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Recent Advances of Computational Intelligence
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Abstract—Music exerts a ubiquitous influence on human
cultures and daily lives. Composing music is deemed rather
complicated because it involves various factors (e.g., instruments,
melodies, percussions, and chords) needed to be well coordinated
for creating harmony, tension, and emotions. Computational
intelligence (CI) has shown its effectiveness in solving complex
problems, such as optimization, data modeling, and reasoning.
In light of the advantages of CI, a considerable amount of
research has been proposed to incorporate CI techniques into
music composition applications. The literature shows that evo-
lutionary computation and neural network are very popular
in this research area. The present survey reviews the recent
studies on music composition using CI techniques, to reflect
the methodological advances in the past decade. Particularly,
this survey stresses two trends: 1) an increasing interest in deep
learning for music composition and 2) the deepened engagement
of synergizing domain knowledge, music data, and human in-
teraction. In addition, we provide a taxonomy to classify these
studies and discuss the research challenges and future directions.

Index Terms—Computational intelligence, music composition,
neural network, deep learning, evolutionary computation, genetic
algorithm.

I. INTRODUCTION

Automatic music composition has been investigated since
the 1980s. The studies demonstrated that music composition
can be automated through computational intelligence (CI)
techniques. The three pillars of CI, i.e., evolutionary com-
putation (EC), neural network (NN), and fuzzy system (FS),
have been adopted in various musical tasks. The CI-based
music composition approaches are shown to be competent
at diverse music composition tasks and continue to thrive
nowadays. More specifically, the existing CI studies pertain
to different types of composition tasks, such as monophonic
melodies, polyphonic melodies, chords, rhythm, accompani-
ment, and multitrack music. Monophonic melody composition
plays a major role in music composition studies, which usually
concerns a genre-specific or general-purpose composition task.
Polyphonic melodies composition is commonly associated
with four-part harmonization and counterpoint, featuring the
exquisite coordination of multiple parallel melodies. Most
of the melody composition tasks rely on predefined chords.
By contrast, chords composition deals with the selection,
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progression, and transition of chords that are suitable for a
given melody or sometimes a desired vibe [1]–[6]. Rhythm
generation involves composing for the percussive instruments
[7]–[11] and assigning durations to the notes of a melody [12]–
[14]. Accompaniment composition focuses on the addition
of backing parts, which may consist of harmonization and
percussion, for a given melody [15], [16]. Finally, multitrack
music composition attempts to compose melody, chord, and
percussion, where these music components can be composed
track-by-track or all at once.

Regarding the methodologies for music composition, EC
and NN are usually used as the protagonist, whereas FS is
seldom used. Composing music is commonly formulated as an
optimization problem in EC studies; by contrast, it is mainly
treated as a data modeling problem in NN studies. From the
perspective of evolutionism, the task of music composition can
be formulated as

x∗ = argmax
x∈X

f(x), (1)

where x denotes a composition and f is the music quality
evaluator, also known as the fitness function in evolutionary
algorithms (EAs) [17]. In the formulation, the aim of compos-
ing music is to search the solution space X for an arrangement
of musical events x∗ (e.g., music notes) which maximizes
the response of f . Here the evaluator f is a prerequisite for
composing music and needs to be carefully designed in order
to satisfy human’s sensation or resemble esthetics. Designing
such a fitness function f to quantify and approximate human
esthetics poses a formidable challenge to evolutionary com-
position approaches. The strategies for fitness evaluation can
be categorized into three types: 1) interactive evaluation, 2)
rule-based evaluation, and 3) learning-based evaluation [18].
First, interaction-based fitness evaluation requires a human
evaluator to listen and judge the quality of candidate music
in the evolution cycles. Interaction is a direct way to acquire
human feedback; however, this type of systems commonly
suffer from human fatigue caused by repeated evaluation
and listening to poor-quality candidates [18], [19]. Second,
rule-based evaluation usually considers music knowledge to
automate evaluation of compositions. A recent trend in this
category is the increasing sophistication of evaluation rules
[20]–[23]. The meticulously crafted rules have enabled EAs
to compose music of different genres. Third, learning-based
evaluation uses an evaluation model to measure the fitness
value of a candidate. This type of evaluation approaches
embraces various musical features [24]–[27].
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From the perspective of connectionism, a music composi-
tion x can be generated by

x = f∗(z) with f∗ = argmin
f∈F

L(f), (2)

where L is the loss function and f represents a neural network
model that transforms an arbitrary vector z to a composition
x. Based on this formulation, a prerequisite for composing
music is to obtain the model f∗, aiming to minimize the loss,
e.g., the discrepancy of probability distribution between model
and training data. After model training, f∗ is then used to
transform a randomly (or heuristically) sampled vector z into
a music composition. A major challenge in these NN-based
approaches is to design and train the model f∗. The existing
studies commonly predetermine the neural architecture and
confine the search space F as a parameter search to be solved
by the training algorithm. The early NN-based composition
systems adopted vanilla and shallow models, such as long
short-term memory (LSTM) network with a single hidden
layer [28]. Recently, the research on deep learning (DL)
exhibited the potential of complex NNs for modeling music
data. The advances of NN for composing music are highly
related to the innovations in model architecture and data
representation. The advanced model architectures, such as
generative adversarial network (GAN) [29]–[32], are used to
learn the mapping from a point in the input space to a piece
of music. Moreover, variational autoencoder (VAE) is adopted
to learn the transition among music pieces [10], [33]–[35].
Bidirectional recurrent network [36]–[38] and transformer
[39]–[41] can enhance the capability of NNs in processing
long music sequences. Novel data representations are further
proposed to encode musical events more efficiently. In contrast
to conventional MIDI-like representations, the newly proposed
data representations benefit from music domain knowledge
[40], [41] and hierarchical structure [35]. These representa-
tions facilitate capturing the patterns of interest for NNs.

This survey aims to provide a collective view of up-to-
date EC and NN techniques and advances in automatic music
composition. The FS techniques are excluded because they
are less used as the major role but an auxiliary tool for
music composition, such as expressiveness control [42], sub-
function of fitness evaluation in evolutionary composition
[43], and hyper-heuristics in memetic composition [44], [45].
The survey is focused on the systems for symbolic music
composition proposed in the past decade. There have been
some surveys on computer music, algorithmic composition
[46]–[48], artificial intelligence-based composition [49]–[52],
and CI-based composition [18]. In addition, some articles
introduce one or few techniques for composing music, such as
DL [53]–[56] and EC [57]–[61], or compare these techniques
[22], [62]–[64]. Liu and Ting [18] presented a comprehensive
review on CI music composition techniques from a musical
perspective, mainly on the role of the music content that a
system produces. Nonetheless, the research profile of CI-based
music composition has been considerably changed since then.
First, due to the successes of DL, the interest in using it
for music composition is significantly increased (see Fig. 1).
Second, synergy of music knowledge, data, and human inter-
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Fig. 1. Number of papers on EC and NN for music composition reviewed
in this survey.

action turns to be a tendency. As Fig. 2 indicates, modern
composition systems usually involve more than one factor.
To reflect the recent advances, the present paper conducts a
review and investigation into various types of EC and NN/DL,
research challenges and progress in music composition. In
addition, this survey presents a broader-level taxonomy to
categorize the NN-based music composition systems based
on their sampling strategies: 1) sampling from input space,
2) sampling from latent space, and 3) sampling from output
space.

The remainder of this paper is organized as follows. Sec-
tion II introduces the existing data representations for music
composition. Section III recapitulates the recent composition
methods based on EC. Section IV reviews the NN and DL
related music composition methods. Section V elaborates on
our analysis and discussion for future research directions.
Finally, concluding remarks are given in Section VI.

II. DATA REPRESENTATION

Music content can be saved in audio or symbolic form.
The former records the continuous variations of audio states,
while the latter encodes music as a sequence of events. Audio
representations are often used to handle the tasks related to
sound texture, e.g., audio synthesis [65] and timbre modulation
[66]. On the other hand, symbolic representations, especially
MIDI-based encodings and pianoroll, are adopted largely in
automatic music generation studies [18], [50], [55], [64].

