S.D.) Avg. (S.D.) HR Avg. (S.D.) HR Avg. (S.D.) HR Avg. (S.D.) HR Avg. (S.D.) HR

10 250 90 25.18 25.18 24.55 0.66 25.18 1.00 25.15 0.91 25.18 1.00 25.18 1.00
(6.01) (4.43) (4.82) (4.79) (4.82) (4.82)

100 28.76 28.76 27.94 0.66 28.73 0.97 28.57 0.88 28.75 0.99 28.76 1.00
(6.75) (6.03) (6.69) (6.56) (6.74) (6.75)

200 57.98 – 55.86 0.57 57.87 0.93 57.27 0.73 57.78 0.89 57.97 0.99
(9.98) (11.73) (11.14) (11.64) (11.88)

300 88.92 – 85.78 0.47 88.34 0.85 87.57 0.64 88.29 0.78 88.85 0.96
(13.10) (14.19) (13.57) (14.12) (14.74)

500 400 90 43.88 – 42.11 0.33 42.94 0.64 42.68 0.41 43.13 0.63 43.57 0.80
(2.47) (2.68) (2.64) (2.87) (3.17)

100 48.63 – 46.87 0.35 47.63 0.61 47.31 0.38 47.92 0.59 48.28 0.77
(2.61) (2.80) (2.68) (2.89) (3.15)

200 101.08 – 95.18 0.07 89.32 0.05 95.81 0.06 97.40 0.17 99.57 0.43
(3.98) (4.81) (3.88) (3.77) (4.35)

300 151.43 – 142.51 0.07 125.18 0.01 142.75 0.02 144.75 0.06 148.74 0.26
(4.09) (7.02) (4.37) (4.53) (4.99)
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representation. The statistical test results in Table 12 further indicate that the superiority of oGA2 and MA over oGA1 and
oGA2 grows with the number of sensors. As the number of sensors in WSN increases, the effects of the contribution fitness
adopted in oGA2 and the compact operator employed in MA become more significant.

Fig. 7 displays how hit rate varies with the number of sensors for all test algorithms except MCMIP. The hit rate declined
as more sensors were added to WSNs. As mentioned above, this reduced hit rate does not necessarily imply a deteriorated
algorithmic performance, but it does reflect the discrepancy between ub and the maximal number of covers K. The figure
consistently demonstrates that MA > oGA2 > MCMCC. Similar to the results for the number of covers, iGA had high hit rates
for jTj = 10 with r = 250 but very low hit rates for jTj = 500 with r = 400. However, MCMCC outperformed oGA1 and iGA for
jSjP 200 in the latter case.



Table 12
Results of one-tailed paired t-test of the numbers of covers obtained from X and Y algorithms (denoted by X vs. Y) for different numbers jSj of sensors with jTj
targets and sensing range r. Positive p-values indicate that X is superior to Y, and vice versa. Boldface denotes that X is significantly better than Y. N/A indicates
that X and Y have identical results in all test instances.

jTj r jSj iGA vs.
MCMCC

oGA1 vs.
MCMCC

oGA1 vs.
iGA

oGA2 vs.
MCMCC

oGA2 vs.
iGA

oGA2 vs.
oGA1

MA vs.
MCMCC

MA vs.
iGA

MA vs.
oGA1

MA vs.
oGA2

10 250 90 2.40E�07 1.51E�07 �4.16E�02 2.40E�07 N/A 4.16E�02 2.40E�07 N/A 4.16E�02 N/A
100 1.08E�08 6.44E�08 �1.52E�03 1.50E�08 1.60E�01 5.92E�04 1.86E�08 4.16E�02 3.65E�04 1.60E�01
200 6.06E�09 2.84E�08 �1.82E�06 4.82E�09 �6.44E�02 7.97E�06 8.67E�09 5.84E�03 3.44E�06 3.58E�03
300 2.10E�10 1.87E�08 �1.67E�06 4.21E�10 2.97E�01 2.64E�07 1.81E�10 2.14E�03 1.24E�07 1.16E�04

