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Abstract Genetic algorithm (GA) is well-known for its
effectiveness in global search and optimization. To balance
selection pressure and population diversity is an important
issue of designing GA. This paper proposes a novel hybrid-
ization of GA and tabu search (TS) to address this issue.
The proposed method embeds the key elements of TS—tabu
restriction and aspiration criterion—into the survival selec-
tion operator of GA. More specifically, the tabu restriction is
used to prevent inbreeding for diversity maintenance, and the
aspiration criterion is activated to provide moderate selection
pressure under the tabu restriction. The interaction of tabu
restriction and aspiration criterion enables survivor selection
to balance selection pressure and population diversity. The
experimental results on numerical and combinatorial opti-
mization problems show that this hybridization can signifi-
cantly improve GAs in terms of solution quality as well as
convergence speed. An empirical analysis further identifies
the influences of the TS strategies on the performance of this
hybrid GA.
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1 Introduction

Genetic algorithm (GA) has dealt successfully with a vari-
ety of search and optimization problems. The basic idea of
GA is mimicking the process of natural evolution, consist-
ing of selection, reproduction, and mutation, to manipulate
candidate solutions [16]. In addition, GA implements
Darwinian evolution theory in the selection operation. Based
on the principle ‘survival of the fittest’, GA is expected to
evolve candidate solutions toward the optima.

Selection pressure and population diversity play a key role
in the performance of GA [31]. The former leads GA to dig
into the promising regions, while the latter drives the varia-
tion of candidate solutions during evolution. These two fac-
tors, nevertheless, form a trade-off. Emphasis on selection
pressure causes a fast improvement on candidate solutions
but risks premature convergence due to the hastened loss
of population diversity. Maintenance of population diversity,
on the other hand, helps to explore the search space and yet
retards the convergence. Several approaches have been pro-
posed to handle the trade-off between selection pressure and
population diversity [29]. Some of them are based on the
hybrid of GA and another heuristic algorithm for enhanced
performance. A paradigm of this hybridization is to run the
two algorithms by turns; the results from one algorithm will
be passed to another, and vice versa.

This study presents a novel hybridization of GA and tabu
search (TS) [10] to address the issue of balancing selection
pressure and population diversity. Instead of running the two
algorithms alternately, the tabu list and aspiration criterion
of TS are embedded into the survivor selection of GA. The
tabu restriction is used to prevent inbreeding for diversity
maintenance, and the aspiration criterion is activated to pro-
vide moderate selection pressure under the tabu restriction.
Consequently, selection pressure and population diversity are
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controlled by the two TS components in the survivor selec-
tion process of GA. A series of experiments on numerical and
combinatorial optimization problems is conducted to evalu-
ate the performance of the proposed method.

The rest of this paper is organized as follows. Section 2
reviews related work on hybrids of GA and TS. Section 3
describes the proposed method in detail and Sect. 4 presents
the experimental results for performance evaluation. Finally,
conclusions are drawn in Sect. 5.

2 Related work

Several hybrids of GA and TS have been proposed to
enhance the search ability of algorithms. Glover et al. [9]
inceptively designed the scatter search, which integrates GA
and TS for a better performance than running GA and TS
alone. Handa and Kuga [13] considered the difference bet-
ween the convergence speeds of GA and TS in the two
halves of the search process. They proposed the concate-
nation of GA and TS that switches these two algorithms to
avoid premature convergence. Abdinnour-Helm [1] solved
an incapacitated hub location problem using a hybrid of GA
and TS, where GA is used to determine the number and the
location of hubs, and TS is adopted to assign each spoke
to the closest hub. Nara [20] combined GA with simulated
annealing (SA) and TS to deal with the generator mainte-
nance scheduling problem. The proposed method employs
SA to improve the convergence speed of GA and adopts TS
to strengthen neighborhood search. Furthermore, this hybrid
method uses the tabu list to avoid mating of chromosomes
that have low hamming distance in order to keep diversity.
Ozdamar and Birbil [23] introduced a nonrestrictive TS/SA
to GA to enhance the convergence speed. In addition, they
claimed that high-quality initial chromosomes can affect the
performance of the GA and proposed a restrictive TS/SA
(RTSSA) to address this issue. The experimental results dem-
onstrated that using RTSSA into GA provides feasible solu-
tions to improve convergence ability. Chin et al. [5] proposed
increasing the search intensity of TS when the population of
GA converges. Based on this idea, they devised a hybrid
approach that applies TS on the individual solutions in the
later generations of GA.

