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Abstract The association rules render the relationship
among items and have become an important target
of data mining. The fuzzy association rules introduce
fuzzy set theory to deal with the quantity of items in
the association rules. The membership functions play
a key role in the fuzzification process and, therefore,
significantly affect the results of fuzzy association rule
mining. This study proposes a memetic algorithm (MA)
for optimizing the membership functions in fuzzy as-
sociation rule mining. The MA adopts a novel chro-
mosome representation that considers the structures of
membership functions. Based on the structure represen-
tation, we develop a local search operator to improve
the efficiency of the MA in exploring good member-
ship functions. Two local search strategies for the MA
are further investigated. This study conducts a series of
experiments to examine the proposed MA on different
amounts of transactions. The experimental results show
that the MA outperforms state-of-the-art evolutionary
algorithms in terms of solution quality and convergence
speed. These preferable results show the advantages of
the structure-based representation and the local search
in improving the performance. They also validate the
high capability of the proposed MA in mining fuzzy
association rules.
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1 Introduction

Data mining explores the information hidden in the
data and transforms it into explicit valuable knowl-
edge [10]. Several data mining technologies have been
proposed to discover knowledge for different purposes,
such as classification, clustering, and association rules
[9]. Mining association rules is an important data min-
ing technology aiming to find the relationship among
items, also known as a homogeneous group or an affin-
ity group, from the database and has achieved many
successful stories, e.g., the prediction of customers’ be-
havior in Walmart.

The Apriori algorithm is well-known for mining as-
sociation rules [1]. This method establishes association
rules based on the frequent itemsets according to a user-
defined minimum confidence. Srikant and Agrawal [31]
extended the rules into quantitative association rules,
which can tackle the data of quantitative values or cat-
egories. They presented a method similar to the Apri-
ori algorithm but requiring an additional preprocess
of data discretization. The fuzzy set theory is intro-
duced to different aspects of association rules [6,17,19].
In particular, Hong et al. [15,16] proposed the fuzzy
transaction data mining algorithm (FTDA) by adopt-
ing fuzzy sets to analogue the values of original data. In
the FTDA, quantitative values of data are transformed
into fuzzy values according to the membership func-
tions. The results are known as the fuzzy association
rules. The FTDA holds the advantages in suitability,
tolerance, and extension for nonlinear systems.
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The membership functions establish the mapping
from a quantity to a fuzzy value and thus exert a sig-
nificant influence on fuzzy association rule mining. Re-
cently, some studies adopt genetic algorithm (GA) to
optimize the membership functions and receive promis-
ing results. However, two important issues remain open
in the genetic-fuzzy association mining. First, the cur-
rent variants of GA ordinarily use integers or real val-
ues as the chromosome representation for membership
functions. The structure of membership functions plays
a crucial role but is not considered in the chromosome
representation. Second, GA is well known for good global
search but performs poorly at local search. This weak-
ness makes it harder for GA to find the best member-
ship functions for fuzzy data mining, especially in a
large number of transactions.

This paper proposes a memetic algorithm (MA) to
address the above issues. Beyond Darwinian genetics,
MA considers the Lamarckian or Baldwinian effect by
integrating local search into evolutionary algorithms.
This integration has been widely shown as to be effec-
tive in improving the performance of evolutionary algo-
rithms [12,18,26,33]. The proposed MA considers the
structure of membership functions in the chromosome
representation. The novel representation facilitates lo-
cal search in the various structures of membership func-
tions. This study accordingly designs a local search op-
erator and incorporates it into a GA as an MA for
enhancement of its search capability, which is helpful
for the genetic-fuzzy system to mine association rules
among a large amount of transactions. In addition, two
strategies for the local search are investigated. A series
of experiments, including 10,000 to 1,000,000 transac-
tions, is conducted to examine the performance of the
proposed MA in different data scales.

The remainder of this paper is organized as fol-
lows. Section 2 introduces fuzzy association rule min-
ing. Section 3 sheds light on the proposed MA. Section 4
presents and discusses the experimental results. Finally,
we draw conclusions and recommend the directions for
future work in Section 5.

2 Mining Fuzzy Association Rules

The association rules reveal the coincidence of items
among transactions. This information is important and
commonly used in the analysis of customers’ behavior
and business intelligence. An association rule has a gen-
eral form:

X → Y, (1)

where X and Y are sets of items. For example, the
association rule {bread, cheese} → {milk} mined from

the transactions in Walmart infers “If buying bread and
cheese, then buying milk ”.

Given an itemset I = {I1, . . . , Im} withm items and
a database D = {T1, . . . , Tn} with n transactions Tk ⊆
I, an association rule X → Y represents the possibility:
if X ⊆ Ti then Y ⊆ Ti. Two metrics, namely support
and confidence, are adopted to measure an association
rule.

