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Abstract Mining association rules is an important datamin-
ing technology aiming to find the relationship among items
in the databases. Genetic-fuzzy data mining uses evolution-
ary algorithm, such as genetic algorithm (GA), to optimize
themembership functions formining fuzzy association rules,
and has received considerable success. The increase in data,
especially in big data analytics, poses serious challenges to
GA in the effectiveness and efficiency of finding appropri-
ate membership functions. This study proposes a GA for
enhancing genetic-fuzzy mining of association rules. First,
we design a novel chromosome representation considering
the structures of membership functions. The representation
facilitates arrangement of membership functions. Second,
this study presents two heuristics in the light of overlap and
coverage for removing inappropriate arrangement. A series
of experiments is conducted to examine the proposed GA on
different amounts of transactions. The experimental results
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show that GA benefits from the proposed representation.
The two heuristics help to explore the structures of mem-
bership functions and achieve significant improvement on
GA in terms of solution quality and convergence speed. The
satisfactory outcomes validate the high capability of the pro-
posed GA in genetic-fuzzy mining of association rules.

Keywords Genetic algorithm · Chromosome
representation · Membership function · Fuzzy association
rules · Genetic-fuzzy data mining

1 Introduction

With the rapid increase in data amount, data analytics
emerges to leverage and transform the information hidden in
the data into explicit knowledge. Datamining aims to explore
the data for valuable information and plays a key role in
data analytics (Fayyad et al. 1996a, b; Piatesky-Shapiro et al.
1996). Several data mining technologies have been proposed
to discover knowledge for different purposes, such as clas-
sification (Chang and Lin 2011), clustering (Wagstaff et al.
2001), and association rules (Hong et al. 2008).

Mining association rules is a significant technology of
data mining. It attempts to find the relationship among
items, also known as homogeneous group or affinity group,
from the database and has achieved many successful sto-
ries, e.g., prediction of customer’s behavior in Walmart.
The Apriori algorithm is well known for mining association
rules (Agrawal and Srikant 1994). This method establishes
association rules based on frequent itemsets according to
a user-defined minimum confidence. Srikant and Agrawal
(1996) extended the rules into quantitative association rules,
which can deal with data with quantitative values or cat-
egories. They presented a method similar to the Apriori
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algorithm but requiring an additional preprocess of data
discretization. Recently, fuzzy set theory is introduced to dif-
ferent aspects of association rules (Chan and Au 1997; Hong
and Lee 1996; Kuok et al. 1998). In particular, Hong et al.
(1999, 2006, 2008) proposed the fuzzy transaction data min-
ing algorithm (FTDA) by adopting fuzzy sets to analogue the
values of original data. In the FTDA, quantitative values of
data are transformed into fuzzy values according to member-
ship functions. The results are known as fuzzy association
rules. The FTDA holds the advantages in extension, toler-
ance, and suitability for nonlinear systems.

In view of its recognized capability in global search,
genetic algorithm (GA) is commonly used to find the opti-
mal setting for membership functions. Although GA has
obtained some promising results, there exist two key issues
at the design of GA for fuzzy association rule mining. First,
the common chromosome representation for genetic-fuzzy
data mining comprises the vertex positions but omits the
structure information of membership function. Second, the
relationship betweenmembership functions involves overlap
and coverage. However, it is ordinarily not considered in the
design of GA.

This study aims to address the above two issues and
improve GA on mining fuzzy association rules. Specifically,
we propose a chromosome representation considering the
structure of membership functions and their relationship.
Using the new representation, two heuristics are developed
to eliminate inappropriate arrangement of membership func-
tions and reduce the search space. These enhancements are
helpful for the genetic-fuzzy system tomine association rules
among transactions. This study carries out a series of exper-
iments to examine the performance of the proposed GA in
different data scales.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces association rules and fuzzy association
rules. Section 3 sheds light on the proposed GA. The experi-
mental results are presented and discussed in Sect. 4. Finally,
wedrawconclusions and recommend the directions for future
work in Sect. 5.