Moreover, Shin et al. [27] proposed the genetic-tabu
algorithm, wherein the best solution obtained from the GA
population is checked with the tabu list to adjust the muta-
tion probability. Liaw [19] integrated a local improvement
procedure based on TS into GA for the open shop sched-
uling problem. This integration enables genetic search over
the subspace of local optima. Vilcot and Billaut [30] com-
pared two GAs that initialize the population at random and
using TS, respectively. The experimental results show that
the latter can lead to improvement in solution quality and

computation time. Some researchers applied the combination
of GA and TS to resolve real-world problems. Gandomkar
et al. [8] adopted GA to optimize dispersed generation allo-
cation and used TS to avoid the local optima and premature
convergence of GA. Their experimental results show that this
hybrid approach can greatly reduce distribution power loss
and obtain better solution accuracy and convergence speed.
Hageman et al. [12] designed a hybrid of GA and TS to solve
the multilayer optical coatings optimization problem. This
approach uses TS to enhance the solutions generated by GA.
Xian et al. [32] incorporated GA with TS for the principal
component analysis of three-dimensional molecular similar-
ity problem. They carried out GA to align two molecules
based on the evaluation results of molecular electrostatic
potentials and employed TS to decrease the probability of
falling into local optima. The two algorithms are performed
alternately to enhance candidate solutions. Jiang et al. [18]
hybridized GA and TS to solve the protein folding problem
based on a hydro-phobic-hydrophilic lattice model, where
TS is also used to improve the solutions obtained from GA.

In general, most of the above methods run GA and TS
alternately, wherein TS serves as an enhancement in local
search for GA. Restated, the best solution of the GA popu-
lation is performed with TS to search its neighborhood. The
result of TS is then returned to GA as a new member of
the population. In such hybridization, the original structures
of GA and TS are not altered. Rather than run GA and TS
alternately, Ting et al. [28,29] proposed a new hybridization
method, called tabu genetic algorithm (TGA), in which TS
are employed as the strategy for selecting parents in GA. The
experimental results show that TGA can lead to significantly
better solution quality than GA and the method of running
GA and TS alternately.

However, TGA suffers from the issue of spending much
time in finding a valid parent in the select-and-check pro-
cess. This issue becomes particularly serious as the popula-
tion diversity is low. To address this issue, this paper devises
a new scheme for the hybridization of GA and TS by embed-
ding the TS strategies into the survivor selection, instead
of parent selection, for algorithmic compactness and perfor-
mance efficiency. The new method not only overcomes the
time-consuming issue of TGA but it also preserves the advan-
tage of balance between selection pressure and population
diversity.

3 Tabu genetic algorithm 2 (TGA2)

This study proposes the tabu genetic algorithm 2 (TGA2),
which embeds the strategies of TS into the survivor selection
of GA. TGA2 relies on GA for the adaptation and robustness
of genetic operators and integrates with the memory structure
and search strategy of TS.
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Fig. 1 Flowchart of TGA2

Figure 1 presents the flowchart of TGA2. The framework
of TGA2 principally follows that of GA, except the survi-
vor selection embedded with the TS strategies. In the survi-
vor selection, TGA2 disallows the offspring reproduced from
tabu mating to survive, unless they can satisfy the aspiration
criterion. To adapt these TS strategies to GA, several modifi-
cations are required. The modified elements of GA in TGA2
are elaborated below.

3.1 Representation

The chromosome representation in TGA2 consists of the
chromosome structure of GA and, especially, an additional
memory structure based on TS to guide the search. Formally,
a chromosome is represented as a three tuple (g, φ, τ ), where
g = (g1, . . . , gl) includes genes, φ is the clan number, and
τ = (τ1, . . . , τT ) is the tabu list.

The first part, g, originated from GA, is concerned with the
information about candidate solutions. Therefore, the rep-
resentation is problem-dependent. This study uses binary-
coded and order-based representations for numerical and
combinatorial optimization problems, respectively.