Definition 1 (Support) The support of association
rule X → Y is defined by the probability that X and
Y coexist, i.e.,

Support (X → Y ) = P (X ∪ Y ) . (2)

Definition 2 (Confidence) The confidence of associ-
ation rule X → Y is defined by the probability that Y
exists given X exists, i.e.,

Confidence (X → Y ) = P (Y |X) =
P (X ∪ Y )

P (X)
. (3)

Agrawal and Srikant [1] proposed the Apriori algorithm
to mine the association rules. Given a minimum sup-
port θsupp, the algorithm selects large itemsets L =

{L1, . . . , Lp} from the candidate itemsets C = {C1 . . . , Cp}
progressively. The large itemsets obtained are used to
generate the candidate association rules. An associate
rule is valid if its confidence is greater than or equal to
a predetermined minimum confidence θconf .

The original association rules consider the existence
of items but ignore their quantity. To address this is-
sue, Hong et al. [16] introduced the notion of fuzzy sets
to association rules, thereby considering the quantity
of items. The fuzzy association rules involve the fuzzy
support and fuzzy confidence based on the membership
functions.

Given a database D with n transactions among m
items. Let Rj,k denote the fuzzy region of the k-th mem-
bership function for item Ij . The fuzzy membership
value f (i)j,k of region Rj,k is determined by the quantity

v
(i)
j of the j-th item in the i-th transaction Ti.

Definition 3 The fuzzy support of region Rj,k is cal-
culated by

FuzzySupport (Rj,k) =
1

n

n∑
i=1

f
(i)
j,k. (4)

If a fuzzy region Rj,k has FuzzySupport (Rj,k) ≥ θsupp,
it is included to the large 1-itemset L1 like the Apriori
algorithm.

For a set of fuzzy regions R = {R1, . . . , Rp}, its
fuzzy value in transaction Ti is computed by the inter-
section of the membership values f (i)Rk

, i.e.,

f
(i)
R =

p⋂
k=1

f
(i)
Rk
. (5)
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The minimum function is widely used as the intersec-
tion operator in fuzzy systems. The fuzzy value of R is
therefore

f
(i)
R = min

1≤k≤p
f
(i)
Rk
. (6)

Based on the above equation, the fuzzy support of
R is defined as follows.

Definition 4 (Fuzzy Support) The fuzzy support of
R is defined by

FuzzySupport (R) =
1

n

n∑
i=1

f
(i)
R . (7)

If the fuzzy support of R is greater than the minimum
support θsupp, R is added to the large p-itemset Lp. The
collection of large itemsets continues until Lp = ∅.

The fuzzy association rules are built upon the large
itemsets and their fuzzy confidence. Given a large p-
itemset Lp = {R1, . . . , Rp}, a candidate rule has the
form:

X → Y, X, Y ⊂ Lp and X ∩ Y = ∅, (8)

where X and Y are two disjoint subsets of Lp, which
represent the antecedent and consequent, respectively.
The candidate rules need to be further examined on
their confidence values.

Definition 5 (Fuzzy Confidence) The fuzzy confi-
dence of a candidate rule R : X → Y associated with
Lp is defined by

FuzzyConfidence (R) =
FuzzySupport(X ∪ Y )

FuzzySupport(X)
. (9)

If a candidate rule has fuzzy confidence greater than,
or equal to, the minimum confidence θconf , then it is
qualified as a fuzzy association rule. All the candidate
rules generated from the large itemset Lp must be ex-
amined.

The membership functions determine the mapping
of fuzzy values, and thus, exert a significant influence on
the fuzzy association rules. The common membership
functions include the triangular, trapezoidal, Gaussian,
and bell functions. Each membership function has cer-
tain parameters to tune concerning the fuzziness. For
example, in the most widely used type of membership
function, namely the triangular function, there exist
three parameters (vertices) to be set. The optimization
of membership functions, therefore, becomes a key task
in fuzzy association rule mining. To address this task,
several studies utilize evolutionary algorithms in view
of their high capability in optimization. Hong et al. [16]
developed GAs for fuzzy data mining and showed that
GAs can gain the appropriate membership functions

for the fuzzy association rules. They further proposed
using a divide-and-conquer strategy to increase the effi-
ciency of genetic-fuzzy data mining [15]. Chen et al. [8]
devised a cluster-based method to reduce the computa-
tional cost at evaluation. The proposed method divides
the population into several clusters and adopts the sup-
port value of a representative chromosome in each clus-
ter for evaluation. Alcalá-Fdez et al. [2] used GA to
select the fuzzy association rules rather than optimize
the membership functions. Lee et al. [20] proposed us-
ing GA to directly evolve a population of fuzzy rules
instead of membership functions in mining of the pro-
cess parameters and product quality. Moreover, Chen et
al. [7] presented a fuzzy coherent rule mining algorithm
to deal with the issue of setting the minimum support.
In addition to GA, particle swarm optimization (PSO)
and other evolutionary algorithms are adopted to op-
timize the parameters of membership functions. Cai et
al. [5] devised a nonlinear PSO method for mining fuzzy
association rules, where a particle represents all the pa-
rameters of membership functions. Mishra et al. [24]
applied PSO to mine gene expression data for fuzzy
frequent patterns. The PSO generates the initial pop-
ulation using the frequent pattern growth method to
improve its performance.