Musical instrument digital interface (MIDI) provides a
standard of storing and processing musical data in a symbolic
manner. Various MIDI-like representations are used to encode
musical events in a sequential order. As the musical events
are encoded linearly to temporal progression, the MIDI-like
representations are also known as linear representations in EC
and event-based representations in NN. A common strategy
in EC studies is to represent a monophonic melody as an
integer string, in which a note’s pitch and duration form a
melodic unit. Figure 3 exemplifies a music excerpt and its
corresponding linear representation, where note pitches can be
encoded with absolute values, relative values [67], or harmonic
roles [68]. On the other hand, the event-based representation
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resembles the concept of linguistic data encoding by pre-
defining an event set as the vocabulary. The size of an event
set varies with the pitch range, velocity range, and temporal
resolution. Using a feasibly defined event set, a music excerpt
can be represented as a series of musical events. Figure 4b
illustrates a piece of sheet music and its corresponding event-
based form. There have been some event-based representations
proposed to enhance long sequence generation; for example,
compound word representation wraps multiple elementary
events into a single token [41].

Pianoroll is another typical representation for music data. A
pianoroll is usually represented as a two-dimensional matrix
in which one dimension is aligned with the pitch range and
the other dimension is associated with temporal progression.
A binary matrix is capable of encoding the presence of onset
events, while an integer or real matrix can further indicate
the velocity of onset events. Figure 4c gives an example of
pianoroll representation. A pianoroll can be extracted and dis-
assembled into multiple matrices to encode music information
with respect to channels [69], analogous to the RGB channels
in images.

Tree-based representations are developed to further specify
the hierarchical structure of music. These representations
encode musical information by recursively dividing it into
low-level structures, e.g., phrases, bars, and notes, until the
temporal unit is reached. Figure 5 illustrates a tree-based

representation for a short excerpt. This type of representation
is a generic strategy to represent a piece of candidate music in
genetic programming (GP) [13], [70]–[72]. Wang et al. [35]
demonstrated that NN is also able to cooperate with a tree-
based data representation.

In contrast to the above representations that directly en-
code a music work, EC can evolve indirect representations
to compose music. Specifically, GP evolves different types
of programs to produce music: tree-based programs [73]–
[77], graph-based programs [78], and sequential programs
[24], [79], [80]. Grammatical evolution (GE) was used to
evolve grammar rules [81]–[83] for generation of music pieces.
Evolving recurrent neural networks (RNNs), from which mu-
sic is sampled, exerts the synergy of EC and NN [84], [85].

Audio representations such as spectrogram are sometimes
used in music composition systems. Wang and Yang [86]
proposed the PerformanceNet model which generates the
spectrogram of its input pianoroll. Wei et al. [87] presented a
drumming system that generates drum patterns suitable for an
input spectrogram. Additionally, Huang et al. [88] trained a
CNN to identify the compatibility of candidate excerpts given
their spectrograms.

III. EVOLUTIONARY COMPUTATION BASED COMPOSITION

Evolutionary algorithms (EAs) are population-based, quality
driven, and stochastic optimization algorithms that follow the
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Fig. 3. Example linear representation for music pieces.
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Fig. 4. Pianoroll and event-based representations of the beginning excerpt of
Sonatina Op.20 No.1 Friedrich Kuhlau.

notion of natural selection and evolution theory. The powerful
searching ability of EAs has received many successes in
diverse types of optimization problems. In the EC studies,
music composition is ordinarily formulated as a combinatorial
optimization problem aiming for a combination of music notes
that achieves satisfactory quality based on the given evaluation
measure. The solution representation, reproduction operators,
and evaluation function are three essential parts that form
an eligible EA. The two former components are generally
designed jointly, while the evaluation function can be designed
separately. This section reviews music representations and
evolutionary mechanisms, followed by the fitness evaluation
strategies.
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A. Algorithms

There have been dozens of EAs, mainly genetic algorithm
(GA), presented for music composition [18]. In addition to
GA, particle swarm optimization (PSO) [89], [90], ant colony
optimization (ACO) [91]–[94], and differential evolution (DE)
[95]–[97] have been developed for generating compositions. In
light of the targets of evolutionary manipulation, PSO and DE
are similar to GA in that each individual in the population
represents a music piece. By contrast, the ACO systems
generate music pieces through a constructive procedure. The
GP and GE systems evolve either music pieces or systems that
generate music pieces.

In addition to the canonical EAs inspired from Darwinian
evolution, memetic algorithms (MAs) are found useful for mu-
sic composition. MAs implement Lamarckian or Baldwinian
theory of biological evolution, which evaluate candidate solu-
tions according to their genetic information or traits explored
by local search, heuristic search, or metaheuristic search
[98]. Acampora et al. [44] proposed a hybrid intelligence
model which combines fuzzy control and several metaheuristic
algorithms for automatic harmonization of figured bass. The
problem considers composition for a four-voice setting, i.e.,
soprano, alto, tenor, and bass. Given a bass line and its
corresponding figures (chord information), the problem-solver
is asked to complete the other voices in compliance with
harmonization rules, e.g., the guidelines in Johann Joseph
Fux’s Gradus Ad Parnassum [99]. The hybrid model employs
fuzzy control as the conductor that triggers metaheuristic-
based optimizers in different stages of evolution. A follow-up
study was proposed by Muñoz et al. [45] using a hybridization
model for solving the unfigured bass problem, which is similar
to the figured bass problem but provides only the bass without
figures. Mańdziuk et al. [100] applied an MA that integrates
a modified GA and four music-related local heuristics for
composing romantic classical piano solos.

B. Fitness Evaluation

Music quality assessment is a challenging task in evolu-
tionary music composition. As a quality-driven optimization
method, EAs manipulate the population to pursue improve-
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ment of fitness values, where the search direction is guided by
the results of fitness evaluation. A precise evaluation function
is advantageous to the efficiency and effectiveness of EAs.
Hence, various fitness evaluation methods have been proposed
for assessment of music. These methods can be categorized
into three types [18]: interactive evaluation, rule-based evalua-
tion, and learning-based evaluation. Figure 6 presents a general
framework of existing evolutionary composition systems. The
following subsections will describe and discuss these three
types of fitness evaluation. Tables I–III further summarize the
reviewed studies as per the three categories.

1) Interactive Fitness Evaluation: The general goal of
evolutionary music composition is to automatically generate
music that maximizes the satisfaction of audience. To achieve
this goal, one intuitive way is to introduce human’s feedback
into fitness evaluation. Interactive evolutionary composition
enables this composition method and is known for its ability
of composing customized music. Based on the feedback from
the user, interactive evolutionary algorithms search for the
melodies that fit the user’s preference. In general, the human
evaluator is asked to rate, score, or compare the generated
music pieces. Different from the questionnaire-like feedback,
Moroni et al. [101] developed a system that allows users
to interact with the evolutionary composing system through
a graphic pad. With novel interaction media, Unehara et
al. [102] adopted electroencephalography (EEG) to measure
human responses for evaluation of candidate music.

The interactive genetic algorithms (IGAs) provide a way
hinged on human aesthetics to evaluate the generated com-
positions; however, they are plagued with the issues of high
evaluation latency, user fatigue, and inconsistent evaluation.
More specifically, the evaluation process based on interaction
can be much slower than automatic evaluation because human
evaluators must listen through all the candidates enquired.
The high evaluation latency further lengthens the time of
evolutionary process. Evaluator’s patience can be worn down
by the long period of search and the numerous evaluation
requests. Moreover, human fatigue and loss of attention are
inevitable and hardly tractable in the interactive scenario,
causing inconsistent and low-fidelity evaluation.