The second part is a memory structure comprised of clan
number φ and tabu list τ . The clan number acts as a signature
for chromosome identification. Each chromosome in the ini-
tial population of TGA2 is assigned a unique clan number.

1 1 0 0 ... 1 15 3 1 7

genes clan tabu list

Fig. 2 Example of representation in binary-coded TGA2

15 3 1 7

Tabu?

Parent 1

4 6 12Parent 2

1 11 0

1100

Fig. 3 Check of mating validity in TGA2

Similar to the family name in human society, offspring in
TGA2 inherit the clan number from one of their parents.
Additionally, the tabu list records the clan numbers that are
forbidden to mate with. The functionality of tabu list will be
introduced in the next section.

Figure 2 illustrates the chromosome structure in binary-
coded TGA2. The first part, consisting of genes in GA,
encodes the information about the candidate solution. The
second part is composed of clan number 15 and tabu list
{3, 1, 7}, which indicates that the mating of this chromosome
with a chromosome of clan 3, 1, or 7 will yield tabu offspring.

3.2 Tabu restriction

The proposed TGA2 utilizes the tabu restriction of TS to pre-
vent inbreeding. Inbreeding represents the mating (breeding)
of close relatives and is known to be harmful to the health and
fertility of individuals in nature. In evolutionary algorithms,
several studies have proven that inbreeding causes a rapid
loss of population diversity and raises the risk of premature
convergence. To prevent this, TGA2 uses the clan number
to identify chromosomes and the tabu list to record mating
history. Whenever TGA2 selects a pair of parents for repro-
duction, it checks the validity of this mating. As Fig. 3 illus-
trates, if either parent finds its clan number exists in the clan
number or the tabu list of its partner, this mating is invalid
and their offspring are labeled with “tabu”. That is to say,
the mating of related chromosomes will yield tabu offspring
according to the comparison result of clan and mating history.
The following function determines whether the mating of two
chromosomes c1 = (g1, φ1, τ 1) and c2 = (g2, φ2, τ 2) yields
tabu offspring:

Tabu(c1, c2) =
⎧
⎨

⎩

true, (φ1 = φ2) or
(∃k : φ1 = τ2,k or φ2 = τ1,k)

f alse, otherwise
(1)

where τi,k denotes the kth element of tabu list τ i .
A chromosome updates its tabu list when it undertakes

crossover. The crossover of parents in TGA2 includes two
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Fig. 4 Crossover and updating of tabu list in TGA2

parts. As Fig. 4 shows, first, the crossover is performed on
genes to exchange information about the solution variables.
This part is analogous with the crossover in GA. Second, both
parents add the clan number of their partner to the tabu list,
which works as a queue—first in, first out. The clan numbers
that are removed out of the tabu list regain the validity to
mate with. Each offspring inherits the clan number and tabu
list from one of its parents.

3.3 Aspiration criterion

In addition to tabu restriction, TGA2 takes the aspiration
criterion into account in the survivor selection. The tabu
restriction helps to maintain population diversity; however, it
may weaken the exploitation of promising solutions. TGA2
enables the aspiration criterion of TS to provide a chance to
release from the tabu restriction so as to moderately reinforce
exploitation.

Aspiration criterion is defined to allow superior offspring
to override the tabu restriction. In TGA2, a tabu offspring
c′ is said to be aspired if its fitness is better than the best-
so-far fitness f ∗. For a minimization problem, the aspiration
criterion is defined by

Aspired(c′) =
{

true, f (c′) < f ∗

f alse, otherwise
(2)

The aspired offspring will survive while the tabu offspring
will be discarded in the survivor selection. The interaction
between tabu restriction and aspiration criterion is expected
to balance the diversity maintenance and selection pressure
of TGA2.

Fig. 5 Pseudocode of survivor selection of TGA2

3.4 Survivor selection

The survivor selection is the key of TGA2 in hybridization
of GA and TS. Traditionally, the survivor selection of GA
considers only the chromosome fitness. In nature, the sur-
vivability of an individual is, however, concerned with many
factors in addition to fitness. For example, inbreeding depres-
sion states that inbreeding, i.e., breeding of related individ-
uals, will cause a decrease in fitness. To avoid that, humans
generally conduct eugenics to avoid mating of parties related
by blood (consanguinity) or marriage (affinity) or both.