Beyond single objective, multi-objective optimiza-
tion is also considered in fuzzy association rule min-
ing [11]. These studies take more than one objective
into account at the optimization of membership func-
tions. Qodmanan et al. [28] considered both the sup-
port and confidence, and Meng and Pei [22] included
a linguistic quantifier and truth in the fitness func-
tion. Minaei-Bidgoli et al. [23] considered more objec-
tives, including support, confidence, comprehensibility,
and interestingness. They used the Michigan approach
for the multi-objective evolutionary algorithm, where
each chromosome represents a single association rule.
By contrast, Rudziński [29] adopted the Pittsburgh ap-
proach for representation of the association rules con-
sidering two objectives, i.e., the root mean square er-
ror and interpretability. Antonelli et al. [3] presented a
multi-objective evolutionary learning scheme to simul-
taneously optimize the association rules and the mem-
bership function parameters.

Memetic algorithms have achieved considerable suc-
cess in data mining, such as classification [30], cluster-
ing [27], feature selection [25], and data processing [21].
Some research applies MA to fuzzy data mining. Gál et
al. [13] proposed an MA based on bacterial evolution-
ary algorithm (BEA) for extracting the fuzzy rules of
trapezoidal membership functions. The local search op-
erator relies on bacterial mutation and the Levenberg-
Marquardt method. Balázs and Kóczy [4] devised a bac-
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Algorithm 1 Memetic Algorithm
1: P ← Initialize()
2: Evaluate(all x ∈ P )
3: while not terminated do
4: P ′ ← ∅
5: repeat
6: x1,x2 ← Select(P )
7: y1,y2 ← Crossover(x1,x2)
8: yi ←Mutate(yi), i ∈ {1, 2}
9: Evaluate(yi), i ∈ {1, 2}
10: P ′ ← P ′ ∪ {y1,y2}
11: until P ′ is full
12: P ′ ← LocalSearch(P ′)
13: P ← Survive(P, P ′)
14: end while

terial memetic programming for building a hierarchical-
interpolative fuzzy system. The bacterial memetic pro-
gramming combines bacterial genetic programming with
a gradient based local search operator. Ho and Garibaldi
[14] mined Takagi-Sugeno-Kang (TSK) fuzzy models
by a memetic parallel GA, which integrates a paral-
lel GA for the premise of fuzzy rules with a QR House-
holder least square method for the consequence of fuzzy
rules. The premises and consequences of fuzzy rules
are evolved by different search mechanisms. Tsakonas
[32] considered memetic genetic programming (GP) for
constructing a Takagi-Sugeno fuzzy system. The MA
hybridizes GP with the least square and the gradient
descent methods. The above studies show that local
search can improve the convergence of evolutionary al-
gorithms. Therefore, this paper considers an MA based
on GA with local search on the structure types for im-
proving the convergence speed and solution quality in
fuzzy association rules mining.

3 The Proposed Memetic Algorithm

This study designs a memetic algorithm (MA) to op-
timize the membership functions. The proposed MA is
based on the evolutionary scheme of GA and a local
search operator. The MA adopts a novel chromosome
representation considering the structures, in addition
to the parameters, of the membership functions. The
genetic operators are further developed to adapt to the
new representation. Moreover, we devise a local search
operator that utilizes the structure information for the
MA. Algorithm 1 presents the framework of the pro-
posed MA. More details are described below.

3.1 Representation

A membership function is composed of parameters to
be optimized in fuzzy association rule mining. These

 0

 1

c1,1 c1,2 c2,1 c1,3 c2,2 c3,1 c2,3 c3,2 c3,3

Fig. 1: Example of three membership functions

 0

 1

Fig. 2: Example of inappropriate membership functions

parameters are encoded as genes of a chromosome in
evolutionary algorithms. The structure of membership
functions, however, is essential yet neglected in the con-
ventional chromosome representation.

This study proposes a novel chromosome represen-
tation considering the parameters plus the structure of
membership functions. Restated, a chromosome com-
prises two parts: 1) parameters, and 2) structure type.
Given an item using ` linguistic terms to describe its
quantity, the first part of a chromosome is represented
by 3` real-valued genes to determine the parameters of `
membership functions. This part is conventionally used
for chromosome representation. In addition, this study
introduces the structure information to chromosomes.
The structure type is indexed according to the deploy-
ment of membership functions. For example, the first
3` real-valued genes in Figure 3 represent the param-
eters of ` membership functions, and the last integer-
valued gene indicates the structure type. When forming
the membership functions, the 3` parameters are first
sorted and then arranged according to the structure
index. Algorithm 2 presents the pseudocode of con-
verting a chromosome into membership functions. As
illustrated in Fig. 3, according to the structure type
ST (τ = 11) = (1, 2, 4, 3, 7, 5, 6, 8, 9), the lowest value
0.7 corresponds to the first parameter, the third lowest
value 4.5 corresponds to the fourth parameter, and so
forth.

