Relationship between radioactivity of radium and concentrations of barium and lead in hokutolite

J.H. Chao a,⁎, C.Y. Chuang b, S.A. Yeh c,d, J.M. Wu c,d

a Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
b Department of Radiation Oncology, E-Da Hospital, Kaohsiung 824, Taiwan, ROC
c Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
d Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 840, Taiwan, ROC

ARTICLE INFO

Article history:
Received 14 October 2008
Received in revised form 3 December 2008
Accepted 10 December 2008

Keywords:
Hokutolite
Radium
Gamma-ray spectrometry
Photon activation analysis
Medical accelerators

ABSTRACT

Hokutolite consists of barite (BaSO4) and anglesite (PbSO4), and contains significant amounts of radium isotopes as a radioactive mineral. Photon activation and gamma-ray spectrometry were employed to determine Ba, Pb and 226Ra contents in hokutolite samples and to investigate the correlation between 226Ra activity and both Ba and Pb content. 226Ra activity in 30 hokutolite samples were estimated in the range of 40–65 Bq/g and was positively related to Ba content (r = 0.859, p < 0.001), but independent of Pb content (r = −0.236, p = 0.217). Experimental results implied that 226Ra preferably precipitated with Ba over Pb. The 226Ra activity in hokutolite from the Peitou Hot Spring was experimentally estimated based on the Ba/Pb ratio and expressed as 226Ra (Bq/g) = 14.67 (Ba/Pb) molar+14.13.

1. Introduction

Hokutolite, a lead-bearing barite, is a mixed solid solution of barite (BaSO4) and anglesite (PbSO4) (Chen and Yu, 1984; Sasaki and Minato, 1982; Sasaki et al., 1992), containing a considerable amount of radium and other alkaline earth elements (Momoshima et al., 1997; Takano and Watanuki, 1972). This radioactive sulfate mineral present in hot springs was first discovered in 1905 by Okamoto (Chang, 1961) at Peitou Hot Spring, a small town in northern Taiwan. It was also found at Tamagawa Spring in Akita, Japan (Sasaki et al., 1992). Numerous studies have been carried out to understand the crystal structure, chemical composition and growth rate of natural hokutolite, along with related environmental factors.

Based on the analysis of the crystal structure in hokutolite, the Ba and Pb cations are in a fully disordered arrangement for mutual substitution in lattice (Chen and Yu, 1984; Su et al., 2002). The ratio of Ba to Pb in hokutolite has frequently been used to elucidate the chemical composition of hokutolite and to understand environmental factors that control the growth of hokutolite crystal (Chen and Yu, 1984; Takano and Watanuki, 1974). The chloride concentration and temperature of a hot spring water are major factors in controlling the lead content in hokutolite during the formation processes (Takano, 1969; Takano and Watanuki, 1974). The increased amount of lead–chloro-complexes is believed to reduce the formation of PbSO4 in thermal solution. Additionally, BaSO4 precipitates before PbSO4 in hot spring water as the temperature declines, which leads to increasing the fraction of PbSO4 in hokutolite that precipitate downstream (Takano, 1969; Takano and Watanuki, 1972).

Takano and Watanuki (1972) observed that the contents of minor elements Sr and Ca are positively related to Pb content in hokutolite. They attributed this finding to the fact that the crystal chemical properties of SrSO4 and CaSO4 are more similar to those of PbSO4 than those of BaSO4. Based on the similarity between the chemistries of alkaline earth elements and Pb, the radium atoms are supposed to co-precipitate with Ba and Pb in the crystallization process. The radioactivity of two main radium isotopes, 226Ra and 228Ra, in hokutolite has been measured to estimate the growth rate of hokutolite (Momoshima et al., 1997; Saito and Nagai, 2007). However, the relationship between the distribution of radium and the two major elements, Ba and Pb, has not been well studied, and their correlation during formation is unknown.

Non-destructive elemental analysis of hokutolite with an electron probe micro-analyzer (EPMA) or X-ray fluorescence (XRF) analysis is the most common method for determining Ba and Pb contents (Chen and Yu, 1984; Momoshima et al., 1997; Sasaki and Watanuki, 1983; Sasaki et al., 1992). However, it can only be performed on the surface of a sample, rather than throughout a bulk sample. Estimating the Ba and Pb fractions in...
an intact hokutolite specimen is typically difficult because the specimen may incorporate mineral impurities and the Ba/Pb ratio may be non-uniform. Moreover, mechanically separating pure hokutolite from an andesite block and other incorporated materials prior to elemental and radionuclide analyses is difficult. Neutron activation analysis (NAA) is the most popular non-destructive method and can be applied to a bulk sample, but it suffers from being insensitive to Pb.

