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Abstract

The genome of many species in the biosphere is a diploid consisting of paternal and mater-

nal haplotypes. The differences between these two haplotypes range from single nucleotide

polymorphisms (SNPs) to large-scale structural variations (SVs). Existing genome assem-

blers for next-generation sequencing platforms attempt to reconstruct one consensus

sequence, which is a mosaic of two parental haplotypes. Reconstructing paternal and

maternal haplotypes is an important task in linkage analysis and association studies. This

study designs and implemented HapSVAssembler on the basis of Genetic Algorithm (GA)

and paired-end sequencing. The proposed method builds a consensus sequence, identifies

various types of heterozygous variants, and reconstructs the paternal and maternal haplo-

types by solving an optimization problem with a GA algorithm. Experimental results indicate

that the HapSVAssembler has high accuracy and contiguity under various sequencing cov-

erage, error rates, and insert sizes. The program is tested on pilot sequencing of a highly

heterozygous genome, and 12,781 heterozygous SNPs and 602 hemizygous SVs are iden-

tified. We observe that, although the number of SVs is much less than that of SNPs, the

genomic regions occupied by SVs are much larger, implying the heterozygosity computed

using SNPs or k-mer spectrum may be under-estimated.

Introduction

The release of next-generation sequencing (NGS) platforms, including 454 Life Sciences, Illu-

mina Genome Analyzer, and Applied Biosystems SOLiD, have had a significant effect on

many aspects of genomic research [1, 2]. Compared with traditional capillary-based Sanger

sequencing, these NGS technologies are able to sequence tens of millions of reads at an afford-

able cost [3, 4]. Using these platforms, researchers have successfully assembled a number of

genomes from microbial to mammalian scale in recent years. For example, the woodland

strawberry genome was sequenced at a 39-fold coverage and over 95% of the genome was

assembled using three NGS platforms [5]. The panda genome was the first mammalian

genome sequenced and assembled using only the Illumina platform [6]. To understand the
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evolution of complex animal lives, the Genome 10K project aims to sequence the genomes of

10,000 vertebrates [7].

The objective of most genome sequencing projects aims to reconstruct a reference sequence

from massive amount of short reads. Most genome assemblers adopt variations of the de
Bruijn graph approach, which models the assembly problem as a search for an Eulerian path in

the graph [8–10]. However, the performance of these short-read assemblers often deteriorates

because of sequencing errors, repeats, and coverage variance [11]. To overcome the difficulty

of assembling repeated regions, many researchers adopt paired-end sequencing to sequence

both ends of larger read fragments (termed paired-end reads). These paired-end reads are

used to further bridge assembled contigs into larger units called scaffolds [12, 13]. Finally, a

second-round assembly can close the gaps within the scaffold [8].

In reality, the genome of most species in the biosphere is a diploid consisting of maternal

and paternal haplotypes inherited from the parents. The differences between these two haplo-

types range from small single-nucleotide polymorphisms (SNPs), small indels, to large-scale

structural variations (SVs), including insertion, deletion, and inversion [14]. However, existing

genome assemblers only attempt to reconstruct one consensus sequence, which is a mosaic of

two parental haplotypes. Reconstructing paternal and maternal haplotypes is important for

linkage analysis, association studies, and genomic imprinting [15]. Many computational

approaches have been proposed for inferring the haplotypes via analysis of population linkage

structure (called phasing). But these methods assumes a reference genome is available and suf-

ficient genomes are sequenced, while most de novo sequencing projects only sequence one

genome. This paper focuses on haplotype reconstruction in de novo sequencing when only one

genome is deeply sequenced.

Existing methods can be classified into three categories. First, a number of methods can

identify heterozygous SNPs/SVs (differed between parental haplotypes) using coverage analy-

sis after mapping reads onto a reference genome (e.g., SAMtools). But the allele linkage of vari-

ations along each parental haplotype is not resolved. The second category of methods directly

reconstruct the paternal/maternal sequences from short reads [16], which simultaneously

solve the genome assembly and haplotype reconstruction problems. However, this strategy

reduces the flexibility for taking advantages of novel sequencing technologies (e.g., PacBio

sequencing) and of algorithmic improvement (e.g., paired de Bruijn graph). The third type of

methods independently solve the genome assembly and haplotype reconstruction problems,

providing the flexibility for using newly-developed assemblers. After a consensus (mosaic)

sequence is assembled, the parental haplotypes are reconstructed by analysis of allele linkage

across heterozygous loci [17, 18]. This paper belongs to the third category. The Craig Ventor

Genome was the first diploid genome assembled using this way [17]. The parental haplotypes

were assembled by joining overlapping (single-end) reads that span two or more SNPs. But it

does not consider variations other than SNPs. Nowadays, paired-end sequencing is widely

used in most sequencing projects and contains rich information for identifying various types

of genetic variations (e.g., identification of SVs) [2, 19, 20], which can serve as a better resource

for reconstructing haplotypes.

This study presents the design and implementation of a novel method called the HapSVAs-

sembler for the de novo assembly of paternal and maternal haplotypes based on paired-end

sequencing. The proposed method first builds a consensus sequence, identifies the heterozy-

gous loci of SNPs/SVs, and reconstructs the paternal and maternal haplotypes by solving an

optimization problem with a genetic algorithm (GA). The experimental results indicate that

this method has high accuracy and contiguity under various sequencing coverage rates, error

rates, and insert sizes. The program is tested on a pilot sequencing of a highly heterozygous
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genome and resontructs paternal and maternal sequences composed of heterozygous SNPs

and hemizygous SVs.

Method

Fig 1 shows a flowchart of the HapSVAssembler and the detailed software components can be

found in S1 Fig. Given a set of paired-end reads, the program first constructs a set of consensus

contigs by integrating de Bruijn graph and overlap graph assemblers for assembly in low- and

high-coverage regions. In the second stage, the program aligns all reads to the assembled con-

tigs and identifies heterozygous loci, including SNPs, insertions, deletions, and inversions. In

the final stage, the program extracts reads spanning at least two heterozygous loci, divides

reads into paternal and maternal groups, and reconstructs the paternal and maternal haplo-

types by solving an NP-hard problem called constrained minimum error correction (CMEC).