TGA2 implements this idea through the components and
strategies of TS. The clan number and tabu list enable TGA2
to identify chromosomes and their relatives. The tabu restric-
tion, furthermore, forbids mating of related chromosomes.
Analogous with the eugenics used in human society, the tabu
offspring will be eliminated unless they are good enough to
defeat the best chromosome so far, i.e., to satisfy the aspira-
tion criterion. The survivor selection in TGA2 thus considers
three kinds of chromosomes as survivors for the next gener-
ation: (1) parents in the current population, (2) offspring that
are generated from valid mating, and (3) aspired offspring.

Suppose we have parental population Pt and offspring
population P ′

t , both having m chromosomes, at generation t .
Figure 5 gives the procedure of (µ+λ) survivor selection of
TGA2, which uses a temporary set Ps = {c(1), . . . , c(2m)}
of sorted chromosomes (c(1): best, c(2m): worst) and returns
population Pt+1 for the next generation. Notably, the popu-
lation Pt+1 will always be filled by qualified solutions since
only offspring can be classified as tabu. In the extreme case
that all λ offspring in P ′

t are tabu, the µ parents in Pt will then
survive into Pt+1 through the proposed survivor selection.

4 Experimental results

This study conducts a series of experiments on numerical
as well as combinatorial optimization problems. To evaluate
the proposed TGA2, we compare its performance with GA
and TGA in terms of solution quality and convergence speed.
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Table 1 Test numerical optimization problems

Function Range of xi N Bits of xi l Opt.

fF2(x) =
N−1∑

i=1

[
100

(
xi+1 − x2

i

)2 + (xi − 1)2
]

[−2.048, 2.047] 2 12 24 0

fRAS(x) = 10N +
N∑

i=1

[
x2

i − 10 cos (2πxi )
] [−5.12, 5.11] 10 10 100 0

fSCH(x) = 418.9829N −
N∑

i=1
xi sin

(√|xi |
) [−512, 511] 10 10 100 0

fGRI(x) = 1 +
N∑

i=1

x2
i

4,000 −
N∏

i=1
cos

(
xi√

i

)
[−512, 511] 10 10 100 0

fACK(x) = −20 exp

(

−0.2

√

1
N

N∑

i=1
x2

i

)

− exp

(
1
N

N∑

i=1
cos(2πxi )

)

+ 20 + e [−32.768, 32.767] 10 16 160 0

fLAN(x) = −
M∑

i=1
ci exp

[

− 1
π

N∑

j=1
(x j − ai j )

2

]

cos

[

π
N∑

j=1
(x j − ai j )

2

]

[0, 10.48575] 5 20 100 −1.4

Table 2 Parameter setting
of GA, TGA, and TGA2
for numerical optimization
problems

GA TGA TGA2

GA type Generational

Representation Bit-string Bit-string + clan + tabu list

Population size 100

Parent selection 2-Tournament 2-Tournament + TS 2-Tournament

Crossover Uniform crossover

Crossover rate 1.0

Mutation Bit-flip mutation

Mutation rate 1/ l

Tabu list size – 2, 4, 6, and 10

Survivor selection (µ + λ) (µ + λ) (µ + λ) + TS

Termination 5,000 generations

Number of runs 100

Specifically, this study evaluates solution quality according
to the mean best fitness (MBF)

MBF = Sum of the best fitness of each run

Number of runs
, (3)

and assesses convergence speed by observing the anytime
behavior of test algorithms. Several parameter settings for
these algorithms are also considered in the experiments.

4.1 Numerical optimization problems

The test suite for numerical optimization includes six com-
mon test functions: De Jong’s second function (F2) [6], the
Rastrigin function (RAS) [24], the Schwefel function (SCH)
[26], the Griewank function (GRI) [11], the Ackley func-
tion (ACK) [2], and the Langermann function (LAN) [4].
Table 1 summarizes these test functions and their parameters
used in our experiments, where N denotes the number of

dimensions and l denotes the chromosome length. Note that
all these functions are minimization problems. The parame-
ter setting of GA, TGA, and the proposed TGA2 is listed in
Table 2. This study experiments with four tabu list sizes: 2,
4, 6, and 10. Each experiment includes 100 independent runs
of test algorithms concerning their stochastic nature.