Some studies propose reducing the workload at evaluation
to mitigate the human fatigue issue (see Table I). One way
is to cluster the population into several groups according to
a similarity metric [103], [104] and then evaluate only the
centroid of each cluster. This approach can substantially de-
crease the amount of music works for evaluation. Nonetheless,
designing a similarity metric conforming to human perception
can be challenging as well. Evaluating only fragments instead
of a full-length composition can also reduce the evaluation
time and help to alleviate human fatigue [105]–[108]. After
evolution, the short pieces with highest fitness values may be
concatenated into a complete piece of music.

Another issue of interactive evaluation occurs at the be-
ginning of evolutionary process: the low-quality and nearly
random music pieces are highly likely to harass the evaluators
and waste their time and effort. The techniques for automatic
preliminary quality check involve heuristics [76], [78], [109],
surrogate models [76], [110]–[112], and their combination

[13]. These methods filter out low-quality candidates using
heuristic functions or surrogate models. Preventing the system
to generate low-quality music can also save human evaluation.
The methods based on this notion include smart initialization
[2], [113], [114], heuristic operators [105], [115]–[117], and
searching in high-level feature spaces [11], [90].

Table I summarizes the studies on interactive evolutionary
composition, in which the approaches for addressing the high
evaluation cost and human fatigue problem can be categorized
into four major techniques:

1) clustering candidates and evaluating only their represen-
tatives;

2) evolving merely subcomponents and assembling good
ones to complete the whole music piece;

3) evaluating or filtering out low-quality candidates by
heuristics or surrogate models;

4) incorporating smart initialization or heuristic operators
to avoid generating low-quality candidates.

2) Rule-Based Fitness Evaluation: Over a long period of
time, musicians have accumulated extensive knowledge and
experience in music composition. Inclusion of such profes-
sional opinions into EAs can improve the efficiency and
quality of fitness evaluation. A significant approach is to trans-
form music knowledge into computable functions or rules. In
this regard, the guidelines in music theory suggest the dos
and don’ts for composition of a wide range of music types.
However, only a few guidelines are well-defined because
music knowledge is delivered from generation to generation
in natural languages, which might be recorded or explained
imprecisely.

Counterpoint and four-part harmonization, two music forms
prevailing in the pre-Baroque and Baroque periods, strictly
follow the regulated rules. Harmonization is a main task
in counterpoint and four-part harmonization. It focuses on
composition of polyphony1. In algorithmic composition, har-
monization is generally formulated as a constraint satisfac-
tion problem: given the melody of one or multiple parts,
the remaining parts must be completed in compliance with
composition rules. The counterpoint [99] and voice leading
[128] are the disciplines related to the composition rules. The
principle of counterpoint is to maintain consonance among
parts; for instance, the notes of different parts that occur at
the same moment ordinarily need to be perfect consonant
or imperfect consonant to the others. Voice leading states
a fundamental idea that every part needs to be reasonably
singable to vocalists. For example, a rule may define that,
within a single voice, the pitch range is confined and the
pitch interval of consecutive notes must be small. However,
some of the rules could be mutually incompatible. To address
this issue, several recent studies employ multiobjective EAs
to search for the trade-off solutions [72], [129], [130]. Instead

1The term polyphony is interpreted differently in music taxonomy and
music information retrieval. Regarding music genres, polyphony typically
refers to the type of music that features the existence of parallel melodies.
Each of the melodies is self-contained and yet harmonic to the others. In music
information retrieval, polyphony usually describes the music data in which at
least one moment, multiple music notes are played together or overlap with
one another.
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of codifying explicit evaluation rules, Chang and Chen [92]–
[94] proposed AntsOMG which embeds music knowledge in
the edge costs to manipulate the transition probabilities of
compositional actions. Such a system demonstrates a novel
way to incorporate music knowledge in EA.

Table II lists the rule-based evaluation associated with
harmonization in the first category. These studies aim to
generate the remaining parts in harmony with the given parts.
Development of figured bass and unfigured bass belongs to this
kind of problem, where the bass voice is given and the other
three parts (soprano, alto, and tenor) need to be generated. A
difference lies in that figured bass problem provides comple-
mentary information of chords in problem definition, whereas
the unfigured bass does not. Existing studies have shown that
EAs are capable of handling harmonization, e.g., four-part
harmonization [22], [131]–[134], species counterpoint [75],
[93], [94], [112], fugue [135], with the rule-based fitness
evaluation functions.

In contrast with polyphony, monophony in music taxonomy
represents the type of music that has a single dominant melody,
while the other parts together with harmonic chords form its
accompaniment. Algorithmic monophony composition usually
involves one or some of the following goals:

1) composing single or multiple melodies given chord
progressions [21], [43], [68], [136], [137] or reversely
[3], [138];

2) composing melody of a specific genre [21], [68], [139]–
[141];

3) composing melody of fused genres [20], [142];
4) composing accompaniment that fits a chord progression

or melody [7], [15], [21].

In these tasks, compiling the compositional convention and
music knowledge into the evaluation rules has always been a
major challenge. As the second and third categories of Table II
indicate, although the evaluation rules vary a lot from task to
task, most of the evolutionary systems consider consonance
and dissonance between the melody and chords in order to
manipulate the musical texture of tension and resolution.

As for the implementation of rule-based fitness evaluation,
both unweighted and weighted rules are considered in the
studies [8], [143]. The fitness function using unweighted rules
evaluates individuals by matching the individuals with the
rules, and its output fitness value is usually related to the
number of rules matched. By contrast, the fitness function
using weighted rules additionally considers the weights of
matched rules. The fitness function using unweighted rules
is easier to set because determining weights for the rules
itself turns out to be a professional task. On the other hand,
the systems using weighted rules allow users to specify the
importance of each rule and guide the optimizer to focus
more on the highly weighted ones. The disadvantage of rule
matching is the tendency of forming tier-structured fitness
landscape. A rule that discourages huge pitch interval between
notes, for instance, may be unable to distinguish a huge
interval from a very huge interval. Therefore, designing the
rules that can express the degree of compliance beyond binary
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TABLE I
INTERACTIVE EVOLUTIONARY ALGORITHMS IN MUSIC COMPOSITION. THE TERM SUB. TEST IS SHORT FOR SUBJECTIVE TEST, REF. FOR REFERENCE,

ACCOMP. FOR ACCOMPANIMENT, CHORD PROG. FOR CHORD PROGRESSION, REL. FOR RELATIVE, AND ABS. FOR ABSOLUTE.

Technique Task Style Algorithm Representation Sub. Test Year Ref.

Workload
reduction

Clustering melody variation GA linear (rel.) - ’95 [103]

Sampling

melody - GA linear (abs.) scoring ’00 [118]
melody, accomp. - GA linear (abs.) scoring ’02 [119]
melody, accomp. - GA linear (abs.) scoring ’03 [120]
melody, accomp. - GA linear (abs.) scoring ’05 [121]

Evolving segments

melody jazz GA linear (abs.) - ’94 [105]
melody jazz GA linear (abs.) - ’98 [115]
melody jazz GA linear (abs.) - ’99 [116]
melody jazz GA linear (abs.) - ’02 [117]

melody, accomp. - GA linear (abs.) - ’01 [106]
melody, accomp. - GA linear (abs.) - ’01 [122]
melody, accomp. - GA linear (abs.) - ’01 [123]
melody, accomp. - GA linear (abs.) - ’02 [124]

melody - GA - - ’06 [107]
melody - GA linear (abs.) - ’07 [108]

Evolving music features melody - GA, PSO linear (abs.) - ’16 [90]
melody; drum - GA latent vector of VAE scoring ’18 [11]

Pairwise comparison melody sign sound DE linear (abs.) scoring ’11 [95]

Quality
assurance

Surrogate
melody - GP tree (program) - ’98 [76]
rhythm - GP tree (hierarchical) - ’00 [13]
melody - GA linear (abs.) - ’06 [125]

Heuristics

melody, accomp. - GA linear (abs.) scoring ’03 [126]
melody, accomp. - GA linear (abs.) scoring ’04 [109]

chord prog. - GA binary scoring ’10 [2]
melody, accomp. - GP executable graph - ’11 [78]

Smart Initialization
melody - GA linear (abs.) - ’04 [113]

chord prog. - GA binary scoring ’10 [2]
melody - GA linear (abs.) scoring ’11 [114]

Heuristic operators

melody jazz GA linear (abs.) - ’94 [105]
melody jazz GA linear (abs.) - ’98 [115]
melody jazz GA linear (abs.) - ’99 [116]
melody jazz GA linear (abs.) - ’01 [117]

Others /
unspecified

EEG device melody - GA linear (abs.) - ’14 [102]
Graphic pad melody, accomp. - GA linear (abs.) - ’99 [101]
Evolving rule weights expression - GA weights of rules A/B test ’08 [127]
- chord prog. - GA linear (abs.) scoring ’10 [1]
- drum fill-in - GA linear (abs.) - ’11 [9]
- chord prog. - GA linear (musical role) scoring ’14 [4]

level is generally beneficial to the search efficiency of rule-
based evaluation systems.