2 Mining fuzzy association rules

Association rules infer the coexistence of items and play an
important role in data analytics (Agrawal et al. 1993). An
association rule can be generally expressed by the following
mathematical form:

X → Y, (1)

where X and Y are sets of items. In the famous example of
Walmart, the association rule {bread, cheese} → {milk}
infers “If buying bread and cheese, then buying milk”.

Given an itemset I = {I1, . . . , Im} with m items and a
database D = {T1, . . . , Tn} with n transactions Tk ⊆ I , an
association rule X → Y represents the possibility: if X ⊆
Ti then Y ⊆ Ti . The importance of an association rule is
ordinarily measured by two metrics: support and confidence.

Definition 1 (Support) The support of association rule X →
Y is defined by the probability that X and Y coexist, i.e.,

Support (X → Y ) = P (X ∪ Y ). (2)

Definition 2 (Confidence) The confidence of association
rule X → Y is defined by the probability that Y exists given
X exists, i.e.,

Confidence (X → Y ) = P (Y |X) = P (X ∪ Y )

P (X)
. (3)

The Apriori algorithm (Agrawal and Srikant 1994) is well
known formining association rules. Given theminimum sup-
port supportmin, the Apriori algorithm progressively selects
the large itemsets L = {L1, . . . , Lm} from all candidate
itemsets C = {C1 . . . ,Cm}. The items in the large itemsets
obtained are then arranged as association rules according to
a predetermined minimum confidence con f idencemin. The
time complexity of the Apriori algorithm is O (2m) in that
the size of candidate itemsets C is exponential to the number
of items m in the itemset I .

Hong et al. (1999, 2006) extended association rules by
considering quantity of items and introducing the notion of
fuzzy sets. They proposed constructing fuzzy association
rules using the fuzzy support and fuzzy confidence based
on the membership functions for all m items in the database
D.

LetΥ j,k denote the fuzzy region of k-thmembership func-

tion for item I j . The fuzzy membership value f (i)
j,k of region

Υ j,k is determined by the quantity v
(i)
j of the j-th item in the

i-th transaction Ti .

Definition 3 The fuzzy support of region Υ j,k is calculated
by

FuzzySupport
(
Υ j,k

) = 1

n

n∑

i=1

f (i)
j,k . (4)

If a fuzzy regionΥ j,k hasFuzzySupport
(
Υ j,k

)≥supportmin,
it is then included to the large 1-itemset L1 like the Apriori
algorithm.

For a set of fuzzy regions Υ = {Υ1, . . . , Υp}, its fuzzy
value in transaction Ti is given by the intersection of mem-
bership values f (i)

Υk
, i.e.,
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f (i)
Υ =

p⋂

k=1

f (i)
Υk

, (5)

which is commonly implemented by taking the minimum
function as the intersection operator. Hence, the fuzzy value
of Υ can be computed by

f (i)
Υ = min

1≤k≤p
f (i)
Υk

. (6)

Based on the above equation, the fuzzy support of Υ is
defined as follows.

Definition 4 (Fuzzy support) The fuzzy support of Υ is
defined by

FuzzySupport (Υ ) = 1

n

n∑

i=1

f (i)
Υ . (7)

If the fuzzy support ofΥ is greater than theminimum support
supportmin, Υ is then added to the large p-itemset L p. The
collection of large itemsets continues until L p = ∅.

The fuzzy association rules are built upon the large item-
sets and their fuzzy confidence. Given a large p-itemset
L p = {Υ1, . . . , Υp}, the candidate rules have the following
form:

X → Y, X,Y ⊂ L p and X ∩ Y = ∅, (8)

where X and Y are two disjoint subsets of L p representing
the antecedent and consequent, respectively. The candidate
rules need to be further examined to see if they satisfy the
minimum confidence.

