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DNA demethylation in hormone-induced
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Epigenetic modifications at the histone level affect gene regulation
in response to extracellular signals1,2. However, regulated epigenetic
modifications at the DNA level, especially active DNA demethyla-
tion, in gene activation are not well understood3–5. Here we report
that DNA methylation/demethylation is hormonally switched to
control transcription of the cytochrome p450 27B1 (CYP27B1) gene.
Reflecting vitamin-D-mediated transrepression of the CYP27B1
gene by the negative vitamin D response element (nVDRE)6,7,
methylation of CpG sites (5mCpG) is induced by vitamin D in this
gene promoter. Conversely, treatment with parathyroid hormone, a
hormone known to activate the CYP27B1 gene8, induces active
demethylation of the 5mCpG sites in this promoter. Biochemical
purification of a complex associated with the nVDRE-binding
protein (VDIR, also known as TCF3)6,7 identified two DNA methyl-
transferases, DNMT1 and DNMT3B, for methylation of CpG sites9,
as well as a DNA glycosylase, MBD4 (ref. 10). Protein-kinase-C-
phosphorylated MBD4 by parathyroid hormone stimulation pro-
motes incision of methylated DNA through glycosylase activity11,
and a base-excision repair process seems to complete DNA
demethylation in the MBD4-bound promoter. Such parathyroid-
hormone-induced DNA demethylation and subsequent transcrip-
tional derepression are impaired in Mbd42/2 mice12. Thus, the
present findings suggest that methylation switching at the DNA
level contributes to the hormonal control of transcription.

CYP27B1 is the final enzyme in vitamin D biosynthesis, and it is
primarily expressed in the renal proximal tubule6–8. Two calcemic
hormones strictly regulate CYP27B1 gene transcription6,7. Para-
thyroid hormone (PTH) induces CYP27B1 expression by activating
protein kinase A and C (PKA and PKC, respectively)8,13. 1a,25-
dihydroxyvitamin D3 (1a,25(OH)2D3), a hormonally active form of
vitamin D3, is a repressive signal that binds to and activates the nuclear
vitamin D receptor (VDR)14–16. A basic helix–loop–helix transcrip-
tional activator (VDR interacting repressor, VDIR) regulates the tran-
scription of CYP27B1 by the negative vitamin D response element
(nVDRE)6,7. Heterodimers of vitamin-D-bound VDR and retinoid X
receptor (RXR) repress the activation of VDIR that is bound upon the
nVDRE by means of the histone deacetylase (HDAC) co-repressor
complex6.

We found that the HDAC inhibitor tricostatin A (TSA) did not
fully abrogate vitamin-D-induced transrepression in either 293F cells
or mouse cortical tubular (MCT) cells (Supplementary Fig. 2). Using
newly established stable 293F and MCT transformants expressing
Flag–VDIR, we tested for other factor(s)/complex(es) that co-
repressed transcription17,18 (Supplementary Fig. 3a). The VDIR and
VDR interactants consisted of several complexes when fractionated

on an ion-exchange column (Supplementary Fig. 3b) and a glycerol
gradient (data not shown)17,18. We identified DNA methyltrans-
ferases 1 and 3B (DNMT1 and DNMT3B)9 as VDIR and VDR inter-
actants (Fig. 1a) with DNMT activity (Fig. 1g). Generally, DNMT
family members methylate cytosines at specific DNA sequences to
repress gene expression19. In a luciferase assay in 293F cells, both
DNMT1 and DNMT3B acted as co-repressors for vitamin-D-
induced transrepression of the CYP27B1 promoter (Supplementary
Fig. 5). Vitamin-D-induced DNA methylation of cytosines (5mC) was
found in the CpG regions of the promoter in 293F cells (see Fig. 1b)
and MCT cells (data not shown), as assessed by bisulphite sequencing
(Fig. 1c and Supplementary Fig. 6), methylation-specific PCR (Sup-
plementary Fig. 7), and chromatin immunoprecipitation and quanti-
tative PCR (ChiP-qPCR) with an anti-5mC antibody (Fig. 1d). This
methylation step required DNMT1 and DNMT3B (Fig. 1d and
Supplementary Fig. 8) based on knockdown assays (Supplementary
Fig. 4). The knockdown of DNMTs abrogated vitamin-D-induced
transrepression of endogenous CYP27B1 (Fig. 1e), and a DNMT inhi-
bitor, 5-azacytidine, plus TSA, abolished vitamin-D-induced trans-
repression (Supplementary Fig. 2). Vitamin-D-induced recruitment
of DNMT1 and DNMT3B was detected at the CYP27B1 promoter by
ChIP analysis (Fig. 1f and Supplementary Fig. 9), presumably as direct
VDR interactants as observed in an in vitro glutathione S-transferase
(GST)-pull-down assay (Supplementary Fig. 10). DNA methylation
of the CpG sites in the promoter and coding regions (Fig. 1c, d), as well
as histone deacetylation (Fig. 1d, f), were induced by vitamin D, but a
heterochromatin marker, HP1a18,20, was not detected (Supplementary
Fig. 11). Upregulation of DNMT activity of the VDIR immunocom-
plex by vitamin D was reduced in the presence of PTH (Fig. 1g).
Continued PTH treatment of cells that had been pre-incubated with
vitamin D induced demethylation of the 5mCpGs (Figs 1c, 2d and
Supplementary Fig. 7).