This study also proposes a novel GA for the CMEC problem.

Stage I: Construction of a Reference Consensus Sequence

The consensus sequence can be first built using any existing assembler (e.g., SOAPdenovo,

ABySS). As each assembler has its own strength and weakness, we present a hybrid pipeline

used internally for typical Illumina sequencing. Existing short-read assemblers (e.g., SOAPde-

novo) must break down the reads into fixed-length k-mers to build a de Bruijn graph, which

implies a minimum overlap length between reads. In high-coverage regions, larger k-mers are

good for reducing the graph complexity and improving assembly accuracy. Smaller k-mers are

more appropriate for low-coverage regions because of the insufficient overlap between reads.

Consequently, we uses a de Bruijn graph assembler to assemble reads into contigs using multi-

ple k-mers (e.g., k = 25*49) to adapt to the coverage variance across the entire genome. The

second phase merges the contigs consistently assembled in multiple k-mers into meta-contigs

by using an overlap-graph assembler (called AMOS [21]). This is because overlap-graph

assemblers do not break contigs into smaller k-mers to build a graph. This merging process

discards the singleton contigs assembled in only one k-mer, and attempts to elongate the more

accurate contigs from larger k-mers and remove possible misassembled contigs from smaller

k-mers. The third phase links these meta-contigs into scaffolds by using paired-end or mate-

pair reads through SSPACE [12]. Finally, the assembly gaps within scaffolds are closed by

unused reads using GapCloser [8]. This workflow is shown in Fig 2. The users may choose the

best assembly pipeline for distinct sequencing platforms (e.g., SMRT for PacBio).

Stage II: Identification of Heterozygous SNPs and SVs within a Diploid

Genome

The assembled contigs in Stage I form a mosaic sequence consisting of paternal and maternal

haplotypes. The genomic variants between these two haplotypes include small-scale SNPs/

indels to large-scale SVs (e.g., insertions, deletions, and inversions). The small-scale variants

can be identified by analyzing the read alignment output (i.e., gaps or mismatches). Con-

versely, the analysis of paired-end reads often reveals large-scale SVs [22–24]. The detectable

genomic variants must be heterozygous between the paternal and maternal haplotypes because

at least two distinct alleles appear at the same locus. Standard SNP/indel callers (e.g., SAMTool

or GATK) provide sufficient information (in SAM and VCF standard) to distinguish reads

carrying different alleles, which is necessary for subsequent haplotype assembly. However,

existing SV callers (e.g., Breakdancer, MoDIL, or VariationHunter) cannot supply the infor-

mation required to distinguish reads for SV or non-SV haplotypes, and the accuracies of

reported SVs and boundaries are unsatisfactory [19, 20]. Therefore, the HapSVAssembler
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Fig 1. Overview of HapSVAssembler. Overview of HapSVAssembler. Stage I: Using de novo assembler to reconstruct a reference genome; Stage II: Using

a reference genome assembled in Stage I, we can find SNPs and heterozygous SVs; Stage III: Two consensus haplotypes can be reconstructed from the

SNP/SV matrix.

doi:10.1371/journal.pone.0166721.g001
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invokes BWA to align the reads onto the assembled contigs, and uses SAMTools to identify

the coordinate/alleles of each heterozygous SNP and indel. For large SVs, a novel SV detection

module not only outputs accurate SV and boundary values, but also distinguishes reads span-

ning SV or non-SV haplotypes.

The SV detection module captures two important SV signatures: discordant reads and

breakpoint reads. Theoretically, the mapping distances of both ends of a paired-end read from

a non-SV region (called concordant reads) should be roughly equal to the expected insert size,

Fig 2. Flowchart of hybrid de novo assembly approach. The flowchart of the de novo assembly using hybrid approach with.

doi:10.1371/journal.pone.0166721.g002
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and the orientations of both ends should be (+, −) or (−, +). However, for paired-end reads

across large insertions or deletions (called discordant paired-end reads), the mapping distances

between both ends are significantly smaller or larger, respectively, than the expected insert size

(Fig 3(a) and 3(b)). For paired-end reads spanning boundaries of an inversion, the orientations

of both ends change to (+, +) or (−, −) (Fig 3(c)). Genomic regions containing excess discor-

dant reads with aberrant mapping distances or orientations are indicative of SVs. However,

the SV boundaries identified solely by discordant reads are often imprecise because of the vari-

ance of the insert size. Thus, the proposed SV detection module integrates discordant reads

and breakpoint reads to delineate precise boundaries for each type of SV, as described in the

following subsections.

SV Detection via Discordant Reads. This section first introduces the notations used in

this study. Suppose that the coordinate of the breakpoint pair of a potential SVi is denoted by

Bi ¼ ðbpileft; bp
i
rightÞ. Denote the two mapping loci of the j-th paired-end read rj as pejleft and

pejright . The spanning region of rj ranges from (pejleft þ l) to pejright , where l is the read length. The

mapping distance of rj is notated by mdj ¼ ðpe
j
right � pejleft þ lÞ (Fig 4). Assume that the map-

ping distances of all paired-end reads follow a normal distribution with mean μ and standard

deviation sd [25].