Definition 5 (Fuzzy confidence) The fuzzy confidence of a
candidate rule R : X → Y associated with L p is defined by

FuzzyConfidence (R) = FuzzySupport(X ∪ Y )

FuzzySupport(X)
. (9)

If a candidate rule has fuzzy confidence greater than or equal
to the minimum confidence, then it is qualified as a fuzzy
association rule. Note that all possible candidate rules for the
large itemset L p need to be examined.

As above indicated, the membership functions exert a
significant influence over fuzzy association rules. Optimiza-
tion of membership functions serves as a key task in fuzzy
association rulemining. Several studies propose using evolu-
tionary algorithms to optimize the parameters ofmembership
functions. Hong et al. (1999, 2006) developed GAs for
fuzzy transaction data mining. Experimental results show
that GAs can find appropriate settings for membership func-
tions. In addition, they presented the divide-and-conquer

strategy to improve the efficiency of genetic-fuzzy data
mining (Hong et al. 2008). Cai et al. (2010) adopted
nonlinear particle swarm optimization (PSO) for mining
fuzzy association rules. In the PSO algorithm, a parti-
cle represents all the parameters of membership functions.
Mishra et al. (2011) applied PSO to mine fuzzy frequent
patterns from gene expression data. The initial popula-
tion is generated by the frequent pattern growth method,
and the fitness is defined as the mean-squared residue
score.

Aside from membership functions, the minimum support
and minimum confidence are two important parameters to
be determined. Asadollahpoor-Chamazi et al. (2013) devised
an adaptive strategy for setting the minimum support thresh-
old in a cluster-based GA. Chen et al. (2013) presented a
fuzzy coherent rule mining algorithm, in which the fuzzy
coherent rules are defined by four conditions that are used
to replace the minimum support. Instead of generating rules,
Alcalá-Fdez et al. (2011) used GA to select fuzzy associa-
tion rules in the fuzzy rule-based classification system. Lee
et al. (2014, 2016) devised a radio frequency identification-
based recursive process mining system, where GA evolves
a population of fuzzy rules rather than membership func-
tions to find the relations of process parameters and product
quality. The cost of calculating the support values is another
issue at fuzzy association rule mining. To reduce the com-
putational cost, Chen et al. (2008) proposed dividing the
population into several clusters and calculating only the
support value of representative chromosome of each clus-
ter.

Some studies consider multiple objectives in mining of
fuzzy association rules and formulate it as a multi-objective
optimization problem (Fazzolari et al. 2013). For exam-
ple, Qodmanan et al. (2011) took account of support and
confidence, and Meng and Pei (2012) included linguistic
quantifier and truth in the fitness function. The proposed
methods remove the need to specify the minimum support
and minimum confidence. Minaei-Bidgoli et al. (2013) con-
sidered more objectives in fuzzy association rule mining:
support, confidence, comprehensibility (Wakabi-Waiswa and
Baryamureeba 2008), and interestingness (Liu et al. 2000).
Their multi-objective evolutionary algorithm adopts Michi-
gan approach, which encodes an association rule as a
single chromosome. Antonelli et al. (2014) developed a
multi-objective evolutionary learning scheme for fuzzy rule-
based classifiers with two objectives, namely accuracy and
rule complexity. In the course of evolution, the association
rules and membership function parameters are optimized
concurrently. Rudziǹski (2016) considered the objectives
concerning the root-mean-square error and interpretability,
and adopted Pittsburgh approach for representation of asso-
ciation rules.
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3 Optimization of membership functions

The membership functions play an essential role in mining
fuzzy association rules since they determine the fuzzy value
of a quantity. The setting for membership functions is key
to the expressiveness and interpretability of fuzzy sets and
therefore affects the validity of fuzzy association rules. Find-
ing appropriate membership functions for fuzzy association
rule mining has been formulated as an optimization problem
(Hong et al. 2008).

This study develops a GA using a novel chromosome
representation for fuzzy association rule mining. First, the
parameters of membership functions are represented as a
chromosome. In this study, we propose a novel chromo-
some representation that additionally considers the structure
of membership functions. Then, the GA generates a popula-
tion of chromosomes as the basis of evolution. Bymimicking
the nature evolution, the evolutionary process of GA involves
parent selection, crossover, mutation, and survival selection.
More details about the proposed GA are described below.