This study presents photon activation analysis (PAA) using a medical accelerator for elemental analysis. PAA is desirable for determining Ba and Pb contents in hokutolite as their sensitivities through photon nuclear reactions are adequate and the activated nuclides ^{135m}Ba and ^{203}Pb have suitable half lives that facilitate measurement. The activities of the activated radionuclides and ^{226}Ra were simultaneously measured using a gamma-ray spectrometer. The ^{226}Ra activity in hokutolite in relation to Ba and Pb was statistically analyzed to explain the behavior of radium in the precipitation process. The ^{226}Ra content in relation to Ba/Pb ratio was also investigated.

2. Materials and methods

2.1. Sample preparation

Thirty hokutolite specimens of mass 0.2–1.0 g were randomly selected for this experiment. These samples were collected along Peitou River during 1980–2001, when they were isolated from the hot spring water. The water temperature has been reduced by a cold flow, and hokutolite has not been precipitated for a long time. Two areas A and B are known for hokutolite deposits at around 300 and 150–250 m from the vent of the hot spring. The actual location of the samples from area B was not recorded. To simulate the chemical composition of hokutolite, powder chemicals (purity $\geq 99\%$) of BaSO$_4$ (0.24 g) and PbSO$_4$ (0.16 g) were mixed and pressed into a tablet for use as a comparative standard.

2.2. Photon irradiation

Photointradiation was conducted using an 18 MV medical accelerator (Precise, Elekta) at E-Da Hospital. The hokutolite samples and the standards were placed immediately outside the treatment head with a source-to-sample distance of 53 cm. The accelerator was operated to provide 20 consecutive exposures of 40 cm2 with a source-to-surface distance of 100 cm. The total radiation at maximum depth in a water-equivalent phantom with a source-to-surface distance of 100 cm was calibrated as 200 Gy while the actual radiation dose at the sample position was estimated with a QED photodiode detector (Model 1135, Sun Nuclear Corporation) to be 698 Gy during the 1 h irradiation (Chao et al., 2009).

2.3. Photon activation reactions

Table 1 presents possible photon activation reactions for analysis of Ba and Pb in hokutolite. The reaction $^{136}\text{Ba(\gamma,n)}^{135m}\text{Ba}$ may provide the highest sensitivity for Ba determination (Chao et al., 2009). The reaction $^{204}\text{Pb(\gamma,n)}^{203}\text{Pb}$ is the only one that can be exploited for determining Pb. The half lives of ^{135m}Ba ($t_{1/2} = 28.7 \text{ h}$) and ^{203}Pb ($t_{1/2} = 52.0 \text{ h}$) suffice for gamma-ray measurement within one week after photon irradiation.

2.4. Gamma-ray measurement

The irradiated hokutolites were transferred to the radioactivity measurement laboratory (National Tsing Hua University) for counting using a well-type Ge detector (GCW6023, Canberra) equipped with a multi-channel analyzer (35-Plus, Canberra). Gamma-ray spectra were analyzed using the Sampo 90 gamma-ray spectrum software package. The activities of the photon-activated nuclides ^{135m}Ba and ^{203}Pb, as well as of ^{226}Ra were measured together. The activity of ^{226}Ra was determined in terms of its daughter nuclide ^{214}Bi at 609 keV.

2.5. Statistical analysis

Data were analyzed using SPSS for Windows version 13.0. Pearson correlation was used to analyze the correlation of ^{226}Ra with BaSO$_4$ or PbSO$_4$. Multiple regression analysis based on the stepwise method was performed to evaluate the contribution of BaSO$_4$ and PbSO$_4$ to ^{226}Ra after adjusting for confounding variables. A two-tailed p-value < 0.05 was considered significant.

3. Results and discussion

3.1. Distribution of ^{226}Ra and Ba/Pb ratio in hokutolite

The Ba and Pb in hokutolite are assumed to have been formed as BaSO$_4$ and PbSO$_4$, respectively; their masses were determined by the photon activation technique and their masses were summed as the mass of “pure hokutolite” in the samples. The activity of ^{226}Ra, based on “pure hokutolite”, was therefore determined, and ranged from 40 to 65 Bq/g, approximating the published values of 28–86 (Momoshima et al., 1997) and 56–69 (Tomita et al., 2006) in Peitou, and 52–85 Bq/g (Saito and Nagai, 2007) in Tamagawa. Table 2 summarizes ^{226}Ra and the respective Ba/Pb molar ratios of these samples from areas A and B. The results revealed that both ^{226}Ra and the Ba/Pb ratio in the hokutolite samples from the upstream area (B) exceeded those from the downstream area (A).