Table 3 compares the solution quality for GA, TGA, and
TGA2 on the six test functions. The one-tailed t test with con-
fidence level α = 0.05 is further performed to examine the
statistical significance. The results show that, using proper
tabu list sizes, both TGA and TGA2 can lead to significant
improvement over GA on F2, SCH, and LAN in terms of solu-
tion quality. This confirms the advantage of introducing TS
strategies into selection operators of GA, i.e., parent selection
and survivor selection. The results also show that TGA per-
forms worse than GA does on RAS, GRI, and ACK; and yet
TGA2 can significantly outperform or, at least, is compara-
ble with GA on these three test functions. This demonstrates
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Table 3 Average (MBF), SD, and t test result (p value) of the best fitness over 100 runs for GA, TGA, and TGA2 on the six test functions

GA TGA TGA2

T = 2 T = 4 T = 6 T = 10 T = 2 T = 4 T = 6 T = 10

F2 MBF 1.39E-04 4.39E-04 1.29E-03 1.92E-04 4.81E-05 8.84E-05 3.38E-05 7.16E-05 4.10E-05

SD 2.42E-04 1.98E-03 6.34E-03 1.11E-03 1.49E-04 2.05E-04 1.14E-04 1.91E-04 1.42E-04

p value – 6.87E-02 3.71E-02 3.21E-01 9.01E-04 5.86E-02 7.36E-05 1.58E-02 3.43E-04

RAS MBF 3.200 9.406 7.036 6.320 5.512 2.722 2.686 2.244 2.551

SD 2.138 3.379 2.761 2.326 2.344 1.684 1.746 1.494 1.810

p value – 2.58E-34 4.14E-22 4.27E-19 4.61E-12 4.13E-02 3.28E-02 1.76E-04 1.11E-02

SCH MBF 161.570 98.188 102.747 91.661 69.998 134.479 101.168 81.492 102.992

SD 124.753 85.943 97.457 92.093 72.256 100.890 93.437 83.222 104.726

p value – 2.46E-05 1.43E-04 6.42E-06 1.26E-09 4.73E-02 7.97E-05 1.65E-07 2.19E-04

GRI MBF 0.216 0.667 0.452 0.412 0.325 0.208 0.208 0.201 0.215

SD 0.077 0.324 0.194 0.140 0.130 0.077 0.075 0.069 0.088

p value – 2.65E-25 3.24E-21 1.41E-24 1.23E-11 2.21E-01 2.25E-01 7.65E-02 4.56E-01

ACK MBF 2.79E-03 2.54E+00 1.43E+00 9.32E-01 8.29E-01 2.82E-03 2.80E-03 2.86E-03 2.91E-03

SD 4.43E-04 1.31E+00 9.00E-01 1.04E+00 1.04E+00 4.54E-04 5.09E-04 4.65E-04 5.58E-04

p value – 1.16E-35 3.58E-29 1.54E-14 1.73E-12 3.15E-01 3.93E-01 1.42E-01 4.47E-02

LAN MBF −0.763 −0.867 −0.911 −0.902 −0.923 −0.848 −0.880 −0.873 −0.888

SD 0.188 0.133 0.086 0.101 0.069 0.154 0.126 0.130 0.114

p value – 5.81E-06 2.61E-11 5.65E-10 3.89E-13 2.99E-04 3.24E-07 1.60E-06 2.82E-08

Four tabu list sizes (T ) are adopted for TGA and TGA2
The boldface denotes statistical significance that the test algorithm outperforms GA in fitness

that TGA2 is capable of advancing the improvement of TGA
to GA. Precisely, the improvement rate of TGA2 on GA in
MBF can be 76% on F2, 30% on RAS, 50% on SCH, 7% on
GRI, and 16% on LAN. In view of the tabu list size, TGA2
with T = 6 performs satisfactorily amongst the experimental
results. Nonetheless, there is no consistent tendency between
tabu list size and MBF.