3.1 Representation

In genetic-fuzzy mining of association rules, GA is usually
used to find appropriate membership functions for a given
item. The commonmembership functions include triangular,
trapezoidal, Gaussian, and bell functions; in particular, the
triangular function is most widely used due to its simplicity
and effectiveness. This study thus adopts the triangular func-
tion for membership functions, while other shape functions
are also applicable. The fuzzy region associated with a tri-
angular membership function is parameterized by the three
vertices of a triangle. Accordingly, for an itemwith � linguis-
tic terms, a chromosome can be represented by 3� real-valued
genes to determine the � membership functions. Let ci, j be
the j-th parameter of i-th membership function for a given
item. A membership function must satisfy the following two
constraints:

ci,1 ≤ ci,2 ≤ ci,3 (10)

c1,2 ≤ c2,2 ≤ · · · ≤ cl,2. (11)

The first constraint maintains the triangular shape, and the
second constraint ensures the order of linguistic terms. Fig-
ure 1 illustrates a legal membership function that satisfies the
above constraints. Note that the genetic operators may bring
about chromosomes violating the constraints. The genes of
these illegal chromosomes will then be reordered to fix the
problem.

This study proposes a novel chromosome representation
by considering the structure, in addition to the parameters,
of membership functions. That is, a chromosome is com-
posed of two parts: (1) parameters and (2) structure type.

 0

 1

c1,1 c1,2 c2,1 c1,3 c2,2 c3,1 c2,3 c3,2 c3,3

Fig. 1 Example of three membership functions

1 4 2 3 5 7 8 6 9 

1.2 4.5 6.2 2.3 10.8 12.0 0.1 5.7 9.5 45 

0.1 1.2 2.3 4.5 5.7 6.2 9.5 10.8 12.0 

sorting structure 

Fig. 2 Example of chromosome representation

The structure type is indexed according to the deployment
of membership functions. Figure 2 illustrates a chromosome
and its corresponding membership functions. The first 3�
real-valued genes represent the parameters of � membership
functions, and the last integer-valued gene indicates the struc-
ture type. When forming the membership functions, the 3�
parameters are first sorted and then arranged according to the
structure index; for example, in Fig. 2 the lowest value 0.1
corresponds to the first parameter, the second lowest value
1.2 corresponds to the fourth parameter, and so forth.

The number of structure types is dependent upon the
formation of membership functions. For three triangular
membership functions, there exist 93 structure types that sat-
isfy constraints (10) and (11) on shape and order. In addition
to shape and order, two factors are crucial to the membership
functions for fuzzy association rules: coverage and overlap.
The former represents the range covered by all membership
functions for an item, while the latter is measured by the
area covered by twomembership functions. In fuzzy systems,
the interpretability is associated with coverage and overlap
of membership functions. According to coverage and over-
lap, we classify the 93 structure types into four categories in
Table 1. The first category consists of 12 structure types. As
Fig. 3a illustrates, the structure types in this category have
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full coverage and appropriate overlap between membership
functions. The second category includes 8 structure types,
whichhave appropriate overlapbut incomplete coverage.The
third category has the largest number 69 of structure types.
Although these structure types can achieve full coverage,
the overlap between membership functions is inappropriate.
For example, the four structure types in Fig. 3c incur need-
less overlap of the first and third membership functions. The
fourth category comprises 4 structure types with partial cov-
erage and inappropriate overlap.

Introducing structure type to chromosome representa-
tion facilitates development of heuristics for filtering out
improper membership functions. This study proposes two
heuristics considering coverage and overlap in membership
functions:

– Coverage:

ci−1,1 ≤ ci,1 ≤ ci−1,3 (12a)

Table 1 Classification of membership function structures

Coverage

Full Partial

Overlap

Appropriate 12 8

Inappropriate 69 4

ci+1,1 ≤ ci,3 ≤ ci+1,3 (12b)

– Overlap:

ci,3 ≤ ci+2,1 (13)

The above inequalities secure the full coverage and appropri-
ate overlap. Among the 93 structure types, only 12 structure
types of the first category are selected according to the two
heuristics, which guarantee proper arrangement of member-
ship functions.