Legality and suitability are two key factors needed
to be considered in the parameter setting of member-
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Algorithm 2 Conversion
1: procedure Convert(x) . x = (x1, . . . , x3`, τ)
2: x′ ← Sort(x) . Sort x1, . . . , x3`
3: k ← 1
4: for i← 1 to ` do
5: for j ← 1 to 3 do
6: ci,j ← x′

ST (τ,k)
. ST (τ, k): k-th element of

7: k ← k+ 1 . τ -th structure
8: end for
9: end for
10: end procedure

ship functions. The former regulates that the parame-
ters should comply with the form of membership func-
tion, while the latter is concerned with the expressive-
ness and interpretability of fuzzy sets.

Legality. Given a triangular membership function1 and
let ci,j denote the j-th parameter of i-th membership
function for a given item. A chromosome must satisfy
the following two constraints:

ci,1 ≤ ci,2 ≤ ci,3 (10)

c1,2 ≤ c2,2 ≤ · · · ≤ cl,2 (11)

The first constraint maintains the triangular shape and
the second constraint regulates the order of linguistic
terms. Figure 1 illustrates a legal membership function
that satisfies the above constraints.

Suitability. In addition to legality, the suitability must
be considered in the optimization of membership func-
tions. Hong et al. [15] defined the suitability by cover-
age and overlap of membership functions. The cover-
age represents the range covered by all the membership
functions for an item; the overlap is measured by the
area covered by two membership functions. Figure 2
illustrates inappropriate membership functions, where
the overlap of the left two membership functions is too
high, and the coverage is incomplete, due to the gap
between the right two membership functions.

The following inequalities secure the full coverage
and moderate overlap:

– Coverage:

ci−1,1 ≤ ci,1 ≤ ci−1,3 (12a)
ci+1,1 ≤ ci,3 ≤ ci+1,3 (12b)

– Overlap:

ci,3 ≤ ci+2,1 (13)

1 This study uses triangular membership functions; however,
other shapes such as trapezoidal and bell functions are also ap-
plicable.

1 2 4 3 7 5 6 8 9 

2.20 5.60 6.10 9.10 4.50 12.00 0.70 7.50 8.40 11 

0.70 2.20 4.50 5.60 6.10 7.50 8.40 9.10 12.00 

Sorting Structure 

Fig. 3: Example of chromosome representation

The proposed representation, consisting of parameters
and structure, can help refine the chromosomes for the
appropriate membership functions. For fuzzy associa-
tion rules using three triangular membership functions,
the nine vertices account for 9! = 362880 permutations.
Among them, the proposed chromosome representation
considers only 93 legal structure types that satisfy con-
straints (10) and (11) on shape and order, which sub-
stantially filters out the illegal membership functions
and reduces the search space. Furthermore, in the light
of suitability, 12 structures types are selected as per
(12) and (13). These 12 structure types have an appro-
priate arrangement of membership functions, i.e., full
coverage and moderate overlap.

3.2 Fitness Evaluation

In mining fuzzy association rules, the fuzzy support of
the largest itemset is usually used to evaluate the fitness
of chromosomes. This evaluation is time-consuming due
to the time complexity O (2m) for garnering the largest
itemset. To address this issue, Hong et al. [15] presented
the divide-and-conquer strategy for fitness evaluation in
fuzzy data mining. More specifically, the fitness func-
tion adopts the fuzzy support of the large 1-itemset L1

in place of the largest itemset to decrease the compu-
tational cost. The fitness function further considers the
suitability based on the coverage and overlap of mem-
bership functions. In light of these advantages, we use
this fitness function for the MA.

The fitness function evaluates a chromosome accord-
ing to the fuzzy support and suitability. The fuzzy sup-
port is calculated using (7); the suitability is composed
of the coverage and overlap of the membership func-
tions defined in the chromosome.
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Definition 6 (Overlap Factor) The overlap factor
of a chromosome x is defined by

Overlap (x) =
∑
i<j

(max (ovlratio (Ri, Rj) , 1)− 1) (14)

with

ovlratio (Ri, Rj) =
The area covered by both Ri and Rj

min (ci,3 − ci,2, cj,2 − cj,1)
.

(15)

The ratio of overlap ovlratio (Ri, Rj) accounts for the
proportion of the area covered by both the membership
functions to the smaller of (ci,3 − ci,2) and (cj,2 − cj,1),
which are the right half of the left membership func-
tion and the left half of the right membership function,
respectively. The overlap factor is nonnegative with a
best value of 0. Note that the zero overlap factor im-
plies a moderate overlap, rather than non-overlap, of
all pairs of the membership functions.