Next, we look into the anytime behavior regarding MBF,
number of tabu events, and number of aspiration events in
the course of evolution on the six numerical test functions.
Figures 6 and 7 show that, in the light of variation in MBF,
GA converges fastest, TGA2 follows, and TGA converges
slowest. The convergence speed of TGA is relatively slow
in that it repeats selecting parents for a valid mating and
thus requires more fitness evaluations for generating the same
amount of offspring. TGA2 overcomes this issue by filtering
the tabu offspring in survivor selection, instead of in parent
selection. Moreover, TGA2 keeps the advantage of TS strat-
egies in balancing selection pressure and diversity mainte-
nance, which is reflected in its superior solution quality to
GA. Notably, TGA2 with T = 2 has a similar convergence
speed but achieves higher fitness than GA does. As the tabu
list size increases, the severer tabu restriction makes TGA2
more difficult to yield valid offspring. This intensifies TGA2
in prevention of inbreeding for diversity maintenance and
results in better solution quality. However, as Figs. 6 and 7

show, this advantage in solution quality is gained at the cost
of convergence speed.

Figures 6 and 7 further show the effects of TS strategies
on the behavior of TGA2. The occurrence frequency of tabu
events increases rapidly as evolution goes. For all the six
test functions, the number of tabu events achieves its max-
imum before 200 generations, namely 2 × 104 fitness eval-
uations. Larger tabu list sizes result in larger numbers of
tabu events and therefore a stricter restriction on survivor
selection, which encourages maintaining population diver-
sity. Aside from tabu events, the figures demonstrate that the
number of aspiration events increases in the beginning of
evolution and decreases afterward. The increase of aspira-
tion events is due to the increasing number of tabu offspring
and the ease of surpassing the best solution in the early phase.
Such an increase in aspiration frequency intensifies selection
pressure and can then balance the increasingly strict tabu
restriction. However, as evolution goes, the number of tabu
events stays at its maximum while the difficulty to excel the
best solution becomes severe. Thus the number of aspiration
events gradually decreases with time. As the aspiration event
diminishes, the survivor selection of TGA2 is guided mainly
by the tabu restriction and the progress in MBF converges
owing to the lack of selection pressure.

Table 4 compares the solution quality of TGA2 for differ-
ent mutation rates. Due to similarity, only the results on LAN
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Fig. 6 Variation of MBF (left), numbers of tabu events (right thick solid lines), and number of aspiration events (right thin dashed lines) during
evolution for GA, TGA, and TGA2 with tabu list size T = 2, 4, 6, and 10 on F2, RAS, and SCH

are presented here. The results show that the best tabu list size,
i.e. the size corresponding to the lowest MBF, decreases as
mutation rate increases. This phenomenon reflects that, with
the twofold intensification of diversity from large tabu list
and high mutation rate, TGA2 may focus too much on diver-
sification and then detract from solution quality. Hence, the
tabu list size for TGA2 should be increased as mutation rate
is small or population diversity is low. On the other hand, for

a diverse population or with high mutation rate, a small tabu
list size can lead to better performance.

4.2 Combinatorial optimization problems

This study evaluates the performance of TGA2 on combina-
torial, in addition to numerical, optimization problems. The
well-known traveling salesman problem (TSP) is adopted
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Fig. 7 Variation of MBF (left), numbers of tabu events (right thick solid lines), and number of aspiration events (right thin dashed lines) during
evolution for GA, TGA, and TGA2 with tabu list size T = 2, 4, 6, and 10 on GRI, ACK, and LAN

as the testbed for combinatorial optimization. The test suite
includes four TSP instances [25]: eil51, pr73, lin105, and
bier127. Table 5 lists the operators and parameters of GA,
TGA, and TGA2 used in our experiments for the TSP. Here
the mutation rate for order-based representation is defined
as the probability for the whole chromosome to be mutated
rather than for a single gene [7].

In terms of solution quality, the experimental results on
Table 6 show that both TGA and TGA2 outperform GA on
the four TSP instances. The t test results further validate the
statistical significance of their superiority over GA, which
demonstrates the advantage of embedding TS strategies in
the selection of GA. Concerning the impacts of the tabu list
size, TGA with T = 10 performs best among the four test
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Table 4 Average (MBF), SD,
and t test result (p value) of the
best fitness over 100 runs for
GA and TGA2 with different
mutation rates pm on LAN test
function