Fig 3. Signatures of discordant reads implying SVs. (a) The mapping distance of a deletion event is larger than insert

size; (b) The mapping distance of an insertion event is smaller than insert size; (c) The orientations of both ends of a read

spanning an inversion breakpoint will turn to (+, +) (Readx) or (−, −) (Ready).

doi:10.1371/journal.pone.0166721.g003

Fig 4. Identification of insertions or deletions. A discordant read rj is mapped on the reference with two

mapping locis, pejleft and pejright. The spanning region of rj is from ðpejleft þ lÞ to pejright. And the potential

breakpoint pair of SVi is initialized from pejleft þ l to pe
j
right.

doi:10.1371/journal.pone.0166721.g004
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The proposed method detects large deletions or insertions by searching for clusters of dis-

cordant reads with significantly larger or smaller mapping distances. Define a discordant read

with aberrant mapping distance as jmdj − μj> 2sd. For ease of explanation, this study focuses

on the detection of large deletions. However, large insertions are found in a similar way. The

discordant reads are sequentially processed according to the coordinate of their mapping loci.

Each discordant read is assigned to a cluster Ci of discordant reads, which may imply a poten-

tial SVi. An initial cluster C1 is created if supported by the first discordant read r1, and the SV

type (insertion or deletion) of SV1 is recorded according to the mapping distance. The size of

SV1 is computed by jmd1 − μj. The inferred breakpoints of SV1 are initially set to the spanning

region of r1, such that B1 ¼ ðbp1
left; bp

1
rightÞ ¼ ðpe

1
left þ l; pe1

rightÞ (Fig 5(a)). The remaining discor-

dant reads are assigned to an existing cluster Ci only if their SV type is identical and the span-

ning region overlaps the existing breakpoint pair Bi. Otherwise, a new cluster is created (Fig 5

(b)). When assigning a discordant read rj to an existing cluster Ci, re-compute the SV size by
P

rj2Ci
jmdj � mj

jCij
, and tighten the breakpoint pair Bi by intersecting the spanning region of rj, such

that Bi ¼ ðbpileft; bp
i
rightÞ \ ðpe

j
left þ l; pejrightÞ. Recursively execute this clustering procedure

until all discordant reads with an aberrant mapping distance are assigned to a cluster.

The identification of an inversion mainly relies on paired-end reads with aberrant orienta-

tions. A read with a (+, +) aberrant orientation implies that its right end is within the inversion

and the left end is outside the inversion. Similarly, a read with a (−, −) aberrant orientation has

its left end within the inversion and right end outside inversion. Using a clustering procedure

similar to that used in deletion/insertion detection, the left and right breakpoints of an inver-

sion can be determined by recursively clustering each discordant read with the same type of

aberrant orientation (Fig 6(a)). Each inversion induces two discordant clusters, which is found

to be confused by clusters of other inversions in practice. To identify the two clusters associ-

ated with each inversion, compute the maximum extent of the possible inverted region implied

by each read, such that two clusters belonging to the same inversion can be associated. The

maximum inverted region of a discordant read rj, which is denoted as readinvert
j , is formulated

as follows:

Fig 5. Identification of clustered insertion/deletion evidicnes. (a) The breakpoint pair of potential SV1 is

defined by the spanning region of the first discordant read r1; (b) r2 and r3 are joined into C1 due to the

overlapping with B1 in (a). r4 does not overlap with B1; therefore, a new cluster C2 is created.

doi:10.1371/journal.pone.0166721.g005
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The mapping distances between two ends of a paired-end read are definitely smaller than

the inversion size. Therefore, choose the maximum possible value to represent the maximum

extent of the inverted region (Fig 6(b)). This approach guarantees that the overlap between

any two clusters belonging to the same inversion will be identified.

Let clusterinverti be one cluster of discordant reads; that is, clusterinverti ¼
S

rj2Ci
readinvert

j (Fig 7

(a)). Subsequently, the two clusters Ci and Cj can be merged if ðclusterinverti

T
clusterinvertj Þ =2;,

and the merged inverted region is updated to (clusterinverti

S
clusterinvertj Þ (Fig 7(b)). After this

union procedure, two clusters belonging to the same inversion combine into a larger cluster.

readinvert
j ¼

(
ðpejleft þ l; maxfðpejright þ lÞ; ðpejleft þ mÞgÞ if rj 2 ðþ;þÞ

ðminfpejleft; ðpe
j
right þ l � mÞg; pejrightÞ if rj 2 ð� ; � Þ

ð1Þ

SV Boundary Refinement via Breakpoint Reads. The SV boundaries identified by dis-

cordant reads are often imprecise. To refine the SV boundaries, the HapSVAssembler identi-

fies the reads spanning SV boundaries (called breakpoint reads) by parsing the SAM

alignment results. These breakpoint reads often leave a footprint of continuous unmapped or

mismatched positions in SAM alignment (e.g., 40M40S for an 80 bp read). This is because con-

ventional short-read alignment algorithms (e.g., BWA) do not open large gaps for splitting

reads across large variations. Instead, these breakpoint reads are often partially aligned to the

reference genome because the read fragments within SV are often unmappable or mismatched

(Fig 8(a)). Denote the SV boundary implied by the jth breakpoint read as BPj. For any two

breakpoint reads implying the same SV boundary (i.e., BPj = BPi), maintain a counter record-

ing the frequency of breakpoint reads at this locus. Thereafter, use these breakpoint reads to

update the breakpoint pair Bi of each identified potential SV if the implied breakpoint is within

Bi ¼ ðbpileft; bp
i
rightÞ (Fig 8(b)). The breakpoint reads are ignored if they do not overlap with any

SV candidates.