3) Learning-Based Fitness Evaluation: Hybridization of CI
techniques has gained considerable encouraging results in var-
ious areas. In music composition, hybrid systems commonly
adopt machine learning techniques such as NN to construct the
fitness evaluation function and then apply an EA to generate
music pieces [12], [111], [162]–[164]. Table III lists the studies
using such learning-based fitness evaluation. In these hybrid
systems, NNs are trained on symbolic music corpuses that
serve as the archetypes of music to be composed by the
systems. Other machine learning algorithms [25], [125], e.g.,
decision tree, can also be applied. Furthermore, EAs are used
to search for the music pieces that maximize or minimize the
model’s response.

Some challenges arise from the hybrid systems. First,
directly training an evaluation model with raw music data
may not work due to diverse aspects of information in the
data: melody line, bass line, chord accompaniment, chord pro-

gression, rhythm patterns, phrasing, forming, harmonization,
and so on. In addition, transposing a melody to another key,
for example, alters the represented data, but the transposed
melodies may still sound similar or even be the same as
the original. Data processing is therefore needed for machine
leaning algorithms to learn meaningful and desired evaluation
from the music data, whereas music knowledge and expertise
is required for processing the data. Instead of training models
from music data, some studies propose training the evaluation
model using selected musical features [25], [70], [149] or
statistical metrics (e.g., Zipf’s law [70], [146] and Bayesian
surprise [165]). These methods also require music knowledge
and understanding of the music corpuses for constructing the
musical features of interest. The second category in Table III
presents the methods related to learning from statistical fea-
tures.

Learning-based systems have been studied on several com-
position tasks. Their applicability is currently subject to the
presence of music corpuses, which must be symbolic-coded,
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TABLE II
RULE-BASED EVOLUTIONARY ALGORITHMS IN MUSIC COMPOSITION.

Category Task Style Algorithm Representation Sub. Test Year Ref.

Harmonization

polyphony four-part harmonization GA linear (abs.) - ’94 [131]
polyphony counterpoint GP tree (program) - ’97 [75]
polyphony four-part harmonization GA linear (abs.) - ’98 [61]
polyphony four-part harmonization GA linear (abs.) - ’99 [63]
polyphony four-part harmonization GA linear (abs.) - ’99 [132]
polyphony - GA linear (abs.) - ’00 [144]
polyphony four-part harmonization GA linear (abs.) - ’00 [133]

melody counterpoint GA linear (abs.) - ’02 [112]
melody fugue GA linear (rel.) - ’04 [135]

polyphony harmonization ACO linear (rel.) - ’07 [91]
polyphony four-part harmonization GA linear (abs.) - ’09 [145]
polyphony four-part harmonization GA linear (abs.) - ’10 [130]
polyphony four-part harmonization MA linear (abs.) comments ’11 [44]
polyphony four-part harmonization GA linear (abs.) - ’11 [134]
chord prog. harmonization GA linear (abs.) - ’11 [3]
polyphony four-part harmonization MA linear (abs.) - ’16 [45]

melody counterpoint GA linear (abs.) - ’17 [146]
polyphony four-part harmonization GA linear (abs.) - ’17 [22]
polyphony four-part harmonization GA tree (hierarchical) - ’20 [129]
polyphony counterpoint ACO linear (abs.) - ’21 [93]
polyphony counterpoint ACO linear (abs.) - ’21 [94]

Genre

melody jazz GP tree (program) - ’94 [73]
melody jazz GA linear (abs.) - ’98 [68]

style modulation J. S. Bach to jazz GA linear (abs.) - ’06 [142]
melody, accomp. rock GA linear (abs.) - ’08 [147]

melody jazz GA rule (binary) - ’08 [148]
melody Chinese pop GA linear (abs.) - ’10 [149]
melody bossa nova EA linear (abs.) - ’12 [139]

melody, accomp. Romantic era MA linear (abs.) scoring ’13 [100]
melody jazz GA linear (rel.) - ’15 [150]
melody Jay Chou GA pattern templates - ’15 [137]
melody Chinese GA linear (abs.) - ’17 [140]

melody, accomp. western, Chinese GA linear (abs.) - ’17 [21]
melody, accomp. flamenco×tango GA linear (abs.) - ’17 [20]

melody unaccompanied cello GA linear (abs.) - ’19 [151]
melody cantus firmus ACO linear (abs.) - ’20 [92]

melody, accomp. bossa nova GA linear (abs.) - ’20 [141]

General

melody, accomp. - GA linear (abs.) - ’99 [43]
melody - GA linear (abs.) - ’01 [152]
melody - GA linear (abs.) - ’07 [153]
melody - GA linear (rel.) - ’08 [8]
melody - GA linear (rel.) - ’09 [143]
melody - GE integer string scoring ’09 [82]
melody - GA linear (rel.) - ’10 [67]

melody, accomp. - GP executable graph - ’11 [78]
motif - GA linear (abs.) - ’11 [154]

accomp. - GA linear (abs.) - ’12 [15]
melody - GA linear (abs.) - ’13 [136]
melody - GA linear (abs.) - ’14 [155]
melody - GE integer string - ’15 [83]
melody - GA linear (abs.) - ’17 [156]

Others

melody thematic bridging GA linear (abs.) - ’91 [157]
melody thematic bridging GA linear (abs.) - ’93 [158]

percussion drum set GA linear (abs.) - ’05 [7]
arrangement guitar GA binary - ’06 [159]

motif twelve-tone technique GA linear (abs.) - ’09 [160]
melody twelve-tone technique GA linear (abs.) - ’10 [14]
melody jamming GA linear (abs.) - ’11 [161]
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TABLE III
LEARNING-BASED EVOLUTIONARY ALGORITHMS IN MUSIC COMPOSITION.

Evaluation model Task Style Algorithm Representation Sub. Test Year Ref.

NN

SLP polyphony four-part harmonization GA binary - ’91 [162]

MLP

melody jazz GP tree (program) - ’95 [74]
melody jazz GA linear (abs.) - ’96 [111]

percussion drum set GA linear (abs.) - ’98 [12]
melody - GA linear (abs.) - ’05 [163]

melody, accomp. classical GP tree (hierarchical) scoring ’07 [70]
melody Chinese pop GA linear (abs.) - ’10 [149]
melody - GA linear (abs.) - ’20 [166]

SOM melody digital game GP tree (program) - ’09 [77]

RNN melody pop GA linear (abs.) - ’11 [167]

Musical &
statistical features

melody - GE integer string - ’02 [81]
melody imitation GA linear (abs.) - ’07 [168]
melody - GA linear (abs.) - ’08 [169]
melody - GA linear (abs.) - ’08 [164]
melody - GA linear (abs.) - ’08 [170]
melody - GA linear (abs.) - ’11 [171]
melody - GA linear (abs.) - ’12 [27]
melody Japanese pop GA linear (abs.) - ’14 [26]
melody classical, classical rock GA linear (abs.) - ’16 [25]
melody - GP tree (hierarchical) - ’16 [71]
melody digital game GA linear (abs.) scoring ’17 [165]

polyphony J. S. Bach LGP instructions - ’17 [79]
polyphony J. S. Bach LGP instructions - ’18 [80]

melody Hungarian folk LGP instructions - ’19 [24]
melody - GP tree (hierarchical) - ’19 [72]

Decision tree melody classical + classical rock GA linear (abs.) - ’16 [25]

well-organized, open to public, and large in volume.