Next, we assayed for a PTH effect in DNA replication. In proximal
renal tubule cells expressing the Cyp27b1 gene in mice, bromodeox-
yuridine (BrdU) incorporation (Supplementary Fig. 12a)20 was not
affected by either 48 h PTH treatment or VDR deficiency (Vdr2/2)21

(Fig. 2a). Likewise, PTH-induced DNA demethylation of the
CYP27B1 promoter in 293F cells was detected despite 24 h arrest of
the cell cycle after serum depletion or treatment with aphidicolin22

(Fig. 2b and Supplementary Fig. 12b, c). It was thus unlikely that 5mC
replaces C in the newly synthesized DNA during DNA replication.

We characterized MBD4 (refs 10, 12) further because MBD4
recruitment to the promoter coincided with the state of DNA methy-
lation (Fig. 2c, d and Supplementary Fig. 13). MBD4 belongs to the
5-methyl-CpG binding domain (MBD) family, which is implicated in
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transcriptional repression23. Unlike other MBD family members,
MBD4 functions in DNA repair as a thymine glycosylase to remove
T/G mismatches generated after the deamination of 5mC (refs 10, 24).
ChIP analyses showed that MBD4 was the only MBD protein identified
at the CYP27B1 promoter (Fig. 2c). MBD4 was co-immunoprecipitated
with VDIR in the presence of vitamin D, and remained associated after
co-treatment of vitamin D with PTH independent of the dissociation of
DNMTs from VDIR (Fig. 2e). These hormonal effects were not seen in
the reported MBD4-binding 5mCpGs sites in the multidrug resistance
(MDR, also known as ABCB1) gene promoter25 (Supplementary Fig.
14). VDIR seemed to be indispensable for MBD4 recruitment to the
promoter (Fig. 2f and Supplementary Fig. 15), presumably through

physical interaction (Supplementary Fig. 16). It was recently reported
that in transcriptionally active promoters, demethylation of 5mCpGs
requires DNMT3A/B for deamination of 5mCpGs for further T/G mis-
match repair26. However, in 293F cells pretreated with vitamin D for
24 h, DNMT1, DNMT3B or thymine-DNA glycosylase (TDG) was
dispensable for PTH-induced demethylation of 5mCpGs within the
CYP27B1 promoter (Fig. 2g). Knockdown of MBD4, but not MBD2,
blocked PTH-induced demethylation of 5mCpGs (Fig. 2h, i and
Supplementary Fig. 17). Given the efficient binding of MBD4 to
5mCpG (ref. 10), we proposed that the DNA glycosylase activity of
MBD4 induced active DNA demethylation of the 5mCpG sites. We
tested this idea with an MBD4 mutant with a deletion in the putative
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Figure 1 | Hormonal control of DNA methylation/demethylation of the
CYP27B1 gene promoter. a, Silver staining of anti-Flag-affinity purification,
followed by anion-exchange column chromatography using vitamin D (VD;
100 nM)-treated MCT cells expressing Flag–VDIR. b, Schematic
representation of the CpG sites in the CYP27B1 promoter and coding region.
Black filled circles indicate CpG sites. c, Time course of DNA methylation/
demethylation in CYP27B1(2230/1130) region. Bisulphite sequencing was
performed using vehicle-treated, vitamin D (100 nM)-treated and vitamin
D/PTH (1mM)-treated 293F cells for the indicated time. Numbers in
parentheses denote time after PTH treatment. White and black squares
indicate unmethylated and methylated CpGs, respectively. d, e, ChIP–qPCR

analyses of 293F cells transfected with indicated short interfering RNAs
(siRNAs), treated with vitamin D (100 nM) for 24 h (means 6 s.d., n 5 3)
(d) and qPCR (means 6 s.d., n 5 3, *P , 0.005, **P . 0.2) (e). Ctrl, control.
f, Time-dependent ChIP analyses using 293F cells with vitamin D (100 nM)
treatments for the indicated times. g, DNMT activity using Flag–VDIR
immunoprecipitants (IP) in vitamin D/PTH-treated 293F cells. Activity
(means 6 s.d., n 5 3) is shown as c.p.m. of S-adenosyl-L-[methyl-3H]-
methionine incorporated into oligonucleotide substrate. Background
activity was measured in the control experiments performed with Flag-alone
immunoprecipitants.
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glycosylase catalytic domain (Dgly) (Supplementary Figs 19a and 21a).
This mutant was defective in PTH-induced DNA demethylation in cells
deficient of endogenous MBD4 (Fig. 2i and Supplementary Fig. 18).