Fig 6. Identification of inversions. (a) Two breakpoints from the same inversion are broken into two clusters

C1 and C2 owing to the intersection strategy; (b) The longer inverted region has been observed on the original

chromosome; therefore, the final inverted region readinvert
1

of r1 is ranged from ðpe1
right þ lÞ to ðpe1

left þ mÞ on

reference.

doi:10.1371/journal.pone.0166721.g006
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Analysis of False Discovery Rates. Integrating discordant and breakpoint reads for call-

ing SVs produces a relatively low error probability. The insert size of paired-end reads (of the

same library) approximates a normal distribution [25], and the requirement of aberrant map-

ping distances for discordant reads (i.e., |mdj − μ| > 2sd) implies a confidence interval greater

than 95% and error probability less than 5%. In practice, we require at least s discordant reads

for calling an SV, leading to an error probability of (0.05)s. Thus, the default minimum

requirement of five discordant reads has an error probability of�2 × 10−4. In addition, the

Fig 7. Identification of clustered inversion evidences. (a) The solid gray arrow represents the beginning

loci on the original chromosome, and its mapping location on the reference is pointed by a dotted arrow. The

maximum inverted region of a cluster C1 can be determined by union the inverted regions from all its

supporting reads; (b) C1 and C2 can be clustered together using the union operator to join clusterinvert
1

and

clusterinvert
2

.

doi:10.1371/journal.pone.0166721.g007

Fig 8. Illustration of breakpoint reads across SV boundaries. (a) A breakpoint Read rj whose right end matches perfectly first 4

nucleotides whether the remainder bases are mismatched with the reference. The guessing breakpoint can be inferred at the 4th base

of the right end on rj; (b) The actual breakpoints of SV can be determined by breakpoint reads.

doi:10.1371/journal.pone.0166721.g008
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error probability of a breakpoint read with length l can be computed via a binomial distribu-

tion. Let the sequencing error rate be e, and the number of matching positions of the j-th

breakpoint read be nj. The error probability of requiring at least k breakpoint reads for calling

an SV is
Qk

j¼1
l
nj

� �
ð1 � eÞnjel� nj . In reality, with the typical error rate of approximately 1% on

the Illumina platform, an 80 bp read length, at least 40 bp matches and two breakpoint reads,

the error probability of SVs miscalled by HapSVAssembler is
Q2

j¼1
80

40

� �
ð0:99Þ

40
0:0140 � 5:17� 10� 115. Thus, the default minimum requirement of at least

five discordant reads or at least two breakpoint reads has an error probability of less than

2 × 10−4 or 5.17 × 10−115, respectively.

SNP/SV Matrix Construction and Haplotype Block Partition

SNP/SV Matrix Construction. Given a set of SNPs and SVs, the HapSVAssembler

attempts to identify reads carrying distinct alleles (e.g., nucleotide or inversion orientation)

and convert them into an m by n SNP/SV matrix M, where m is the number of read fragments,

and n is the total number of SNP and SV sites. This study defines an m by nsnp sub-matrix

MSNP from M, where nsnp is the total number of SNPs. Assume that sj is the jth SNP locus and

the set of SNPs on the ith paired-end read is defined as a read fragment fi if and only if

9 1 � j � nsnp ððpeileft � sj � peileft þ lÞ _ ðpeiright � sj � peiright þ lÞÞ. The term MSNP
i;j means that

the allele at SNP sj of fragment fi is represented by {A, C, G, T, –}, where ‘–’ denotes the

unknown base. The term MSNP
i;j can be assigned by the kth nucleotide on ri, where k is the dis-

tance from peileft or peiright to sj if ðpeileft � sj � peileft þ lÞ or (ðpeiright � sj � peiright þ lÞ, respectively

(Fig 9(a)). Conversely, an m by nsv sub-matrix MSV represents the association between frag-

ments and SVs, where nsv is the number of discovering heterozygous SVs. Assume that svj is

the jth SV location, MSV
i;j represents the SV type of svj that fragment fi covers, and MSV

i;j is repre-

sented by {0: no SV, 1: deletions, 2: insertions, 3: inversions}. A single-end mapped read indi-

cates that the unmapped end is likely to be located in a heterozygous SV (Fig 9(b)). If ri is left-

end mapped to the reference, MSV
i;j can be defined as follows.

MSV
i;j ¼

(
type of svj if ðpeileft þ l; peileft þ mÞ \ ðbpjleft; bp

j
rightÞ =2;

0 otherwise
ð2Þ

Similarly, if ri is right-end mapped to the reference,

MSV
i;j ¼

(
type of svj if ðpeiright þ l � m; peirightÞ \ ðbp

j
left; bp

j
rightÞ =2;

0 otherwise
ð3Þ

Haplotype Blocks Partition for Parallel Computation. In reality, the paired ends may

not overlap continuously because of low-coverage or sequencing gaps, leading to a number of

isolated overlapping groups called haplotype blocks. The haplotype assembly within a haplo-

type block is independent of other blocks (Fig 10(a)). Therefore, this study uses a simultaneous

haplotype assembly through the parallel computation of multithreads (OpenMP) to signifi-

cantly improve assembly efficiency. Because this approach simultaneously assembles multiple

types of genomic variants (e.g., SNPs, insertions, and deletions), the resulting haplotype blocks

are larger than those of methods based on SNPs alone. This is because a heterozygous SV can

bridge two distinct haplotype blocks if they are spanned by any SV read. Therefore, two

Diploid Genome Reconstruction
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adjacent blocks can be merged if bridging reads in both adjacent blocks indicate the same SV

(Fig 10(b)).

Haplotype Assembly within a Haplotype Block

Constrained MEC Formulation. This haplotype assembly within a haplotype block is for-

mulated into a constrained version of the MEC problem, which aims to partition reads into

two consensus haplotypes with minimum error corrections, requiring reads carrying identical

SV signatures are assigned to the same haplotype. The optimal solution of the CMEC for

error-free reads is zero because there should be no conflict between read fragments and corre-

sponding consensus haplotypes. However, sequencing errors make it difficult to find a parti-

tion without conflicts. Hence, the CMEC problem attempts to divide a partition of reads into

two groups to minimize the number of conflicts. In addition, we observed that reads carrying

identical SV signatures almost come from the same haplotype. Therefore, the reads having the

same SV signatures are used as constraints during read partition. Specifically, if an SNP/SV

matrix M and H = (h0, h1) represents the consensus haplotype pair, the number of error cor-

rection between the ith read fragment fi and consensus haplotype hl at the SNP site sk is defined

as

dðMSNP
i;k ; hl;kÞ ¼

(
1 if MSNP

i;k 6¼ hl;k 6¼ �

0 otherwise
ð4Þ

Therefore, the total error correction numbers between read fi and haplotype hl is defined as