IV. NEURAL NETWORK BASED COMPOSITION

Machine learning techniques have been applied to model
musical features for handling music-related tasks, such as mu-
sic genre classification, recommendation, transcription, style
transfer, and music generation. NNs are computational models
inspired from biological neural networks. An NN consists of
mutually connected neurons, which act as the processing units.
Generally, neurons are arranged layer by layer. Perceptron is a
simple NN model that computes the weighted sum of its input
neurons and forwards the result from an activation function to
its output neurons. Considering the sequential and temporal
nature of music, RNNs comprise not only current input but
also previous states. This type of NNs are found more eligible
for modeling musical features than MLP. For example, long
short-term memory (LSTM) [172], featuring the ability of
modeling long-term structure of temporal data, has become
a popular model for music generation tasks. In addition, DL
has recently received much attention owing to its promising
performance, e.g., deep RNN, variational autoencoder (VAE),
generative adversarial networks (GAN), and transformer.

The recent development of NNs has turned their roles
in music composition from an auxiliary tool to a stand-
alone predominant technique. A variety of NN and DL based
composition systems have been proposed. The two reviews
[54], [173] categorized them according to the model archi-
tecture, neuron types, and data representations. However, in
music composition, the NN models are found polymorphic
and hybridized; thus, clear classification becomes unrealistic.

For example, GAN may comprise convolutional neurons [31],
[32], [174], recurrent neurons [29], and even both [175]. The
convolutional and recurrent neurons were also used together
to process the pianoroll data [30], [176]. As another example,
attention-based network has been implanted in GAN [30],
[177], [178] and autoencoder [179]. To deal with this difficulty
in classification, this study presents a new taxonomy that
categorizes NN-based composition systems according to their
sampling strategy for generating music from the model: 1)
sampling from input space, 2) sampling from latent space, and
3) sampling from output space. First, a system that samples
music from its input space aims to learn a mapping of an
arbitrary point from the input space to a piece of music.
Second, a system that samples music from its latent space
learns to transform a piece of music into a point in the latent
space and transform an arbitrary point in the latent space back
into a piece of music. Third, a system that samples music
from its output space learns to output a probability vector
from which music excerpts are sampled. Figure 7 presents
three simplified yet characteristic frameworks with respect to
the three sampling strategies. Tables IV–VI further summarize
their corresponding studies.

A. Sampling from Input Space

This sampling strategy aims to train a model for trans-
forming a given or random input vector into a music piece.
The most famous framework in this category is the generative
adversarial network (GAN) [180]. A GAN is composed of
a generator and a discriminator. In the training phase, the
generator is fed with random vectors and then outputs its
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Fig. 7. Frameworks of NN-based music composing systems that sample music from the input, latent, or output space. In (a) and (b), the dashed and the solid
arrows indicate the data flow in the training and generating phases, respectively. In (c), the solid arrows indicate the data flow in both training and generating
phases.

generated data. The discriminator learns to distinguish between
generated data and real data. Restated, the generator is trained
to generate data similar enough to fool the discriminator,
whereas the discriminator is trained to accurately separate the
generated data and real data apart. After the training phase,
the resultant generator is used to compose music by mapping
arbitrary random vectors to music sequences. The GAN-based
music generation systems typically include RNNs, CNNs, or
both.

By regarding music as time series data, recurrent units
have been integrated into GAN for music generation and
discrimination. Mogren [29] combined RNNs and adversarial
training as the continuous RNN-GAN for music generation.
The generator is a unidirectional deep LSTM network and the
discriminator is a bidirectional deep LSTM network. After
adversarial training, the generator composes music with the
random vectors sampled from input space by a common au-
toregressive prediction. Yu et al. [181] proposed a conditional
LSTM-GAN that composes melody for given lyrics. To this
end, the conditioning mechanism is introduced to both of the
generator and discriminator based on LSTMs, allowing the two
networks being conditioned on the same lyrics embedding.

Through separating music data with sliding window, the
extracted fragments provide another viewpoint to music con-
tent: each extracted fragment represents a sparse matrix that
encodes the activated pitches in the corresponding time win-
dow. For a specific moment in the window, the activated
pitches form a one-dimensional one-hot or multi-hot vector.
A sequence of one-hot vectors can represent a monophonic
melody; furthermore, a sequence of multi-hot vectors can
represent a polyphonic music fragment. Based on this idea,
several studies treat the extracted matrices as images and

employ CNNs to model music content beat by beat, bar by
bar, or phrase by phrase. The combination of CNN and GAN
presents a feasible implementation. Yang et al. [30] proposed
a CNN-based GAN system, called MidiNet, which generates
monophonic melody in a bar-by-bar manner. By including
the conditioner CNN, MidiNet accepts conditioning through
taking multiple preceding bars as the priming melody to be
continued. Dong et al. [31] developed MuseGAN, a deep
CNN-based GAN system for multitrack pianoroll generation.
MuseGAN employs a divide-and-conquer approach generat-
ing music hierarchically. Specifically, MuseGAN aggregates
multiple sub-CNNs, each of which is responsible for a part
of music modeling, including modeling temporal dependency,
inter-track dependency, and intra-bar notes dependency. A
follow-up study [32] refined the process of sampling actually
activated notes from the real-valued matrix output by the
generator network. Based on MuseGAN, an additional network
is appended to the generator for discretizing the output matrix.
Liu et al. [174], [182] adapted MuseGAN for generating the
lead sheet, which is further taken as a sampling condition of
the other GAN to compose arrangement for five instruments.

In light of the individual advantages of different network
types, hybridization has been a viable way to boost DL. Li
et al. [175] proposed a GAN system with two RNN and
CNN based discriminators for interbar analysis and intrabar
analysis, respectively. Wei et al. [87] presented a GAN system
to generate drum patterns given a melodic excerpt. This system
is innovative in two aspects: 1) the ability to accept both audio
and symbolic data as input and 2) the implantation of a VAE
into the GAN framework.

Some early studies investigated restricted Boltzmann ma-
chine (RBM) and deep belief network (DBN) for modeling
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and generating music data. A standard RBM consists of only
two layers, namely the visible and hidden layers, where a
DBN extends RBM by stacking multiple layers to deepen its
structure. The goals of RBM and DBN are to transform input
data in the hidden space and to reconstruct the data back from
the hidden vectors. The visible layer is used to receive as input
the original data and emit as output the reconstructed data;
accordingly, the number of nodes in the visible layer is practi-
cally identical to the dimension of input data. A narrow hidden
layer is treated as an information bottleneck for dimension
reduction; by contrast, a wider hidden layer allows the model
to yield a richer latent representation. In RBM and DBN, the
data encoding and reconstruction processes are done by the
same network architecture and weights but in the opposite
directions. To generate new data from a trained model, one can
sample a random input vector from the visible space and then
perform block Gibbs sampling until convergence. An intuitive
implementation of RBM and DBN for music generation is to
set the dimension of visible units to be the scale (88 notes) of a
piano keyboard. Boulanger-Lewandowsk et al. [183] proposed
the RBM using recurrent units (RNN-RBM) and tested it on
reconstruction of the polyphonic pianorolls. Similarly, Goel
et al. [184] attempted to model and generate music with the
recurrent DBN. Applying the random sampling method, users
are not involved in the generation process. Instead, Lattner
et al. [185] proposed the constrained sampling strategy to
gradually adjust the intermediate result for complying with the
user-defined constraints (e.g., tonality and music form) during
the sampling iterations.

The major attention of the community falls on designing
a system that can compose music by arranging music notes.
Differently, Deep Composer [186] presents an LSTM system
that learns a hash-based representation for existing music
segments so that the successiveness of these segments can be
measured by the Hamming distance. Rather than directly pro-
ducing music notes, Deep Composer serves as a coordinator
retrieving suitable segments from its database to continue a
query segment.