Table 1

<table>
<thead>
<tr>
<th>Element</th>
<th>Photonuclear reactions</th>
<th>Q value (MeV)</th>
<th>Abundance (%)</th>
<th>Half-life ($t_{1/2}$)</th>
<th>$E_{i}(E_{γ})$ (keV) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>$^{132}\text{Ba(\gamma,n)}^{131}\text{Ba}$</td>
<td>9.80</td>
<td>0.101</td>
<td>12.0 d</td>
<td>124 (29.2); 496 (47.1)</td>
</tr>
<tr>
<td></td>
<td>$^{134}\text{Ba(\gamma,n)}^{133m}\text{Ba}$</td>
<td>9.76</td>
<td>2.42</td>
<td>38.9 h</td>
<td>276 (17.5)</td>
</tr>
<tr>
<td></td>
<td>$^{136}\text{Ba(\gamma,n)}^{135m}\text{Ba}$</td>
<td>9.38</td>
<td>7.85</td>
<td>28.7 h</td>
<td>268 (17.5)</td>
</tr>
<tr>
<td>Pb</td>
<td>$^{204}\text{Pb(\gamma,n)}^{203}\text{Pb}$</td>
<td>7.75</td>
<td>1.42</td>
<td>52.0 h</td>
<td>279 (80.1)</td>
</tr>
</tbody>
</table>

* The gamma rays used for the determination.
3.2. Correlation of 226Ra activity with Ba and Pb contents

Bivariate analysis of the Pearson correlation showed that 226Ra activity was individually associated with Ba ($r = 0.989, p < 0.001$) or Pb ($r = 0.960, p < 0.001$) (Table 3, Fig. 1(a)). However, after controlling for the contribution of Pb to 226Ra, 226Ra was strongly correlated with Ba content ($r = 0.859, p < 0.001$; Table 3 and Fig. 1(b)). On the contrary, 226Ra was not independently correlated with Pb ($r = 0.236, p = 0.217$; Table 3 and Fig. 1(c)). Since Pb was obviously correlated with Ba ($r = 0.978, p < 0.001$), it is the reason that there was correlation between Pb level and 226Ra activity in bivariate analysis ($r = 0.960$) but no correlation in partial analysis adjusted to Ba ($r = -0.236$). These results meant Pb was a confounding factor to interfere with the evaluation of Ba level referred to 226Ra activity. It is difficult to experimentally distinguish the contribution of 226Ra activity from Ba and/or Pb because they exist together in hokutolite. This statistical logic implied that Pb may theoretically interfere with the accuracy in evaluating 226Ra activity attributed to Ba ($r = 0.989$ down to 0.859). Based on statistical analysis, it suggested that Pb happen to occur with Ba in the hokutolite, and Ba was the crucial element that contributed to 226Ra activity. If Ba and Pb were considered together in determining 226Ra activity, the correlation between 226Ra and Ba would be overestimated. According to the stimulated regression equation, every gram of BaSO$_4$ was accompanied by 83 Bq of 226Ra activity.

3.3. Estimation of 226Ra activity from Ba/Pb ratio

The Ba/Pb ratio has been commonly used to characterize the chemical composition of hokutolite. To express 226Ra activity in hokutolite simply, the 226Ra activities of all samples were plotted against Ba/Pb ratio in Fig. 2. The relationship between 226Ra activity and Ba/Pb demonstrated that 226Ra preferentially co-precipitated with Ba. The equation 226Ra (Bq) = 0.56 + 82.62 BaSO$_4$ (g) − 17.41 PbSO$_4$ (g) ($R^2 = 0.979$) can be applied to evaluate the 226Ra activity in hokutolite (Ba/Pb = 1.8–3.3) from Peitou Hot Spring.

3.4. Other remarks

The formation of the hokutolite crystal is governed by several factors such as source material, flow rate of hydrothermal solution, pH value, chloride concentration, temperature and others. Therefore, the Ba/Pb ratio in hokutolite may vary in time and among domains. The advantage of using PAA and gamma-ray spectrometry to determine Ba, Pb and 226Ra contents simultaneously is to obtain more representative and reliable information, even when the composition of samples is non-uniform. Notably, the photon activated nuclides and 226Ra in the hokutolite samples were measured together under the same counting geometry and...
conditions, and the concentrations of Ba, Pb and 226Ra in the hokutolite samples can therefore be precisely related, avoiding uncertainties associated with the use of different analysis processes. Fig. 3 displays a typical gamma-ray spectrum after photon irradiation.

For 1 g of pure hokutolite specimen with a Ba/Pb ratio of 2, the photon-induced activities of 135mBa and 203Pb were estimated to be 55 and 58 Bq, respectively, at the end of irradiation. These activities are close to that from the 226Ra that they contained. Additionally, these levels are far below the exempt limits on the activities for 203Pb (10^6 Bq), 135mBa (10^6 Bq) and 226Ra (10^4 Bq) (IAEA, 1996; AEC, 2006), suggesting that handling and delivering such samples poses no radiation risk.

4. Conclusion

(1) The combination of photon activation and gamma-ray spectrometry constitutes a practical and reliable method for determining Ba, Pb and 226Ra contents in hokutolite, although the amount of radium by weight is much lower than that of Ba or Pb.

(2) Barium content is strongly correlated with 226Ra activity, and is the crucial element that co-precipitates with 226Ra during the formation of hokutolite.

(3) Both 226Ra and Ba/Pb ratio in hokutolites that were collected from the Peitou River decline as the distance from the vent increases. The activity of 226Ra can be derived from the experimentally determined Ba/Pb ratio.

Acknowledgment

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research.

References