Dðfi; hlÞ ¼
Pnsnp

k¼1 dðMSNP
i;k ; hl;kÞ. Furthermore, P = (p0, p1) stands for a possible partition of all

fragments, and all fragments fi 2 pl will construct the consensus haplotype hl. The CMEC

Fig 9. Illustration of converting paired-reads to SNP matrix and SV matrix. (a) Paired-end read r1 and r2
both contain SNPs but r3 does not, therefore, r1 and r2 can be successfully converted to read fragment f1 and

f2 respectively. SNP s2 is covered by r2, and the allele at s2 can be obtained by the 4-th ðs2 � pe
2
leftÞ nucleotide

on r2; (b) Single-end mapped read r1 and r2 whose unmapped ends are overlapping with sv1 (e.g., a deletion),

both ofMSV
1;1

andMSV
2;1

can be assigned by 1.

doi:10.1371/journal.pone.0166721.g009
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problem can be formulated as follows:

minimize
X1

l¼0

X

fi2pl

Dðfi; hlÞ

subject to ffi; fjg � pl if MSV
i;k ¼ MSV

j;k 6¼ 0;

l ¼ f0; 1g;

1 � i; j � m;

1 � k � nsv:

Fig 10. Illustration of extended Haplotype blocks via heterozygous SVs. One end is represented by a solid arrow and two ends from the same read are

connected by a dotted line. There is a heterozygous SV1 between SNP10 and SNP11. (a) Without considering SVs, the entire haplotype will be broken into

three haplotype blocks; (b) In our approach, Block2 and Block3 in (a) are merged by bridging read x, y in Block2 and bridging read z in Block3 that indicate

heterozygous SV1.

doi:10.1371/journal.pone.0166721.g010
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The CMEC problem is a generalized version of the NP-hard MEC problem [26, 27], and is

therefore also NP-hard. The proposed method uses the GA to address small instances of the

MEC problem [28]. However, existing GA frameworks are inadequate for solving the CMEC

problem because the search space is exponential to the enormous number of reads in practical

NGS platforms. Although not shown in this paper, the solution quality and running time of

the original GA are both far from practical use. Therefore, this study presents a GA framework

with novel initialization and mutation schemes to solve the CMEC problem in a large solution

space.

A Genetic Algorithm for Solving the Constrained MEC Problem. Genetic algorithm

(GA) simulates the mechanisms of natural evolution, such as selection, crossover, and muta-

tion, to evolve the candidate solutions to their optimum values. The effectiveness of this

approach has been validated in numerous search and optimization problems. GA represents

candidate solutions as chromosomes. Instead of using a single search point, GA conducts a

global search through a set (population) of chromosomes. The fitness function evaluates the

quality (fitness) of chromosomes. The evolution in the GA begins with the population initiali-

zation. GA then initiates the reproduction process. The selection operator first picks two chro-

mosomes from the population as parents. Next, the GA performs crossover on these two

parents to reproduce their offspring. Some genes are altered by the mutation operator for

diversity. Implementing a Survival of the Fittest function, the survivor operator draws the fit-

test chromosomes out of the union of parent and offspring populations, and these chosen

chromosomes constitute the population for the next generation.

To reduce the computational effort in stochastic search, this study incorporates a local

search into the initialization and mutation operators of the GA to improve the search effi-

ciency and solution quality. The experimental results in the next section confirm that this new

GA can achieve better solutions in a shorter time than a standard GA. The following para-

graphs present more details about the proposed GA, where the deatiled GA parameters are

listed in Table 1.

I. Representation

Because all read fragments should must be partitioned into two disjoint sets, the proposed

GA represents a chromosome as a binary string over {0, 1}, where 0 and 1 respectively stand

for the two sets. Considering the constraints of the CMEC, read fragments carrying the same

SV allele ðMSV
i;k ¼ MSV

j;k 6¼ 0Þmust be forcibly partitioned into the same set, i.e., {fi, fj}� pl.
Therefore, we use only one bit to represents the set of read fragments indicating the same SV,

Table 1. Parameter setting in GA.

Operations/Parameters Setting

Representation Binary string

Initialization Heuristic

Population size 10

Crossover Uniform

Crossover rate 100%

Number of offspring 10

Mutation rate In error list: 80%;

otherwise: 1

m0

Parent selection two-tournament

Survivor selection Replace worst

Termination 5 generations

doi:10.1371/journal.pone.0166721.t001
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and the chromosome length is reduced from m to m0 ¼ ðm �
P

MSV
i;k 6¼ 0

1þ nsvÞ. A mapping

function can transform the original chromosome to a reduced chromosome in constant time

(Fig 11).

II. Population Initialization

To generate an initial partition (chromosome) P0, randomly select a read fragment fs as a

starting point, where 2� s�m0 − 1. All read fragments are sorted according to their mapping

coordinates. A random set is assigned to fs at the beginning, and the pseudo (consensus) haplo-

type corresponding to this set is also updated by the alleles on fs (Fig 12(a)). The pseudo haplo-

type is then sequentially updated by reads flanking fs in both directions. For each flanking read

fi, compute the similarity between fi and the two pseudo-haplotypes, and then greedily assign fi
as follows (Fig 12(b)).

After assigning a read fragment to a set, the allele of the corresponding pseudo-haplotype

may be updated to maintain only major alleles. This initialization process repeats until the

population of chromosomes is generated. Simulation results show that this heuristic initializa-

tion can construct solutions relatively close to the optimum because the sequencing error rate

is often not high and thus the number of conflicting reads is relatively low in practice. This

Fig 11. Reducing GA chromosome length via a mapping function. In original chromosome, there are

three fragments indicate the same SV (mark by black). The mapping function indicates the exact index of the

chromosome in GA and three SV-associated fragments will point to the same index (index 0).

doi:10.1371/journal.pone.0166721.g011

Fig 12. Heuristic population initialization for GA chromosomes. (a) The set of starting fragment f4 is randomly set as

1, and we will update the pseudo-haplotype1; (b) The pseudo-haplotypes are extended from f3 and f5, and the set of f3 and

f5 is determined by the similarity.

doi:10.1371/journal.pone.0166721.g012
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randomized greedy initialization also generates possible partitions implied by the conflicting

reads only. This approach greatly reduces the running time of the original GA, which ran-

domly generates partitions of all reads.