The boldface denotes the best
result among the tabu list sizes
with respect to each mutation
rate

pm GA TGA2

T = 2 T = 4 T = 6 T = 10

0.005 MBF −0.764 −0.810 −0.848 −0.866 −0.902

SD 0.178 0.173 0.161 0.146 0.100

p value − 3.50E-02 3.04E-04 8.96E-06 1.44E-10

0.01 MBF −0.763 −0.848 −0.880 −0.873 −0.888

SD 0.188 0.154 0.126 0.130 0.114

p value − 2.99E-04 3.24E-07 1.60E-06 2.82E-08

0.02 MBF −0.789 −0.876 −0.906 −0.914 −0.902

SD 0.182 0.136 0.108 0.098 0.099

p value − 9.41E-05 6.95E-08 6.25E-09 1.06E-07

0.05 MBF −0.898 −0.937 −0.946 −0.941 −0.939

SD 0.128 0.058 0.031 0.047 0.022

p value − 4.01E-03 2.28E-04 1.08E-03 1.12E-03

Table 5 Parameter setting GA,
TGA, and TGA2 for
combinatorial optimization
problems

GA TGA TGA2

GA type Generational

Representation Permutation Permutation + clan + tabu list

Population size 100

Parent selection 2-Tournament 2-Tournament + TS 2-Tournament

Crossover Partially mapped crossover (PMX)

Crossover rate 1.0

Mutation Swap mutation

Mutation rate 0.1

Tabu list size – 2, 4, 6, and 10

Survivor selection (µ + λ) (µ + λ) (µ + λ) + TS

Termination 10,000 generations (eil51, pr76); 15,000 generations (lin105, bier127)

Number of runs 100

sizes on all test instances; TGA2, however, shows no clear
relation between the tabu list size and the resulting solution
quality. Further, TGA2 achieves better solution quality than
TGA does in comparison of their MBF values for the best
tabu list size on the four test instances.

Figure 8 compares the anytime behavior of GA, TGA, and
TGA2. The variations of MBF, number of tabu events, and
number of aspiration events show a high consistency on the
four test TSP instances. In terms of convergence, GA has
the fastest convergence speed but the worst solution qual-
ity. TGA spends much time in repeating parent selection and
thus has the slowest convergence; nonetheless, this effort on
diversity maintenance leads to better solution quality than

GA. The convergence speed of TGA2 is dependent upon
the adopted tabu list size: the speed slows down as the size
increases. However, as Table 6 exhibits, the increase in tabu
list size does not always bring about superior solution qual-
ity. Considering both the solution quality and convergence
speed, TGA2 with T = 2 is a satisfactory choice, which has
GA-like convergence speed and TGA-like solution quality.
This superiority reconfirms the advantage of TS strategies
embedded in survivor selection.

Further, the figure shows that the number of tabu events
increases monotonically with time and tabu list size on
the four TSP instances, which is similar to the situation
on the numerical optimization problems. This outcome
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Table 6 Average (MBF), SD, and t test result (p value) of the tour length over 100 runs for GA, TGA, and TGA2 on eil51, pr76, lin105, and
bier127 instances

GA TGA TGA2

T = 2 T = 4 T = 6 T = 10 T = 2 T = 4 T = 6 T = 10

eil51 MBF 501.71 486.63 485.12 482.65 479.49 478.69 473.78 472.24 470.78

SD 24.65 23.17 22.57 21.76 19.56 18.42 19.13 19.86 20.02

p value – 7.65E-06 8.40E-07 1.56E-08 1.89E-11 1.86E-12 2.35E-16 2.20E-17 1.34E-18

pr76 MBF 145404 140559 135871 134873 130571 128931 127477 127650 133909

SD 8120 9949 9976 10469 7312 6564 6925 6706 8313

p value – 1.16E-04 2.48E-12 1.11E-13 4.14E-30 1.97E-36 1.11E-39 1.01E-39 3.69E-19

lin105 MBF 22322 21363 20600 20232 19673 19291 19076 19081 20213

SD 1515 1814 1588 1613 1233 1362 1195 1333 1515

p value – 3.92E-05 1.71E-13 7.19E-18 7.94E-30 4.71E-34 2.22E-39 1.46E-37 5.21E-19

bier127 MBF 162118 160098 154452 154031 149388 144396 145069 147416 157207

SD 7292 10180 8659 10553 7341 5417 6833 7135 9193

p value – 5.52E-02 9.06E-11 1.33E-09 2.53E-26 1.39E-46 9.98E-41 9.51E-33 2.38E-05

Four tabu list sizes (T ) are adopted for TGA and TGA2
The boldface denotes statistical significance that the test algorithm outperforms GA in fitness

demonstrates that the variation in the number of tabu events
depends upon the tabu list size but is independent of prob-
lems. The number of aspiration events, on the other hand,
decreases with time monotonically and does not show a peak
as that on numerical optimization problems. The figure also
indicates that the progress of TGA2 in MBF retards as aspira-
tion events diminishes, which reflects the influences of aspi-
ration over the performance of TGA2.