 0

 1

1 2 4 3 5 7 6 8 9
Type 9

 0

 1

1 2 4 3 7 5 8 6 9
Type 12

 0

 1

1 4 2 3 5 7 8 6 9
Type 45

 0

 1

1 4 2 5 3 7 6 8 9
Type 49

 0

 1

1 2 3 4 5 7 6 8 9
Type2

 0

 1

1 2 3 4 7 5 8 6 9
Type 5

 0

 1

1 4 2 3 5 6 7 8 9
Type 43

 0

 1

1 4 2 5 3 6 7 8 9
Type 48

 0

 1

1 2 4 5 6 7 8 3 9
Type 18

 0

 1

1 2 7 3 4 5 6 8 9
Type 33

 0

 1

1 4 2 7 5 3 8 6 9
Type 63

 0

 1

1 4 7 2 5 8 3 6 9
Type 74

 0

 1

1 2 3 7 4 5 6 8 9
Type 6

 0

 1

1 2 3 7 4 5 8 6 9
Type 7

 0

 1

1 2 4 5 6 3 7 8 9
Type 16

 0

 1

1 4 2 5 6 3 7 8 9
Type 51

(a) (b)

(c) (d)

Fig. 3 Example structure types of the four categories. a Category I, b category II, c category III, d category IV
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The proposed representation using the above heuristics
holds two significant advantages. First, it can effectively filter
out the structures inappropriate for coverage and overlap of
membership functions. Second, the two heuristics decrease
the number of structure types and thus reduce the search space
of GA. These advantages are beneficial for the convergence
speed and solution quality of the GA.

3.2 Genetic operators

The genetic operators of GA include parent selection,
crossover, mutation, and survival selection. The parent selec-
tion operator picks two chromosomes from the population as
the parents for subsequent reproduction. In this study, we
adopt the well-known k-tournament selection, which picks
as a parent the best of k chromosomes randomly selected
from the population. Performing the tournament selection
twice yields a pair of parents.

The crossover and mutation operators generate new can-
didate solutions, namely offspring, by exchanging parental
information and slightly altering the composition, respec-
tively. This study employs the max-min arithmetical (MMA)
crossover and creepmutation that are widely used in genetic-
fuzzy datamining (Herrera et al. 1997;Hong et al. 2008). The
MMA crossover generates four candidates in different ways:
The first two are the maximum and the minimum of the two
parents, respectively; and the other two are produced by the
whole arithmetic crossover. The best two of the candidates
are selected as offspring. The creep mutation probabilisti-
cally changes some parameters to random values. As for
structure, the type number is mutated by random resetting.

The survival selection determines the chromosomes sur-
viving into the next generation. The principle “survival of
the fittest” is generally used in the survival selection. In this
study,weutilize the (μ + λ) survival selection,which consid-
ers both parent and offspring populations in the competition
for survival.

3.3 Fitness evaluation

The fitness function guides the search direction and strongly
affects the performance of GA. For mining fuzzy associa-
tion rules, the fitness function usually uses the fuzzy support
according to the largest itemset. However, this method
requires iterative calculations and is hard to be paralleled.
Hong et al. (2008) proposed using the divide-and-conquer
strategy to address this issue. Specifically, they used separate
populations for the items and considered the fuzzy support
of large 1-itemset L1 in the fitness evaluation. In addition,
the fitness function takes the coverage and overlap of mem-
bership functions into account.

In view of the above advantages, we utilize the fitness
function proposed byHong et al. (2008). For a given item, the

fitness of a chromosome is evaluated by the fitness function
based on fuzzy support, overlap, and coverage.