III. Fitness Evaluation

The consensus haplotypes must be generated before evaluating the fitness value of a parti-

tion. Define Nk
alleleðlÞ ¼ ð

P
fi2pl ;MSNP

i;l ¼ allele 1 Þ as the number of fragments carrying allele at sk in

pl, where allele 2 {A, C, G, T}. The kth site of the consensus haplotype is defined by

hl;k ¼ argmax
allele

Nk
alleleðlÞ

To construct a consensus haplotype at each site from the fragments, greedily select the

major allele that is supported from the majority. The fitness value of a partition P is defined as

FðPÞ ¼
X1

l¼0

X

fi2pl

Dðfi; hlÞ:

IV. Genetic Operators

The proposed GA adopts the two-tournament selection operator in view of its recognized

good performance. This selection operator chooses the better of two randomly selected chro-

mosomes as a parent. The selection procedure iteratively runs twice to obtain a pair of parents

for subsequent crossover operation.

The crossover operation exchanges and recombines the genetic information of both

parents. The GA employs the widely used uniform crossover, which randomly determines

each offspring gene from either parent. This mutation operation slightly changes the composi-

tion of the offspring. This paper devises a mutation operator based on the bit-flip mutation

that flips (i.e., 0! 1, 1! 0) genes with a predefined probability called the mutation rate pm.

The proposed mutation also uses an error list of a partition to record the index of fragments

that conflicts with the consensus haplotype. The fragments in the error list require a mutation

rate exceeding 0.8 to be flipped into the other set; those that remain have a lower mutation rate
1

m0.

Finally, to achieve good solutions from the mix of parent and offspring populations over

the course of GA evolution, solutions with higher fitness values are selected to survive to the

next generation. The termination criterion is set to five generations, at which point the best

chromosomes are outputted.

Simulations

The simulated diploid genomes are first constructed by duplicating the human reference

genome (NCBI build 37) into two sequences. Subsequently, SNPs, insertions, deletions, and

inversions are randomly placed into the two sequences with various heterozygous rates and

sizes (100-500 bp). The wgsim program [29] randomly generates paired-end reads from two

homologous chromosomes with various insert sizes and error probabilities. Burrows-Wheeler

Aligner (BWA) [30] then aligns short reads onto the assembled contigs. SAMtools and

BCFtools determine the coordinate/alleles of heterozygous SNPs/indels [29]. The proposed SV

detection module identifies other deletions, insertions, and inversions. Each site on the dupli-

cated chromosome has a 0.01 SNP rate to alter the allele to the others. Generating and aligning

paired-end reads from these diploid genomes produces standard SAM alignments.

This study defines haplotype assembly accuracy using a metric analogous to switching

errors. However, this metric is able to reflect the fragmentation caused by discontinuous
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haplotype blocks. Specifically, given a real haplotype pair H0 ¼ ðh0
0
; h0

1
Þ and an inferred haplo-

type pair H = (h0, h1) within a haplotype block, a switch error represents that two adjacent hap-

lotype segments, where one is from h0
0

and the other is from h0
1
, are misjoined to form h0

0
and

h0
1
Þ (Fig 13). Denote S and N as the number of switch errors and total SNPs, respectively. The

maximum possible S is thus N − 1. Define B as the number of haplotype block partitions within

the assembled haplotypes. The switch errors purely caused by the assembly algorithm only

occur at blocks with at least two SNPs, whereas a block with only one SNP has no need of a

haplotype assembly. Therefore, the accuracy of the assembled haplotype pair H is 1 � switch errors
N� B� 1

for haplotype blocks with at least two SNPs.

BAC Sequencing

Two Bacterial Artificial Clone (BAC) libraries from a pilot sequencing of Erycina pusilla were

constructed by randomly shearing the genomic DNA, which consists of sixty 100 kb BACs.

These BACs were pooled and sequenced using the Illumina Genome Analyzer. A paired-end

library of 300 bp insert size was constructed and sequenced up to 100bp read length. Potential

contamination from E. Coli and vector sequences was cleaned by first aligning short reads

onto the NCBI E. coli genome and NCBI VecScreen database (http://www.ncbi.nlm.nih.gov/

VecScreen/VecScreen.html) using BWA, which was removed from the subsequent process.

Only the clean paired-end reads were assembled by the HapSVAssembler pipeline.

Results

The HapSVAssembler pipeline was implemented in C/C++, multithreaded, and encapsulated

using bash script that supports standard formats as the input (e.g., fasta, SAM). The source

code and program have been uploaed to GitHub (https://github.com/ythuang0522/

HapSVAssembler). Various experiments were conducted to evaluate the assembly accuracy

and contiguity of the HapSVAssembler. To the best of our knowledge, no existing assemblers

are able to assemble haplotypes by using paired-end sequencing from NGS platforms. How-

ever, this study presents a comparison of the proposed method with two approaches proposed

for Sanger sequencing. The first approach is called MaxSAT [18], and the other is called MEC/

GA [28]. Both approaches attempt to separate single-end reads into paternal and maternal

Fig 13. Illustration of switch errors and block breakpoints. In haplotype block2, there are two switch

errors, where 1st to 5th bases, 8th to 12th bases are from h0
0

but 6th to 7th bases come from h0
1

on inferred

haplotype h0.

doi:10.1371/journal.pone.0166721.g013
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haplotypes with minimum error corrections. These programs are compared over various

genome sizes, insert sizes (HapSVAssembler only), read lengths, sequencing coverage rates,

and error rates.