Definition 7 (Coverage Factor) The coverage fac-
tor of a chromosome x is defined by

Coverage (x) =
max (I)

range (R1, . . . , Rl)
. (16)

The coverage factor is in inverse proportion to the range
covered by all membership functions. The factor has a
minimum (best) value of 1, indicating full coverage of
the item’s quantity.

The suitability is defined as the sum of the overlap
and coverage factors. Accordingly, the fitness value of a
chromosome x is computed by

f (x) =

∑
R∈L1

FuzzySupport (R)

Overlap (x) + Coverage (x)
. (17)

The fitness function considers large 1-itemset L1 ob-
tained from the membership functions converted from
x. The use of L1 instead of the largest itemset reduces
the computational cost at the calculation of fuzzy sup-
port. In addition, the suitability prevents the MA from
pursuing the membership functions with high fuzzy sup-
port but serious overlap or narrow coverage.

3.3 Genetic Operators

The proposed MA is based on the scheme of GA, in
which the genetic operators include parent selection,
crossover, mutation, and survival selection. The parent
selection operator selects two chromosomes out of the
population to serve as the parents for subsequent re-
production. The probability for a chromosome to be
selected is ordinarily in proportion to its fitness. For

example, the k-tournament selection chooses the best
of the k chromosomes as a parent.

The reproduction process includes two operators,
i.e., crossover and mutation. The crossover operator
generates the offspring by recombining the genetic in-
formation of the parents. This study adopts the uni-
form crossover that is widely used for GA. The uniform
crossover assigns each gene randomly from either parent
to produce offspring. Next, the MA performs mutation
for small changes on the offspring. Here we use the creep
mutation and random resetting to randomly alter the
parameters and structure type, respectively.

Noteworthily, the crossover and mutation operations
may result in illegal offspring violating constraints (10)
and (11). In the conventional chromosome represen-
tation without structure information, these illegal off-
spring need to be fixed by rearranging the sequence of
genes. By contrast, the proposed structure-based rep-
resentation is capable of preventing illegal offspring, in
that the shape and order have been considered and stip-
ulated in the structure type.

The survival selection implements the principle “sur-
vival of the fittest” to pick the chromosomes and form
the population for the next generation. In the well-
known (µ+ λ) survival selection, parents and offspring
all compete for survival.

3.4 Local Search

This study proposes a local search operator to improve
the search capability of the MA. The local search acts
upon the structure types in that the chromosome rep-
resentation facilitates exploring the structures of mem-
bership functions. As Algorithm 3 shows, the local search
operator scans the neighborhood of a given chromosome
for a better solution, where the neighbors are defined as
the chromosomes having the same parameters but dif-
ferent structure types. For example, there are 92 neigh-
bors for a chromosome using three triangular member-
ship functions. Compared to the neighborhood defined
in the parameter domain, the neighborhood based on

Algorithm 3 Local Search
1: procedure LocalSearch(x, h) . chromosome x, size h
2: for i← 1 to h do
3: yi ← (x1, . . . , x3`, rand(|ST |)) . randomize type
4: end for
5: y∗ ← BestOf(yi∈{1,...,h})
6: if f(y∗) > f(x) then
7: x← y∗

8: end if
9: end procedure
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structures has a small size and can enhance the effi-
ciency of local search.

Two strategies are developed for choosing the tar-
get chromosomes of local search: best and random. The
former chooses the best k chromosomes, whereas the
latter randomly picks k chromosomes from the popula-
tion. Additionally, we limit the local search to check h
neighbors to control the number of extra fitness eval-
uations. Hence, the local search requires kh additional
fitness evaluations at each generation.

4 Experimental Results

This study carries out a series of experiments to ex-
amine the performance of the proposed MA on the op-
timization of membership functions for mining fuzzy
association rules. In addition, we investigate the influ-
ences of the proposed chromosome representation and
the local search operator upon the fitness as well as its
components, to wit, overlap, coverage, and fuzzy sup-
port. The experiments include five algorithms: GA [15],
GA93 (GA using the novel representation), GA12 (GA93

refined by the suitability constraints), MA93 and MA12

(GA93 and GA12 applying the local search operator, re-
spectively). The subscripts 93 and 12 account for the
numbers of structure types encoded in the chromosome
representation. Table 1 summarizes the parameter set-
ting for the five test algorithms. The minimum support
is set to 0.04. Different data sizes are tested in the ex-
periments, including 10, 30, 50, 70, and 90k transac-
tions, each consisting of 64 items [15]. Moreover, we ex-
amine the performance of test algorithms on a dataset
with one million transactions (1000k) to simulate big
data. Each experiment includes 30 independent runs of
each algorithm.