Definition 6 (Overlap factor) The overlap factor of chromo-
some Ck is defined by

Overlap (Ck) =
∑

i< j

(
max

(
ovlratio

(
Υi , Υ j

)
, 1

) − 1
)

(14)

with

ovlratio
(
Υi , Υ j

) = The area covered by both Υi and Υ j

min
(
ci,3 − ci,2, c j,2 − c j,1

) .

(15)

The ratio of overlap ovlratio
(
Υi , Υ j

)
is determined by the

proportion of the area covered by bothmembership functions
to the smaller of (ci,3 − ci,2) and (c j,2 − c j,1), which stand
for the right half of the left membership function and the
left half of the right membership function, respectively. The
overlap factor is nonnegative, and its best value is zero. Note
that zero overlap factor indicates adequate overlap, instead
of nonoverlap, of all pairs of membership functions.

Definition 7 (Coverage factor) The coverage factor of chro-
mosome Ck is defined by

Coverage (Ck) = max (I )

range (Υ1, . . . , Υl)
. (16)

Coverage factor is inversely proportional to the range covered
by all membership functions. Therefore, a small coverage
factor is preferred, and its best value is 1 for full coverage of
the item’s quantity.

The fitness evaluation considers the fuzzy support as well
as the suitability. The suitability is defined as the sum of
overlap and coverage factors. Formally, the fitness value of
chromosome Ck is computed by

f (Ck) =
∑

X∈L1
FuzzySupport (X)

Overlap (Ck) + Coverage (Ck)
. (17)

Note that the fitness function considers only the large 1-
itemset L1 obtained from the membership functions set Ck .
The exclusion of L>1 is beneficial for balance of computa-
tion time and quality in calculating fuzzy support (Hong et al.
2008).

As an example, the fitness value of the chromosome in
Fig. 2 is calculated as follows. First, the overlap ratios for the
three membership functions are computed using (15):

ovlratio (Υ1, Υ2) = 4.5 − 1.2

min(4.5 − 2.3, 5.7 − 1.2)
= 1.5
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Table 2 Parameter setting

Parameter Value

Representation Real numbers (parameters)+ integer (structure)

Parent selection 2-tournament

Crossover MMA (d = 0.35)

Crossover rate pc = 0.8

Mutation Creep (ε = 3)

Mutation rate pm = 0.01

Survival selection μ + λ

Population size 50

#Generations 500

ovlratio (Υ1, Υ3) = 0

min(4.5 − 2.3, 9.5 − 6.2)
= 0

ovlratio (Υ2, Υ3) = 10.8 − 6.2

min(10.8 − 5.7, 9.5 − 6.2)
= 1.39

Using (14), we can obtain the overlap factor

Overlap (Ck) = (max(1.5, 1) − 1) + (max(0, 1) − 1)

+ (max(1.39, 1) − 1)

= 0.89

The coverage factor is calculated by (16):

Coverage (Ck) = 12.0

12.0 − 0.1
= 1.0084

Suppose the item exists in five transactions with quantities
1, 5, 8, 11, and 6. We use (4) to calculate the fuzzy support
of each region:

FuzzySupport (Υ1) = 1

5

(
1 − 0.1

2.3 − 0.1
+ 0 + 0 + 0 + 0

)

= 0.08

FuzzySupport (Υ2) = 1

5

(
0 + 5 − 1.2

5.7 − 1.2
+ 10.8 − 8

10.8 − 5.7

+ 0 + 10.8 − 6

10.8 − 5.7

)

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 50  100  150  200  250  300  350  400  450  500

Fi
tn

es
s

Generations

GA
GA93
GA12  4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 50  100  150  200  250  300  350  400  450  500

Fi
tn

es
s

Generations

GA
GA93
GA12

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 50  100  150  200  250  300  350  400  450  500

Fi
tn

es
s

Generations

GA
GA93
GA12  4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 50  100  150  200  250  300  350  400  450  500

Fi
tn

es
s

Generations

GA
GA93
GA12

(a) (b)