B. Sampling from Latent Space

The latent space refers to the input space of a hidden
layer in a neural network. It is usually the bottleneck of
stacked autoencoders. An autoencoder typically consists of
two subnetworks, i.e., the encoder and the decoder. The
encoder is trained to extract characteristic information from
the input data and encodes the information into a latent vector,
whereas the decoder is trained to reconstruct the input data
with the information contained in the latent vector. Variational
autoencoders (VAEs) extend the autoencoder by introducing
an extra constraint to the latent representation. In VAEs, the
distribution of latent representation is trained to approximate
a prior probability distribution, which is usually diagonal-
covariance Gaussian. This constraint is harnessed to guide
VAE to model semantically meaningful transition from a data
point to another in the latent representation. After model
training, new data can be generated by sampling random
vectors from the latent space, and then VAE utilizes the

decoder to map the sampled latent vectors to new data. In
addition to generating by random sampling, the approaches
such as interpolation, extrapolation, and user-guided sampling
[11] are also usable in VAEs. By sampling the latent vectors
that are linear to certain reference latent vectors, VAE can
transform the sampled vectors to the data that retain or fuse
the characteristics of its reference points.

Roberts et al. [10], [33] proposed MusicVAE featuring a
hierarchical decoding mechanism for modeling monophonic
music. The encoder of MusicVAE adopts bidirectional LSTM
and follows a common stacked structure of VAE. The decoder
of MusicVAE consists of two decoding subnetworks, i.e., the
conductor RNN and the decoder RNN, both applying unidi-
rectional LSTM. Instead of directly decoding a latent vector
to music notes, the hierarchical decoding uses the conductor
RNN to map a latent vector to a sequence of embedding
vectors, and uses the decoder RNN to generate a sequence
of music notes autoregressively from each embedding vector.
Simon et al. [195] extends MusicVAE for handling multitrack
(up to eight tracks) polyphonic music. The extended system
first encodes each track into an embedding and then converts
the multiple embeddings into a single latent vector. The decod-
ing process is done reversely. The study further investigated
chord conditioning in MusicVAE, which allows the model to
produce music sequences over a chord progression. Pati and
Lerch [198] introduced rhythmic complexity and pitch range
to regularize the loss function of MusicVAE for improving the
controllability of music generation. Gillick et al. [69] modified
MusicVAE as the GrooveVAE model for generating expressive
drum performance. Guo et al. [199] proposed using VAE to
encode the tonal tension of music pieces in the latent vectors.
By manipulating the latent vector of a music piece, this system
changes the pitches of the piece and produces tenser or looser
pieces. Based on a similar concept, VAE can be used to
model musical transition in accord with the arousal level
[205]. In addition, Hung et al. [197] demonstrated with VAE
that simple transfer learning techniques, e.g., parameter fine-
tuning, can benefit the generative models for under-resourced
music genres.

Koh et al. [196] proposed a convolutional-variational RNN
(CVRNN), which integrates VAE, CNN and gated recurrent
unit (GRU). CVRNN has a novel asymmetric structure, which
is a two-layered CNN followed by a GRU-based VAE. The
convolutional layers of CVRNN serve as a feature extractor
that transforms the input framed pianorolls into feature vec-
tors before forwarding to the GRU-based VAE. Wang et al.
[201] presented a GRU-based VAE system learning two latent
representations, i.e., the chord vector and the texture vector,
which encode chord information and music notes, respectively.
By combining the chord vector from one music piece and the
texture vector from another piece, the system can generate a
new piece in between the reference pieces. Choi et al. [179]
also demonstrated that autoencoder can be applied to learn
a latent representation for music performance, showing the
potential for performance modulation in music.
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TABLE IV
NEURAL NETWORK SYSTEMS THAT SAMPLE THEIR PRODUCTS FROM INPUT SPACE FOR CNN (C), GRU (G), LSTM (L), AND RNN (R).

Model Task Style Condition Representation Dataset Sub. Test Year Ref.

RNN melody - - - - - ’12 [85]
LSTM melody Mozart melody pianoroll Mozart K. 545 - ’13 [187]
LSTM block retrieval folk prime hash-based NMD [188] scoring ’20 [186]

GAN (L) general classical - MIDI (vector) manual - ’16 [29]
GAN (C) melody pop chord pianoroll TheoryTab [189] - ’17 [30]
GAN (G) general alternative - pianoroll LPD [31] A/B test ’18 [32]
GAN (C) pop band rock prime pianoroll LPD [31] scoring ’18 [31]

GAN (C+R) lead sheet,
arrangement mixed lead sheet pianoroll LPD [31], TheoryTab [189] voting, scoring ’18 [174]

GAN (C+L) melody Korean pop - MIDI (vector) manual - ’19 [175]
GAN (C; VAE) drum - spectrogram pianoroll LPD [31] A/B test ’19 [87]
GAN (L) melody - lyrics event LMD† [181] scoring ’21 [181]

RBM (R) general classical, folk - pianoroll
JSB [190], MuseData [191],
NMD [188],
piano-midi [192]

- ’12 [183]

DBN (R) general classical, folk - pianoroll
JSB [190], MuseData [191],
NMD [188],
piano-midi [192]

- ’14 [184]

RBM (C) piano Mozart music form pianoroll manual - ’18 [185]

TABLE V
NEURAL NETWORK SYSTEMS THAT SAMPLE THEIR PRODUCTS FROM LATENT SPACE FOR CNN (C), GRU (G), LSTM (L), RNN (R), AND

TRANSFORMER (T).

Model Task Style Condition Representation Dataset Sub. Test Year Ref.

VAE (L) piano Beethoven latent vector pianoroll manual - ’17 [193]
VAE (L) melody, drum, trio - latent vector MIDI (vector) manual - ’17 [33]
VAE (L) melody, drum, trio - latent vector MIDI (vector) manual A/B test ’18 [10]
VAE (L) general folk chord prog. event LMD [194] - ’18 [195]
VAE (C+G) general folk latent vector pianoroll NMD [188] - ’18 [196]
VAE (G) melody jazz - pianoroll TheoryTab [189] scoring ’19 [197]
VAE (L) melody, drum, trio - music attr. MIDI (vector) manual - ’19 [198]
VAE (L) drum performance - drum pattern pianoroll GMD [69] A/B test ’19 [69]
VAE (G) melody, accomp. pop prime pianoroll LMD [194] - ’20 [199]
VAE (G) piano pop chord prog., melody pianoroll POP909 [200] scoring ’20 [201]
VAE (L) general Bach, folk style MIDI (vector) JSB [190], NMD [188] - ’20 [202]
VAE (G) piano - arousal e-piano [203], VGMIDI [204] scoring ’20 [205]
VAE (G) piano - latent vector tree (hierarchical) manual, POP909 [200] voting ’20 [35]
AE (T) performance - excerpt, melody event MAESTRO [206], YouTube scoring ’20 [179]

C. Sampling from Output Space

Numerous systems of sampling from output space rely
on autoregressive sampling to generate music from a model.
Autoregressive sampling can be combined with different types
of NNs. In the early years, MLPs and RNNs were used to
model the temporal relation of monophonic melodies. Given
an input sequence, a model is trained to predict its succeeding
sequences. The generation process repeats the procedure:
predicting the probability distribution of the next value on the
input sequence, sampling from the output probability distribu-
tion, and then appending the sampled value to the input. The
initial input can be a null sequence, a random sequence, or a
short music sequence as motif. Recently, researchers have paid
much attention to enlarging the scale of neural networks for
addressing complex problems. In the light of many successes
in natural language processing (NLP), deep recurrent-based
models have become popular in dealing with music-related
tasks because both NLP and music emphasize modeling
sequential and temporal relationship of data. Regarding the

types of neurons, standard recurrent units hardly model long-
term information. Alternatively, LSTM and GRU are shown to
better capture both the short and long-term relationship in data.
As for neural architectures, the transformer [223], which is a
sequence model featuring the attention mechanism, achieves
state-of-the-art performance in linguistic translation tasks and
has also been modified for music generation [39]. Despite the
transformer being an encoder-decoder model, it is considered
to be a sampling-from-output-space system because the music
generation relies on autoregressive sampling from the output
probabilities of music notes, instead of mapping latent vectors
to music pieces.