Assembly Accuracy and Contiguity

Fig 14(a) shows the accuracies of genome sizes ranging from 10 kbp to 50 Mbp, where each

data point represents the average of 10 data sets. The execution of MEC/GA takes longer than

one day when the genome is larger than 500 kbp, which is not reported in the following experi-

ments. The result indicates that the HapSVAssembler has significantly greater accuracy than

MaxSAT and MEC/GA (marked by Raw). The partition of haplotypes into blocks in the pro-

posed method is the major reason for this huge difference. The block partition breaks down

the original assembly problem into smaller subproblems, which helps the algorithm find the

optimum solution. To compare the underlying algorithms without the partition effects, we

also manually partitioned the haplotypes into blocks, invoked the MEC/GA and MaxSAT sep-

arately for each block, and recomputed their accuracies. Although these measures improve the

accuracies of both approaches, they are still much lower than that of the HapSVAssembler.

Because the MEC/GA accuracy is much worse than the other two methods, the following com-

parative study omits its results. In view of the influence of read lengths to accuracy and com-

pleteness, longer reads are associated with a higher accuracy in the HapSVAssembler because

the expected number of SNPs covered by one read fragment increases (Fig 14(b)). However,

the accuracy of MaxSAT with a long read length drops unexpectedly.

Most sequencing protocols support short and long inserts. Fig 15(b) plots the N10 and N50

of both approaches. The assembled contig N10 size of the HapSVAssembler is longer than that

of MaxSAT, which does not consider the SVs. However, the tradeoff is a decrease in accuracy

(Fig 15(a)). We also examined the influence of the HapSVAssembler on various error rates in

the SNP/SV matrix. In erroneous data with a 25% error rate, the HapSVAssembler can still

reconstruct haplotypes with an accuracy greater than 80%, and has a high tolerance for noise

Fig 14. The accuracy for different genome size and read length. The paternal and maternal genomes differes in 1% SNPs. The mean insert size is 250bp

with 25bp standard deviation, the sequencing coverage is 20X, and the sequencing error rate is 1%. (a) The accuracy for different genome sizes; (b) The

accuracy for different read lengths.

doi:10.1371/journal.pone.0166721.g014
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or errors (Fig 16(a)). Fig 16(b) shows that accuracy approaches 99% in 10X coverage, confirm-

ing its ability to achieve accurate results with a low experimental cost.

To identify the factors that most affect HapSVAssembler accuracy, Fig 17(a) plots the asso-

ciation between accuracy and different sequencing coverage rates according to various error

rates. These results show that accuracy is always higher than 90% in low error rate simulations

(error rate�0.1). The accuracy of high error rate data can be efficiently overcome by high

Fig 15. Assembly accuracy and contiguity for different insert size. The paternal and maternal genomes differes in 1% SNPs. The genome size is 5Mbp.

The read length is 75bp and the sequencing coverage is 20X. The error rate of SNP/SV matrix is 1%. (a) The accuracy for different insert sizes μwith m

10

standard deviation; (b) The comparison of N10/N50 for different insert sizes.

doi:10.1371/journal.pone.0166721.g015

Fig 16. Assembly accuracy for different error rate and sequencing coverage. The similarity between diploid genome is 99%, and the genome size is

5Mbp. The read length is 75bp, and the mean of insert size is 250bp with 25bp standard deviation. (a) The accuracy for different error rate in SNP/SV matrix;

(b) The accuracy for different sequencing coverage.

doi:10.1371/journal.pone.0166721.g016
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sequencing coverage; for example, the accuracy of a 0.3 error rate simulation improves from

�67% to�81% when the coverage increases from 5-fold to 30-fold. The error rate is a crucial

factor influencing HapSVAssembler accuracy. Fig 17(b) shows the association between conti-

nuity and sequencing coverage. It is often expected that a higher coverage of sequencing

should lead to more contiguous assembly (longer N10 and N50 simultaneously). However,

this improvement is limited by the average distance between any two adjacent SNP/SVs, and

N10/N50 gradually converges on 25-fold to 30-fold. Table 2 shows the running time for vari-

ous genome sizes in three compared methods, where each datum represents the average of five

independently simulated data. To accelerate the HapSVAssembler and MEC/GA, we sepa-

rately used 10 and 16 threads to compute in parallel.

Pilot Sequencing of a Diploid Genome

The HapSVAssembler was tested on a de novo pilot sequencing of the Erycina Pusilla genome,

which is expected to be highly heterozygous yet a good model genome due to short life cycle. A

BAC library (representing 5MB of the diploid genome) were constructed and sequenced using

Fig 17. Assembly accuracy and contiguity for different sequencing coverage and error rates. (a) The accuracy higher than 90% can be obtained with

low error rate simulations even in low coverage; (b) The comparison of N10/N50 for different sequencing coverage.

doi:10.1371/journal.pone.0166721.g017

Table 2. Running time of HapSVAssembler, MaxSAT and MEC/GA.

Genome size HapSVAssembler MaxSAT MEC/GA

10Kbp 0.004 seconds 0.400 seconds 33.800 seconds

50Kbp 0.240 seconds 0.600 seconds 33.673 minutes

100Kbp 0.680 seconds 0.600 seconds 3.801 hours

500Kbp 3.270 seconds 1.400 seconds -

1Mbp 6.260 seconds 2.200 seconds -

5Mbp 31.710 seconds 9.000 seconds -

10Mbp 73.560 seconds 19.800 seconds -

50Mbp 4.825 minutes 1.760 minutes -

doi:10.1371/journal.pone.0166721.t002
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the Illumina HiSeq with a read length of 100 bp and an insert size of�300 bp. The assembled

contigs sum up to 4.7Mb with N50 = 12kbp. The results (Table 3) indicate that HapSVAssem-

bler identified 12,781 heteozygous SNPs and 573/29 hemizygous insertions/deletions differing

between paternal and maternal genomes. The insertions and deletions sum up to 72,896bp

and 5,080bp, respectively. On average, The sizes of insertions and deletions are 127bp and

175bp, respectively. Overall, the heterozygosity of the partial genome (including SNPs and

SVs) is about 1.92% (90,713bp/4,705,947bp), which implies the subsequent whole genome

assembly will be very challenging. Although the number of SVs are much less than that of

SNPs, the genomic regions occupied by SVs are much larger than that of SNPs (77,976bp vs

12,781bp), which implies the degree of heterozygosity computed from heterozygous SNPs or

from the k-mer spectrum might be under-estimated. On the other hand, the proposed method

is able to precisely compute the heterozygosity regions across various types of variations.