4.1 Local Search Strategy and Size

First, we investigate the effects of the best and ran-
dom strategies on the MA. Figure 4 plots the progress
of the mean best fitness (MBF) for MA93 and MA12

using the best and random strategies performed on dif-
ferent number of chromosomes at each generation. Due
to space limitation, only the experimental results on
the 90k transactions are presented. The figures show
that MA93 benefits from the increase of individuals
for both the best and random strategies. In particu-
lar, MA93 using either the best or random strategy
on the whole population, i.e., 50 chromosomes, outper-
forms that with other sizes in terms of fitness. On the
other hand, the enhancement on MA12 depends upon
the strategy adopted for the local search: The increase

Table 1: Parameter setting

Parameter Value

Representation Parameter (real number) +
Structure (integer)

Parent selection 2-tournament
Crossover Uniform
Crossover rate pc = 0.8
Mutation Creep (ε = 3)
Mutation rate pm = 0.01
Survival selection µ+ λ

Population size 50
#Evaluations 25000

of individuals leads to better fitness for the best strat-
egy, but worse for the random strategy. Furthermore,
we look into the influences over the overlap, coverage,
suitability, and fuzzy support of MA93 and MA12. Ac-
cording to Table 2, MA12 gains better overlap, cover-
age, and therefore better suitability than MA93 does.
Nonetheless, the constraints on the structure types of
MA12 hinder its pursuit of fuzzy support and result in
the fitness inferior to MA93.

Second, we compare the performance of MA using
different local search sizes. The results in Fig. 5 show
that MA93 and MA12 with h = 1 perform best and
their solution quality and convergence speed deteriorate
as the local search size increases. Table 3 lists the over-
lap, coverage, suitability, fuzzy support, and fitness val-
ues of the membership functions obtained from MA93

and MA12 with different sizes of h. The performance
trends with respect to h are similar among the two
datasets and two MAs: The increase in size h worsens
the overlap, coverage, suitability, fuzzy support, and fit-
ness, suggesting the advantage of using h = 1, i.e., local
search checking only one neighbor.

In view of the generally good performance, the fol-
lowing experiments use the strategy of local search on
all chromosomes (k = 50) with only one neighbor (h =

1) for MA93 and MA12.

4.2 Performance Comparison

This study examines the performances of MA93 and
MA12 in comparison to GA, GA93, and GA12. First,
we investigate the performances on the medium size
of datasets (10–90k transactions). As Figure 6 shows,
GA using the structure-based representation, i.e., GA93

and GA12, achieves higher fitness than the original GA
does, which verifies the advantages of using structure
types in the representation. The results further indi-
cate the effectiveness of the proposed local search op-
erator on improving the solution quality: MA93 and
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Fig. 4: Progress of MBF for MA93 and MA12 using local search on different numbers of random (left) and best
(right) chromosomes on the dataset of 90k transactions

Table 2: Fitness, overlap, coverage, suitability, and fuzzy support of the membership functions obtained from
MA93 and MA12 using local search on different numbers of random and best chromosomes on the dataset of 90k
transactions.

MA Strategy #Chroms Overlap Coverage Suitability Fuzzy Support Fitness

MA93 Random 1 0.0086 1.0020 1.0106 9.2933 9.2009
2 0.0085 1.0022 1.0107 9.3042 9.2114
5 0.0103 1.0024 1.0127 9.3519 9.2415
10 0.0059 1.0028 1.0087 9.3505 9.2741
50 0.0032 1.0038 1.0070 9.3802 9.3176

Best 1 0.0135 1.0016 1.0152 9.1396 9.0098
2 0.0140 1.0017 1.0156 9.1728 9.0362
5 0.0098 1.0018 1.0116 9.2006 9.0994
10 0.0100 1.0021 1.0121 9.2551 9.1495
50 0.0032 1.0038 1.0070 9.3802 9.3176

MA12 Random 1 0.0000 1.0016 1.0016 9.1882 9.1731
2 0.0000 1.0016 1.0016 9.1887 9.1737
5 0.0000 1.0018 1.0018 9.1857 9.1693
10 0.0000 1.0019 1.0019 9.1574 9.1402
50 0.0000 1.0026 1.0026 9.1546 9.1306

Best 1 0.0000 1.0016 1.0016 9.0373 9.0231
2 0.0000 1.0016 1.0016 9.0501 9.0353
5 0.0000 1.0017 1.0017 9.0705 9.0550
10 0.0000 1.0019 1.0019 9.0856 9.0684
50 0.0000 1.0026 1.0026 9.1546 9.1306
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Fig. 5: Progress of MBF for MA93 and MA12 using local search with different size h on the datasets of 10k and
90k transactions

Table 3: Fitness, overlap, coverage, suitability, and fuzzy support of the membership functions obtained from MA93

and MA12 using local search with different size h on the datasets of 10k and 90k transactions

Data MA Size Overlap Coverage Suitability Fuzzy Support Fitness

10k MA93 1 0.0050 1.0039 1.0089 9.0501 8.9738
5 0.0066 1.0110 1.0176 8.9349 8.7852
10 0.0082 1.0167 1.0249 8.8199 8.6107