As one of the earliest attempts of RNN for music generation,
Mozer [207] proposed modeling and generating melodies
with an RNN using the autoregressive strategy. Eck and
Schmidhuber [28], [209] considered using LSTM in music
generation to improve the modeling of long-term relation-
ship. Franklin [210] used a similar strategy for jazz music
generation. Later on, Liu and Ramakrishnan [176] attempted



13

TABLE VI
NEURAL NETWORK SYSTEMS THAT SAMPLE THEIR PRODUCTS FROM OUTPUT SPACE.

Model Task Style Condition Representation Dataset Sub. Test Year Ref.

RNN melody Bach, folk melody psychoacoustics JSB [190], manual - ’94 [207]
RNN melody Bach, folk melody psychoacoustics JSB [190], manual - ’99 [208]
LSTM melody, chord blue - pianoroll manual - ’02 [209]
LSTM melody, chord blue - pianoroll manual - ’02 [28]
LSTM chord prog. jazz - psychoacoustics manual - ’06 [210]
TDNN melody classical, folk - ABC notation manual - ’08 [211]
LSTM harmonization Bach prime pianoroll JSB [190] - ’14 [176]
LSTM general Bach, classical - event, pianoroll MuseData [191] scoring ’16 [212]
LSTM melody prime pianoroll manual - ’16 [213]
LSTM melody, accomp. pop scale, melody mixed midi_man [214] A/B test ’16 [215]
LSTM chord prog. western melody event Wikifonia [5] scoring ’17 [5]

LSTM harmonization Bach notes, rhythm,
cadence event JSB [190] A/B test ’17 [36]

LSTM piano - scale event e-piano [203] - ’17 [216]
LSTM general classical composer pianoroll piano-midi [192] A/B test ’18 [37]
Transformer chorales, piano Bach, piano prime event JSB [190], MAESTRO [206] A/B test ’18 [39]
GRU pop band pop chord prog. pianoroll manual - ’18 [217]
LSTM piano classical valence-arousal pianoroll piano-midi [192] - ’19 [38]
LSTM chord prog. - melody lead sheet Wikifonia [5] - ’19 [6]
LSTM melody Persian - MIDI (vector) manual - ’19 [218]

LSTM chord prog. mixed - one-hot vector NMD [188], McGill [219],
Wikifonia [5] - ’19 [220]

Transformer guitar classical prime event manual scoring ’20 [177]
GRU pop band pop chord prog. pianoroll manual - ’20 [221]
Transformer piano pop - event manual scoring ’20 [40]
GRU+Conv. accomp. counterpoint melody event JSB [190] A/B test ’20 [16]
Transformer piano pop lead sheet event set manual scoring ’21 [41]
Transformer piano - priming event MAESTRO [206] scoring ’21 [178]
Transformer melody, lyrics - melody, lyrics event LMD† [181] scoring ’21 [222]

to model four-part harmonization with LSTM. With training
on Bach chorales, the LSTM model is able to continue a
chorale given a fragment. Jaques et al. [213] designed an
LSTM model that learns to predict the next note of a melody.
Notably, the note-predicting model is further refined by deep
Q-learning with a reward function based on music theory
rules. The later studies tend to use more complex and deeper
neural architectures. Chu et al. [215] proposed an LSTM-based
hierarchical system that sequentially generates pitch and dura-
tion, chord, and percussion in an autoregressive manner. The
hierarchical model consists of four two-layered LSTM models
with 512-dimensional hidden states. DeepJ [37] is a deep
RNN designed for modeling multiple genres and generating
music with a specific or mixed genre. RL-Duet [16] presents
a human-machine interactive actor-critic model that generates
counterpoint accompaniment for a given melody. In addition
to music generation, LSTM has been used in generation of
chord progression and chord-to-note interpretation [220].

Recently, Huang et al. [39] employed the transformer to mu-
sic generation task and proposed a music transformer model.
They designed the relative self-attention in place of the stan-
dard attention mechanism for improving memory efficiency
and inference time. Using autoregressive sampling, the music
transformer can generate music from scratch (by feeding a null
sequence), or continue a given motif. The music transformer
can generate longer music pieces (few minutes) considering
expressiveness and long-range coherence. Although the model
considers long-term relationship at generation, its produced
music is sometimes metrically inconsistent. Huang and Yang

[40] addressed this issue through a modified event-based data
representation that further encodes metrical information. Hsiao
et al. [41] proposed aggregating multiple events into one token.
The improved representations allow the model to generate
locally and globally structured music. Nevertheless, a few
studies attempted to incorporate transformer with adversarial
training and pretraining techniques. Zhang [177] applied an
encoder-only transformer as the discriminator to analyze the
local and global quality of a generated sequence. Muhamed
et al. [178] introduced the SpanBERT pretraining technique
[224] to strengthen the transformer-based discriminator. Sheng
et al. [222] proposed a song writing dual transformer system
in which one transformer composes melody and the other
writes lyrics. The MASS pretraining technique [225] is applied
to both the melody and lyrics transformers to cope with the
limited paired data issue.

The autoregressive sampling generally allows conditioning
with a prime. In addition, Zhao et al. [38] introduced the 2-
dimensional valence-arousal conditioning to LSTM for influ-
encing the emotion of generated music. Zhu et al. proposed
XiaoIce Band [217] and its extension [221], both of which
are attention-based recurrent models that allow conditioning
on chord progression for generating multitrack music in a pop
music arrangement.

Gibbs sampling is another option for sampling music.
Hadjeres et al. [36] presented the DeepBach system, a two-
way LSTM architecture for generating Bach-like chorales. To
sample music from the DeepBach model, the authors used
a pseudo-Gibbs sampling that iteratively samples each time
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step of a voice, while the others are fixed. Ebrahimi et al.
[218] further trained the DeepBach model on the Persian music
dataset, of which the MIDI files are obtained by applying
optical music recognition software on scanned music sheets.
This data conversion framework shows a potential for partially
solving the labor-intensive data processing problem.

V. FUTURE RESEARCH DIRECTIONS

As the above survey shows, CI techniques have been devel-
oped for music composition tasks in recent decades. In spite
of the many successful designs and remarkable music works
that have been achieved, several issues remain. We believe the
challenges and opportunities for future research include five
major directions: customization and interaction, instrumental
performability and arrangement, music structure, evaluation
metrics, and CI technologies. The following describes and
discusses these directions in more detail.

A. Customization and Interaction

Automatic music composition is beneficial to real-world
applications, such as generating royalty free music for videos,
digital games, retail stores, and restaurants. Different genres
of music may be required to fit the atmosphere of a spe-
cific scenario. The vibes in music are affected by several
factors: key, mode, melody, chord, tempo, rhythm, instru-
mental arrangement, etc. In the evolutionary systems, music
composition can be customized by allowing users to indicate
some of the aforementioned properties of music [21]. In NN
and DL systems, customization can be attained by modeling
the conditional probability of music and sampling with the
conditioning mechanisms. However, in the above-reviewed
composition systems, the customizability is limited to one or
few music factors or to certain forms of interaction [36], [215],
[226]. These issues detract from the practical utility of the CI
systems [227]. Extending the controllable factors can improve
the customizability of automatic music composition; on the
other hand, enabling more interaction forms facilitates more
practical applications. Considering that music knowledge is
required to set these factors, a possible solution to enhance
user friendliness of the systems is to enable high-level control
or fuzzy control of the music factors. Development of autofill
or writing suggestion in music renders another direction for
expediting AI-assisted music composition and for promoting
human-machine interaction.