Convergence Rate of GA

This section investigates the convergence of solutions and the reduction of problem size in the

proposed GA. Fig 18 shows the best fitness value of the first 30 generations at error rates rang-

ing from 0.01 to 0.3. Results show that the fitness values often converge in the first 5 to 10 gen-

erations for low error rates because the heuristic initialization collects good solutions at the

beginning of the evolution. Therefore, the HapSVAssembler avoids many random steps to

reduce the computational time and stochastic search. Fig 19(a) shows the accuracy in different

error rates with 5 and 30 generations. The accuracy advantage of 30 generations compared to 5

generations is limited. However, the running time increases drastically (Fig 19(b)). Given the

limited advantage but much higher computational cost of 30 generations, the default setting of

the HapSVAssembler was set to only five generations.

The problem size can be reduced by the hard constraints in the CMEC formulation. Thus,

Fig 20(a) shows the percentage of constrained read fragments with respect to the genome size.

Results show that only 0.3% read fragments can be constrained together under 99% similarity.

The best reduction percentage of problem size occurs at a 10 kbp genome size because the SVs

are un-proportionally created in small genome size (e.g., 10 kbp and 50 kbp). Fig 20(b) shows

that the problem size consistently decreases with respect to the increasing divergence between

diploid genome in that more reads are constrained by the heterozygous variants between the

diploid. In summary, the CMEC formulation reduces the problem size in a GA at a higher cov-

erage rate and for larger genomes.

Discussion

The error rate of Illumina sequencers is known to be non-uniform. As a consequence, the

accuracy of breakpoint reads (and thus SV calling) might be reduced since alignment is less

Table 3. Heterozygous variations, including heterozygous SNPs and hemizygous insertions/deletions/inversions, detected during assembly of

diploid genome.

SNPs Insertions Deletions Inversions

Number 12781 573 29 0

Min Size 1bp 100bp 100bp -

Max Size 1bp 337bp 363bp -

Mean Size 1bp 127bp 175bp -

Total Size 12,781bp 72,896bp 5,080bp 0bp

Genome Percentage 0.27% 1.55% 0.1% 0%

doi:10.1371/journal.pone.0166721.t003
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Fig 18. In-time behavior of proposed GA for different error rates. The best fitness value (number of conflicts) of first thirty generations in different error

rate from 0.01 to 0.3.

doi:10.1371/journal.pone.0166721.g018

Fig 19. The accuracy and running time of different generations in GA. (a) the accuracy in different error rates with 5 and 30 generations; (b) the running

time in different error rates with 5 and 30 generations.

doi:10.1371/journal.pone.0166721.g019
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reliable at these error-prone or repetitive regions. Below We discussed the influence of error

bias and repeats on our algorithm separately under the re-sequencing and de novo assembly

scenarios. If a fully-assembled genome is available, the error rate of breakpoint reads indeed

may elevate at high-GC/repeat boundaries. However, in addition to breakpoint reads, discor-

dant reads (e.g., abnormal mapping distance w.r.t. insert size) are also included in the predic-

tion, which are less affected by the non-uniform error bias. Therefore, users may improve the

specificity by requiring both sufficient discordant and breakpoint reads when calling SVs,

although this would sacrifice sensitivity. It look to us a better solution to this problem may be

inclusion of sequence context/motif of these error-biased regions (e.g., GGC motif or GC den-

sity) into the SV calling algorithm, in addition to the conventional breakpoint/discordant

reads. Furthermore, we feel this problem might become a minor issue if the third-generation

sequencers are used instead (e.g., PacBio or Nanopore), which produce less GC bias and longer

reads for spanning repeats. On the other hand, if a fully-assembled genome is unavailable and

de novo assembly is required, our algorithm is less affected by this error-biased problem.

These error-biased/repetitive regions reduce not only the alignment accuracy but also the

assembly contiguity. As a consequence, most contigs are only assembled upto boundaries of

these error-biased/repetitive regions. In other words, our algorithm is in fact tested on the con-

tigs in which the majority do not contain these problematic regions.

The current implementation does not support multiple libraries, because the inclusion of

SV constraints from multiple libraries into the CMEC formulation will generate a complex

optimization problem, whereas conflicting constraints derived from different libraries would

prevent search of feasible solutions. The major output file has a format similar to the conven-

tional VCF file yet including haplotype block boundaries and SV alleles (e.g., insertion or dele-

tion). We also provided another output file similar to fasta yet containing the paternal and

maternal haplotype sequences separated by block boundaries. Other output files mainly pro-

vide the loci and allele information of SNPs and SVs and details can be found on README on

GitHub.

Fig 20. The percentage of reducted problem sizes of CMEC model. (a) Under 99% similarity between the diploid genome, 0.3% of reads can be

constrained together; (b) Problem size is decreased when the difference between the diploid genome is increased.

doi:10.1371/journal.pone.0166721.g020
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Supporting Information

S1 Fig. The software components and flowchart of HapSVAssembler. The short reads are

first aligned to the assembled genome. Subsequently, SNPs and SVs are identified and used to

construct a SNP/SV matrix. Finally, the paternal and maternal haplotypes are separated in

order to reconstruct the diploid genome.
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