MA12 1 0.0000 1.0027 1.0027 8.7709 8.7473
5 0.0000 1.0075 1.0075 8.6588 8.5943
10 0.0000 1.0120 1.0121 8.6235 8.5214

90k MA93 1 0.0032 1.0038 1.0070 9.3802 9.3176
5 0.0060 1.0111 1.0170 9.3008 9.1493
10 0.0053 1.0167 1.0219 9.1951 9.0013

MA12 1 0.0000 1.0026 1.0026 9.1546 9.1306
5 0.0000 1.0078 1.0078 9.0649 8.9951
10 0.0001 1.0118 1.0119 9.0381 8.9326
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Fig. 6: Progress of MBF against the number of fitness evaluations for GA, GA93, GA12, MA93, and MA12 on
different datasets

MA12 gain higher fitness than GA93 and GA12, respec-
tively. When comparing the two MAs, MA93 outper-
forms MA12 in terms of fitness. As aforementioned, the
two constraints on MA12 help to guarantee the suitabil-
ity but impairs the fuzzy support; consequently, MA12

gains lower fitness than MA93 does. Table 4 presents
the MBF obtained and the p-values of one-tailed t-test
on the MBF. With confidence level α = 0.01, the t-test
results indicate that MA93 and MA12 achieve signifi-
cantly better fitness than GA93 and GA12, respectively.
In addition, MA93 significantly outperforms MA12 on
all datasets. The superior outcomes validate the bene-
fits of the structure representation and local search.

Table 5 compares the overlap, coverage, suitabil-
ity, and fuzzy support of the membership functions ob-
tained from the five test algorithms. The results indi-
cate that GA12 and MA12 benefit from the two con-
straints in coverage and overlap; nevertheless; their fuzzy
support values are relatively low due to the limita-
tion on the structure types. By contrast, GA attains
the highest fuzzy support at the cost of suitability; es-
pecially, it suffers from excessive overlap of member-

ship functions. Compared to the above methods, MA93

maintains a balance between fuzzy support and suit-
ability: By virtue of the structure representation and
local search, MA93 achieves the best fitness with suit-
ability better than GA and fuzzy support higher than
GA12 and MA12.

This study further investigates the performance of
the proposed MA on a large dataset, consisting of 1000k

transactions, to simulate mining fuzzy association rules
on big data. The experimental results on Table 6 show
that the proposed MA93 and MA12 achieve a satisfac-
tory performance on optimizing the membership func-
tions for large datasets. With confidence level α = 0.01,
the t-test results indicate that both MA93 and MA12

obtain significantly higher fitness than GA, GA93, and
GA12. Although MA93 and MA12 have a slightly worse
coverage, they gain better overlap and fuzzy support
than GA93 and GA12, respectively. Figure 7 plots the
anytime behaviors of the five test algorithms in fitness,
overlap, coverage, and fuzzy support. The figure shows
the advantage of local search: The two MAs progress
beyond the GAs in overlap, fuzzy support, and fitness.
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Table 4: MBF and p-values for the five test algorithms on the datasets of different sizes. The p-values account for
the results of t-test on the MBF obtained from X and Y algorithms (denoted by X:Y ), where positive p-values
indicate that Y is superior to X. Boldfaced MBF marks the best result among the five algorithms; boldfaced
p-values denote the statistical significance with confidence level α = 0.01

MBF p-value

#Tr. GA GA93 GA12 MA93 MA12 GA93:MA93 GA12:MA12 MA12:MA93

10k 8.6010 8.4815 8.6467 8.9738 8.7473 2.60E-45 1.25E-21 1.19E-37
30k 8.5845 8.9229 9.0398 9.3120 9.1491 2.45E-41 1.75E-25 8.50E-30
50k 8.5865 9.1803 9.2911 9.6599 9.4012 2.46E-42 5.96E-21 7.74E-41
70k 8.5970 8.8305 8.9550 9.2304 9.0579 6.87E-46 1.38E-21 2.62E-29
90k 8.5842 8.9057 9.0240 9.3176 9.1306 3.45E-45 4.34E-24 2.64E-34

Table 5: Overlap, coverage, suitability, and fuzzy support of the membership functions obtained from the five test
algorithms on the data of different sizes. Boldface marks the best result among the five algorithms

#Tr. Algorithm Overlap Coverage Suitability Fuzzy Support Fitness

10k GA 0.1928 1.0019 1.1946 10.1821 8.6010
GA93 0.0470 1.0016 1.0485 8.8656 8.4815
GA12 0.0010 1.0014 1.0024 8.6673 8.6467
MA93 0.0050 1.0039 1.0089 9.0501 8.9738
MA12 0.0000 1.0027 1.0027 8.7709 8.7473

30k GA 0.1886 1.0018 1.1904 10.1259 8.5845
GA93 0.0331 1.0016 1.0346 9.2157 8.9229
GA12 0.0007 1.0014 1.0021 9.0596 9.0398
MA93 0.0046 1.0040 1.0086 9.3887 9.3120
MA12 0.0000 1.0026 1.0026 9.1726 9.1491