500 400 90 1.36E�10 5.82E�08 �3.66E�03 3.20E�15 1.82E�02 2.29E�07 6.42E�19 1.30E�07 1.89E�16 5.18E�07
100 1.54E�08 3.37E�05 �1.52E�03 4.35E�16 2.67E�03 8.89E�10 1.74E�18 1.72E�08 9.33E�17 4.89E�07
200 �8.16E�20 1.90E�03 2.44E�20 7.32E�21 1.73E�27 5.14E�16 8.54E�35 7.61E�30 5.84E�35 6.28E�24
300 �5.53E�43 1.87E�01 1.01E�41 1.63E�12 4.90E�44 1.47E�13 8.93E�36 9.58E�47 1.18E�41 9.82E�32

 50

 60

 70

 80

 90

 100

 100  150  200  250  300

H
R

#Sensors

MCMCC
iGA

oGA1
oGA2

MA
 0

 10

 20

 30

 40

 50

 60

 70

 80

 100  150  200  250  300

H
R

#Sensors

MCMCC
iGA

oGA1
oGA2

MA

Fig. 7. Hit rates of MCMCC, iGA, oGA1, oGA2, and MA for different numbers of sensors j(S)j with jTj = 10 and jrj = 250 (left) and with jTj = 500 and jrj = 400
(right).

Table 13
Running time of MCMIP, MCMCC, iGA, oGA1, oGA2, and MA for different numbers of sensors (jSj) with jTj targets and sensing range r.

jSj jTj = 10, r = 250 jTj = 500, r = 400

MCMIP MCMCC iGA oGA1 oGA2 MA MCMCC iGA oGA1 oGA2 MA

90 1234.63 0.02 2.39 2.13 2.11 2.57 3.01 71.72 71.17 90.31 92.39
100 4719.81 0.03 2.71 2.33 2.32 2.84 4.31 86.18 71.08 93.16 98.65
200 – 0.24 6.43 4.58 4.55 5.37 34.89 198.26 142.06 188.29 190.42
300 – 0.76 11.52 6.78 6.75 7.78 103.52 242.26 212.21 281.68 291.35
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Table 13 indicates that running time generally increased with the number of sensors. Additionally, oGA1 was faster than
iGA, confirming the advantage of order-based representation in terms of running time. A comparison with oGA1 reveals that
the contribution fitness of oGA2 did not influence the running time for jTj = 10 with r = 250, but it increased the running time
for jTj = 500 with r = 400. The use of the compact operator slightly increased running time, which is the cost of the excellent
performance of MA in solution quality.

6. Conclusions

This study proposes an MA for extending WSN lifetime, formulated as the SET K-COVER problem. Specifically, the pro-
posed MA follows the evolutionary scheme of GA. By viewing sensor arrangement as a process of collecting covers rather
than one of partitioning, chromosomes in the MA are represented as collecting orders. This study presents a novel fitness
function based on the contribution of each sensor to forming a cover. Furthermore, the compact operator is devised for local
enhancement of the MA.

The proposed MA has the following advantages.



4832 C.-K. Ting, C.-C. Liao / Information Sciences 180 (2010) 4818–4833
1. The evolutionary scheme of GA contributes to global search.
2. The order-based representation eliminates the need for, and therefore the sensitivity to, the upper bound on or assump-

tions about the maximum number of covers.
3. The contribution fitness enhances the differentiation of promising chromosomes.
4. The compact operator enhances the group composition to increase the number of covers.

To evaluate the proposed algorithm, this study conducted comprehensive simulations regarding sensing range, number of
targets, and number of sensors in WSNs. The simulation results confirm the above-stated advantages of the MA in terms of
the obtained number of covers, hit rate, and running time. In all of the problem instances, the proposed MA outperformed
one heuristic and three other EAs in terms of the number of covers obtained and the hit rate. Notably, it achieved the same
number of covers with much shorter running time than an exact algorithm requires. The scalability of the MA superiority
was verified through simulations with different sensing ranges and numbers of sensors and targets. These preferable out-
comes validate the effectiveness and efficiency of the proposed MA in extending WSN lifetime.

Future work may further consider different aspects of the proposed MA. First, given the above-stated advantages, the MA
may be applied to extending the WSN lifetime with additional constraints and objectives, such as network connectivity for
the communication range smaller than twice the sensing range and for point coverage [10]. Robustness and the dynamic
performance as some sensors fail will also be important topics of future work. Second, further enhancing the search ability
of the EA or the local enhancement operators will improve the performance of the MA in extending WSN lifetime.
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