(c) (d)

Fig. 4 Progress of MBF against generations for GA, GA93, and GA12 on different datasets. a 10k transactions, b 30k transactions, c 50k
transactions, d 90k transactions
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= 0.47

FuzzySupport (Υ3) = 1

5

(
0 + 0 + 8 − 6.2

9.5 − 6.2
+ 1 + 0

)

= 0.31

Given a minimum support 0.25, the large 1-itemset is
L1 = {Υ2, Υ3} in that Υ2 and Υ3 have fuzzy support greater
than 0.25. Summing their fuzzy support values yields

FuzzySupport (Ck) = 0.47 + 0.31 = 0.78

Hence, the fitness value

f (Ck) = 0.78

0.89 + 1.0084
= 0.41

As aforementioned, this study proposes two heuristics for
the structure types considering overlap and coverage. The
two heuristics guarantee that the coverage factor is smaller
than max(I )

cl,3−c1,1
; in addition, they help to eliminate the gap

between membership functions and avoid strong overlap.

4 Experimental results

This study conducts a series of experiments to examine the
performance of the proposed GA on optimization of mem-
bership functions for fuzzy association rule mining. In the
experiments, we investigate the effects of the proposed chro-
mosome representation and the twoheuristics about coverage
and overlap. The test algorithms include GA (Hong et al.
2008), GA93 (GA using the novel representation), and GA12

(GA93 applying the two heuristics), where the subscripts 93
and 12 account for the numbers of structure types. Table 2
summarizes the parameter setting for the test algorithms. The
minimum support is set to 0.04. Different data sizes are tested
in the experiments, including 10, 30, 50, 70, and 90k transac-
tions, each of which consists of 64 items (Hong et al. 2008).
Each experiment includes 30 independent runs of each algo-
rithm.

Figure 4 shows the progress of mean best fitness (MBF)
over generations for the test algorithms on different datasets.
According to the results, GA using the proposed representa-

Table 3 MBF and p-values for
GA, GA93, and GA12 on the
data of different sizes

#Tr. (k) MBF p-value

GA GA93 GA12 GA:GA93 GA:GA12 GA93:GA12

10 8.16 8.40 8.47 +2.64E−14 +6.16E−23 +1.56E−03

30 8.14 8.80 8.89 +4.86E−34 +1.69E−47 +1.51E−05

50 8.18 9.09 9.16 +7.27E−47 +6.88E−49 +1.78E−04

70 8.15 8.73 8.82 +2.15E−30 +4.22E−45 +1.27E−04

90 8.15 8.75 8.88 +9.69E−27 +2.72E−46 +1.10E−06

The p-values account for the results of t-test on the MBF obtained from X and Y algorithms (denoted by
X :Y ), where positive p-values indicate that Y is superior to X . Boldfaced MBF marks the best result among
the three algorithms; boldfaced p-values denote the statistical significance with confidence level α = 0.01

Table 4 Overlap, coverage,
suitability, and fuzzy support of
membership functions obtained
from GA, GA93, and GA12 on
the data of different sizes

#Tr. (k) Algorithm Overlap Coverage Suitability Fuzzy support

10 GA 23.23 64.20 87.43 11.02

GA93 6.92 64.13 71.05 9.27

GA12 0.17 64.10 64.27 8.51

30 GA 23.01 64.16 87.17 10.96

GA93 5.76 64.12 69.88 9.57

GA12 0.18 64.11 64.28 8.93

50 GA 22.74 64.18 86.92 10.98

GA93 5.93 64.13 70.06 9.89

GA12 0.13 64.10 64.23 9.19

70 GA 23.54 64.20 87.74 11.05

GA93 6.48 64.13 70.60 9.58

GA12 0.14 64.10 64.24 8.85

90 GA 23.60 64.18 87.78 11.05

GA93 7.10 64.13 71.23 9.67

GA12 0.13 64.10 64.23 8.91

Boldface marks the best result among the three algorithms
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Fig. 5 Variation of overlap (top), coverage (middle), and fuzzy support
(bottom) of membership functions obtained from GA, GA93, and GA12
among 64 items on the data of 10k (left) and 90k (right) transactions.