B. Instrumental Performability and Arrangement

Nowadays, assorted instruments are available to composers,
while each instrument has its characteristics and limita-
tions. Performability concerns whether a music composition
is playable with the off-the-shelf real-world instruments by
human musicians. A system lacking of performability aware-
ness may generate a composition that is too hard to play
or beyond the pitch range of an instrument. In addition,
arrangement considers and makes use of the characteristics of
instruments. For a system to be arrangement aware, it has to be
performability aware of each instrument and must coordinate
the instruments to exert their strengths.

Several early studies aim to compose monophonic melody
for general purpose and thus neglects instruments. For the
systems that compose four-part harmony, the arrangement is
ordinarily based on a standard four-part choir2. In such a
scenario, the role of each voice has been conventionally regu-
lated with limited flexibility. Recently, some studies consider
composition for a single instrument, such as a piano [40],
[100], guitar [159], [177], and drum kit [7], [12], [87]. Some
further investigate composing music for a multi-instrument
band, including a pop band [174], [182], [215], [217], [221]
and a rock band [31], [32], [147]. Despite that these studies
focus on particular instruments, performability awareness is
seldom considered and thus the resultant compositions might
be unplayable. As for arrangement, it is observed that the
coverage of the investigated instrumental arrangements corre-
sponds closely to the coverage of the publicly accessible music
corpuses. Therefore, contributing open and well-coded music
datasets is a way to nourish this research topic. Some existent
systems can compose multi-track music through indirect in-
tertrack interaction based on a preset or condition. However,
explicit intertrack interaction, e.g., intertrack melodic imitation
and role exchange, receives less attention. To achieve explicit
intertrack interaction, a composition system needs to ponder
the instrumental characteristics and keep trace of the role of
each track.

C. Music Structure

A considerable number of human-composed music works
are organized in structure systematically; by contrast, only a
few studies concern producing structural music in automatic
composition. Music structure involves meter (e.g., the consis-
tent periods of beats and bars), phrase, and form. Most of the
human-composed music works are in static meters. Restated,
a single work may include multiple meters but does not
change the meter frequently. The steady progression of beats
and bars intensifies the groove of the music. In evolutionary
systems, this can be achieved by defining the mapping between
genotypes and phenotypes based on user-defined or predefined
meters. In NNs, modeling meter with the time-based data has
been found to be non-trivial [39], [216]. Lack of perceptible
meters causes the machine-generated music sounds random,
unintentional, and even awkward. Modeling meter-based data
is able to enforce steady meters in generated compositions
[40].

On the other hand, music phrase and form are important
roles in managing sensory recurrence in human-composed
works. For instance, in classical music, sonate and sonatine
follow the sonata form, comprising the exposition, develop-
ment, and recapitulation. In addition, the similar melodies or
rhythmic patterns often engage with multiple phrases. Recur-
rence of the motifs and thematic melodies further strengthens
the audience’s impression on the music. Several studies in EC
impose music form templates and then compose each section
individually. However, this method cannot link sections to a

2Four-part harmony can also be performed with other four-part instrumental
arrangements (i.e., soprano, alto, tenor, and bass) or with just a single
keyboard.
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theme because they are composed without considering the
context [136]. The early studies in NNs, by contrast, often
suffer from the difficulty of modeling long-term dependency.
Recent studies have shown significant improvement on long-
term relation modeling with the aid of attention mechanism
[39], advanced data representations [35], [40], [41], and self-
similarity analysis [87]. A few NN studies attempted to
improve music structure, such as by imposing a music form
during sampling [185]. At present, the techniques for modeling
structural information in music are still under development.

D. Evaluation Metrics

A common assessment method is to conduct a survey, i.e., a
subjective test, to evaluate the generated music pieces accord-
ing to the human responses collected. Its major drawback is
the inefficiency and irreplicability of evaluation; for instance,
it may require days or weeks to collect an acceptable number
of responses. Another issue lies in the potential bias in the
questionnaires. These issues may hinder the subjective tests
from reflecting the genuine opinions of the majority. For some
cases such as the studies on ethnic genres, soliciting qualified
subjects can be even more difficult and expensive.

As for objective evaluation, rule-based EAs present the
means of evaluating music quality by hand-crafted rules.
These methods are genre-specific [20], [22], [150] and usually
involve personal opinions, which may be hard to generalize to
other cases. Plenty of NN studies adopt statistical analysis to
evaluate the belongingness of generated music to the training
corpus [55]. Specifically, Yang and Lerch [228] presented an
open-source toolbox with a set of frequently used statistical
features, including the pitch-based and rhythm-based statistics.
These statistical features can measure, to certain extent, how
well the model resembles the probability distribution of the
training data. However, the features might fail to reflect
human sensation because humans listen to music, instead of
counting music. For example, the pitch-based features are
unable to distinguish between various arpeggio forms of a
chord although they sound quite different. The same issue
also occurs in the vertically mirrored palindromic melodies
(e.g., the C major scale steps of C4–C3–C4 and C3–C4–C3).
On the other hand, the rhythm-based features are vulnerable
to time stretching. A potential direction to address this issue
is to promote the statistics from note level to pattern level.
Designing such features can be music knowledge demanding
and challenging, but the resulting evaluation metric aligned
with human perception will be efficient and beneficial to
automatic music composition as well as music information
retrieval.

E. CI Technologies

There is ample room for improving the designs of CI
technologies in music composition. First, as the above re-
viewed, most of the studies on EC-based music composition
systems use simple GA or canonical EAs as the optimizer.
For the EAs using interaction-based evaluation, the evaluation
resources are considered rare and costly, which forms a com-
putational expensive optimization problem in essence. Modern

surrogate-assisted EAs (SAEAs) have shown to be effective
in reducing evaluation requests [229], [230]; these approaches
are promising for further alleviating human fatigue. Second,
multiplicity and diversity in the generated compositions is
another key consideration. In this regard, novelty search [231]
may facilitate the EA-based systems composing music in batch
rather than a single piece of music. Lastly, the models used
in learning-based evaluation are relatively shallow and simple.
An EA with DL-based evaluation is therefore promising for
enhancing the evolutionary composition systems.

As for NN-based music composition, current studies and
proposed approaches are usually restricted to the availability
of massive training corpuses. This issue has impeded the NN
systems to compose music for the music styles that have only
small data, e.g., tribal music, folk music, and modern music3.
Transfer learning has shown its effectiveness in learning with
low resources. For example, a lot of research in computer
vision uses the pretrained VGG or ResNet as the backbone
model for low-resource problems [232], [233]. In linguistic
tasks, transfer based on bidirectional encoder representations
from transformers (BERT) [234] has been a widely accepted
pretraining techniques to improve the model performance
on the downstream tasks. Using transfer learning in music
composition merits in-depth investigation but has only a few
initiative studies exploring its potential [178], [197], [222].

VI. CONCLUSIONS

Computational intelligence has been broadly studied and
applied in music composition tasks. In particular, various types
of systems are proposed for music composition in recent
years, including EAs, MAs, NNs, DL, and hybrid intelligence.
In this survey, we comprehensively reviewed and discussed
the studies on CI techniques for music composition from
technical perspectives. Specifically, the first part introduces
the data representations for music composition. The second
part reviews the EC approaches and classifies them according
to their fitness evaluation criteria, i.e., interactive evaluation,
rule-based evaluation, and learning-based evaluation. The third
part examines the NN and DL studies as per their music
sampling strategies, i.e., sampling from input space, latent
space, and output space. After the thematic reviews, the fourth
part suggests the challenges and future research directions:
customization and interaction, arrangement and performability,
music structure, evaluation metrics, and CI technologies.

This survey provides a new taxonomy to classify music
composing systems, delves into the CI techniques for music
composition, and analyzes their strengths and weaknesses.
The present reviews and discussions show that CI possesses
high capability and great potentiality for music composition
tasks; in addition, they reveal the limitations and issues of
current research, such as a lack of robust quality and diversity
assessment of the outcome music.

3A huge amount of modern music is available in audio form. However, their
audio and symbolic content are mostly subject to copyright. Unauthorized use
in data modeling is still a controversial issue.
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