Table 7 presents the MBF of GA and TGA2 for different
mutation rates. Due to similarity, only the results on lin105
instance are presented here. The table shows that the best
tabu list size decreases with the increase of mutation rate,
which is consistent with the tendency on numerical optimi-
zation problems in Table 4. The size of tabu list, therefore,
should also increase for low mutation rate and low population
diversity on combinatorial problems. For TGA2 using high
mutation rate or holding diverse population, by contrast, the
tabu list can be reduced for better solution quality.

5 Conclusions

This study proposes the TGA2, which embeds the strategies
of TS, namely, tabu restriction and aspiration criterion, into
the survivor selection of GA. The tabu restriction forbids
inbreeding for maintaining population diversity; the aspira-
tion criterion enables superior offspring to overcome the tabu
restriction so as to supply moderate selection pressure. The
survivor selection of TGA2 filters chromosomes according
to these two TS strategies.

The proposed TGA2 gains three advantages by embed-
ding TS strategies into the survivor selection of GA. First,
tabu restriction and aspiration criterion control the population
diversity and selection pressure in consideration of diversifi-
cation and intensification. Second, this hybridization of GA
and TS is independent of the adopted parent selection, cross-
over, and mutation operators of GA. This extends the appli-
cability of TGA2 to diverse variants of GA. Third, TGA2
significantly reduces the computation cost of TGA because
the potentially trivial repeats of select-and-check process in
TGA is replaced with a single step of survivor selection in
TGA2.

The performance of TGA2 is evaluated on both numer-
ical and combinatorial optimization problems, in compari-
son with GA and TGA. The experimental results show that
both TGA and TGA2 can significantly outperform GA in
solution quality. However, TGA converges much slower than
GA does whereas TGA2 can lead to superior solution quality
with a similar convergence speed as GA. The experimental
results also present the effects of TS strategies on the perfor-
mance of TGA2. On the whole, these outcomes validate the
effectiveness of the proposed hybridization of TS and GA in
enhancing GA in terms of solution quality and convergence
speed.

Future work includes some directions. First, local search
has proved to be effective in improving evolutionary algo-
rithms [3,14,15,17,21,22,33]. Adopting local search in
TGA2 is promising to enhance its solution quality and con-
vergence speed, especially for complex and real-world appli-
cations. Second, the performance of TGA2 is evaluated
through comparison with GA and TGA. More algorithms
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Table 7 Average (MBF), SD,
and t test result (p value) of the
best fitness over 100 runs for
GA and TGA2 with different
mutation rates pm on lin105
instance

The boldface denotes the best
result among the tabu list sizes
with respect to each mutation
rate

pm GA TGA2

T = 2 T = 4 T = 6 T = 10

0.05 MBF 22038 19397 19166 18802 20059

SD 1783 1251 1474 1143 1625

p value – 3.65E-25 1.85E-26 9.93E-34 1.97E-14

0.1 MBF 22322 19291 19076 19081 20213

SD 1515 1362 1195 1333 1515

p value – 4.71E-34 2.22E-39 1.46E-37 5.21E-19

0.2 MBF 22375 19345 19352 19436 20807

SD 1455 1326 1661 1486 1706

p value – 1.18E-35 2.09E-30 6.87E-32 2.63E-11

0.5 MBF 22981 19891 20244 20829 22821

SD 1403 1365 1674 1790 2084

p value – 6.37E-37 7.69E-27 8.81E-18 2.63E-01

and benchmark problems should be considered to validate
the advantage of TGA2. In addition to empirical study, the-
oretical analysis is an important direction to investigate the
impact of TS strategies on the behavior of TGA2.
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