a Overlap (10k transactions), b overlap (90k transactions), c coverage
(10k transactions), d coverage (90k transactions), e fuzzy support (10k
transactions), f fuzzy support (90k transactions)

tion, i.e., GA93 and GA12, converges faster than the original
GA does, validating the effectiveness of the new representa-
tionon improving the search efficiencyofGA. In addition, the
faster convergence of GA12 than GA93 indicates the advan-
tages of the two heuristics.

Table 3 presents the MBF obtained from the three test
algorithms for all 64 items. The table also lists the p-values
of one-tailed t-test on theMBF values.With confidence level
α = 0.01, the t-test results indicate that GA using the new
representation, namely GA93 and GA12, achieves signifi-
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Fig. 6 Comparison ofmembership functions obtained fromGA,GA93
and GA12 on the data of 10k (left), 50k (center), and 90k (right) trans-
actions. a GA (10k transactions), b GA (50k transactions), c GA (90k

transactions), d GA93 (10k transactions), e GA93 (50k transactions),
f GA93 (90k transactions), g GA12 (10k transactions), h GA12 (50k
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cantly higher fitness than the original GA does; meanwhile,
GA12 significantly outperforms GA93 on all datasets. These
superior outcomes validate the benefits of the representation
and two heuristics.

Next, we investigate the influences of the proposed repre-
sentation and heuristics on the overlap, coverage, and fuzzy
support of membership functions obtained. As Table 4 indi-
cates, GA benefits from the two heuristics in coverage and
overlap: GA93 and GA12 obtain better coverage and over-
lap than GA does. In addition, GA12 gains the best coverage
and overlap among the three test algorithms. Figure 5 fur-
ther shows that GA12 can find membership functions with
good overlap and converge faster than other approaches do.
In general, GA12 and GA93 achieve membership functions
with better suitability; nonetheless, they lead to lower fuzzy
support than GA. The results on Table 4 and Fig. 5 reflect
the trade-off between suitability and fuzzy support. The two

heuristics impose constraints on structure types for high
suitability; on the other hand, they discourage sacrificing
suitability for fuzzy support. As Fig. 6 shows, GA gains the
highest fuzzy support at the cost of suitability; in particular,
the overlap of membership functions obtained from GA is
so high that the fuzzy regions become trivial. By contrast,
GA93 and GA12 maintain adequate overlap and full cover-
age while pursuing high fuzzy support, which results in more
reasonable membership functions and better fitness.

5 Conclusions

This study proposes a GA for optimization of membership
functions for fuzzy association rule mining. For the GA,
we design a novel chromosome representation that consid-
ers structure types in addition to parameters of membership
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functions. Based on the new representation, two heuristics
are developed for securing the coverage and moderating the
overlap ofmembership functions. The heuristics can filter out
inappropriate arrangement of membership functions; more-
over, they help to reduce the search space. For example,
the number of structure types is reduced from 93 to 12 for
three membership functions; that is, 81 inappropriate struc-
ture types are filtered out in light of coverage and overlap.

A series of experiments is carried out to examine the per-
formance of the proposed GA. The experimental results on
10–90k transactions show that the proposed GA achieves
significant performance improvement. The new representa-
tion and two heuristics enhance the coverage and overlap
of membership functions; in addition, they improve the fit-
ness value and convergence speed of GA. These preferable
outcomes show the utility of the proposed chromosome rep-
resentation and heuristics for the GA. They also validate the
effectiveness and efficiency of the GA in finding appropriate
membership functions for mining fuzzy association rules.

Future work may further expand the use of the struc-
ture types and design of local search operator. The structure
type reflects the relationship between membership functions
and facilitates designing strategies for their arrangement. In
addition to overlap and coverage, advanced heuristics are
promising for enhancing the performance of GA on fuzzy
association rule mining.
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