50k GA 0.2012 1.0019 1.2030 10.2289 8.5865
GA93 0.0337 1.0015 1.0352 9.4814 9.1803
GA12 0.0010 1.0014 1.0024 9.3134 9.2911
MA93 0.0038 1.0041 1.0079 9.7329 9.6599
MA12 0.0000 1.0028 1.0028 9.4271 9.4012

70k GA 0.1992 1.0019 1.2011 10.2227 8.5970
GA93 0.0362 1.0015 1.0377 9.1479 8.8305
GA12 0.0009 1.0014 1.0023 8.9754 8.9550
MA93 0.0037 1.0039 1.0076 9.2983 9.2304
MA12 0.0000 1.0028 1.0028 9.0829 9.0579

90k GA 0.2019 1.0019 1.2038 10.2386 8.5842
GA93 0.0378 1.0016 1.0393 9.2322 8.9057
GA12 0.0010 1.0014 1.0024 9.0457 9.0240
MA93 0.0032 1.0038 1.0070 9.3802 9.3176
MA12 0.0000 1.0026 1.0026 9.1546 9.1306

Table 6: Fitness, overlap, coverage, suitability, and fuzzy support of the membership functions obtained from the
five test algorithms on the dataset of 1000k transactions. Boldface marks the best result among the five algorithms

#Tr. Algorithm Overlap Coverage Suitability Fuzzy Support Fitness

1000k GA 0.2387 1.0020 1.2407 10.338 8.3919
GA93 0.0523 1.0016 1.0539 9.1410 8.6991
GA12 0.0006 1.0014 1.0020 8.8431 8.8251
MA93 0.0074 1.0039 1.0114 9.2827 9.1831
MA12 0.0000 1.0027 1.0027 8.9648 8.9403
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Fig. 7: Variation of fitness, overlap, coverage, and fuzzy support against the number of evaluations for the five test
algorithms on 1000k transactions

They also address the issue that GA tends to sacrifice
overlap for fuzzy support. These outcomes confirm the
proposed MA is capable of improving GA in fuzzy data
mining on large datasets. They also validate the ben-
efits of the chromosome representation and the local
search operator for the MA.

4.3 Comparison of Membership Functions

The shape of membership functions is key to the inter-
pretability of fuzzy sets and exerts significant influence
on coverage, overlap, and fuzzy support. This section
compares the membership functions obtained from GA,
MA93 and MA12 on the data of 10k, 90k, and 1000k
transactions. According to Fig. 8, GA achieves mem-
bership functions with highest fuzzy support but low-
est suitability. In particular, the membership functions
generated by GA have serious overlap, making the fuzzy
regions turn out to be trivial. That is, GA tends to sac-
rifice suitability for fuzzy support. On the other hand,
the results show that MA93 and MA12 can maintain

proper overlap and coverage while pursuing fuzzy sup-
port. Hence, the membership functions obtained from
MA93 and MA12 have higher fitness values and rea-
sonable shapes than that from GA. In addition, MA12

imposes constraints (12) and (13) to secure suitable cov-
erage and overlap; nevertheless, these constraints also
hinder MA12 attaining high fuzzy support because the
limited fuzzy regions bring about lower fuzzy support,
which is reflected in the resultant membership functions
in Fig. 8.

5 Conclusions

This study proposes an MA to optimize the member-
ship functions for fuzzy association rule mining. The
MA uses a chromosome representation consisting of the
parameters and structure type of membership functions.
The consideration of structure in the representation
gains three advantages. First, the structure type helps
to filter out the illegal membership functions, thereby
reducing the search space. Second, it facilitates the de-
sign of heuristics and constraints for appropriate cover-
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Fig. 8: Comparison of membership functions obtained from GA, MA93 and MA12 on the datasets of 10k (left),
90k (center), and 1000k (right) transactions

age and overlap. Third, local search can be performed
on the structure types; accordingly; we develop a local
search operator to improve the search efficiency of the
MA.

This study conducts a series of experiments to ex-
amine the performance of the proposed MA. Two in-
stances of the MA, namely MA93 and MA12, are investi-
gated to consider different constraints on the structures.
The experimental results show that the MAs achieve
significantly higher fitness than GA and GA using the
structure representation. In exploring the influences on
the membership functions, the results show that the
MA can attain a high fuzzy support and maintain suit-
ability, i.e., appropriate overlap and coverage. The im-
provement of the proposed MAs upon the GAs becomes
even greater as the dataset grows to one million trans-
actions. These outcomes indicate the advantages of the
chromosome representation and local search operator
for the MA. In addition, they validate the effectiveness
of the proposed MAs on the optimization of member-
ship functions for fuzzy association rule mining.

Future work includes some directions: Advanced de-
sign of heuristics and constraints based on structure
types can be considered for enhancing the MA. Ad-
ditionally, applying the proposed MA to optimize the
membership functions for other fuzzy systems is promis-
ing. Extending the performance comparison with more
evolutionary algorithms would also help to validate the
advantages of the proposed MA.
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