To test the idea that downstream signalling of PTH activates MBD4-
mediated DNA demethylation, phosphorylation of putative sites on
MBD4 by PKA and PKC (downstream signalling factors of PTH)13 was
measured with recombinant proteins (Supplementary Fig. 19). MBD4
was phosphorylated by PKC in vitro (Fig. 3a) and in 293F cells (Fig. 3b
and Supplementary Fig. 20). With MBD4 recombinant mutants, serine
residues (165 and 262) were mapped as PKC-phosphorylation sites

(Fig. 3c). We addressed whether MBD4 has DNA glycosylase activity
with mismatched and methylated CpG oligonucleotides, using TDG as
a control, in in vitro assays23,26. Strand incisions by unphosphorylated
MBD4 were clearly seen in T/G mismatched oligonucleotides, con-
firming the reported glycosylase activity of MBD4 for T/G mismatch
(Fig. 3d, e and Supplementary Fig. 21)10,26. Although the direct DNA
binding of MBD4 to both oligonucleotides was detected on electro-
phoretic mobility shift assays (EMSA) (Supplementary Fig. 22), strand
incision of the methylated CpG oligonucleotides was less pronounced.
However, strand incision of methylated CpG oligonucleotides was
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the CYP27B1 promoter. a, In vivo BrdU incorporation in the kidney and
small intestine (control) of mice with indicated genotypes. Proximal tubular
cells surrounding the glomerulus (asterisk) are circled by a dashed line.
Original magnification, 3200. Experimental details are presented in
Supplementary Fig. 11a. b, ChIP–qPCR analyses using 293F cells treated
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antibody in vitamin D/PTH-treated MCT cells. f, ChIP analyses using 293F

cells transfected with indicated siRNAs for 24 h, and then treated with
vitamin D (24 h). g, ChIP analyses using vitamin-D-treated 293F cells
transfected with indicated siRNAs for 24 h, then further treated with PTH
(24 h). h, Bisulphite sequencing using 293F cells transfected with indicated
siRNAs for 24 h, then further treated with vitamin D and PTH (24 h)
(means 6 s.d., three independent experiments, n 5 15). i, ChIP–qPCR
analyses of vitamin D/PTH-treated 293F cells transfected with siRNAs and
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(means 6 s.d., n 5 3).
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significant when MBD4 was phosphorylated by PKC22 (Fig. 3e, f and
Supplementary Fig. 23). A PKC inhibitor attenuated the enzymatic
activity of MBD4 (Fig. 3g). Consistent with this, phosphorylation
mutants attenuated PTH-induced DNA demethylation in 293F cells
deficient in endogenous MBD4 (Fig. 3h), although their DNA-binding
activities were retained (Supplementary Fig. 24). We then evaluated
whether major factors responsible for DNA repair were involved in this
mechanism11,26,27. ChIP analyses showed that apurinic/apyrimidinic
(AP) endonuclease-1 (APE-1, also known as APEX1), DNA ligase I
and polymerase (Pol)b—components of the base-excision repair pro-
cess—were recruited simultaneously to the promoter together with
MBD4 (Fig. 3i and Supplementary Fig. 25). APE-1 was pivotal in the
recruitment of these DNA repair factors (Fig. 3i). These data indicate
that DNA demethylation is completed through a base-excision repair

process after glycosylation by MBD4. Consistent with the role of
MBD4 in PTH-induced DNA demethylation, MBD4 knockdown
reversed the effects of PTH on the CYP27B1 promoter (Fig. 4a) and
endogenous gene expression (Supplementary Fig. 26). Neither the
MBD4 phosphorylation mutants nor the catalytic domain deletion
mutant (Dgly) conferred a response to PTH (Fig. 4b and
Supplementary Fig. 27). In ChIP analyses of the CYP27B1 promoter,
PTH-induced DNA demethylation was coupled to histone acetylation,
H3K4 methylation and Ser-5-phosphorylated RNA Pol II recruitment3

(Fig. 4c and Supplementary Fig. 28). Such PTH-induced alterations
were abolished by depletion of MBD4 (Fig. 4c).

Finally, the physiological role of MBD4 in PTH-induced derepres-
sion was tested in Mbd42/2 mice. Vitamin D treatment for 3 days
effectively suppressed endogenous Cyp27b1 gene expression (Fig. 4d,
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e) and induced DNA methylation in the kidneys of wild-type and
Mbd42/2 mice (Fig. 4g and Supplementary Fig. 29). Administration
of PTH to vitamin-D-pretreated, wild-type mice derepressed Cyp27b1,
as determined by qPCR with reverse transcription (qRT–PCR; Fig. 4e)
and in situ hybridization (Fig. 4d). The recovery of serum
1a,25(OH)2D levels (Fig. 4f) as well as DNA demethylation (Fig. 4g)
were consistently seen. In Mbd42/2 mice, PTH effects were signifi-
cantly impaired (Fig. 4d–g), confirming the in vitro observations.

Active DNA demethylation has been implicated in the derepression
of silenced gene promoters during early development3–5. The involve-
ment of active DNA demethylation of gene promoters for regulated
transcription is, however, largely unknown. Here we found that DNA
methylation/demethylation that determined the function of the
CYP27B1 gene promoter was regulated by hormonal switching (see
Supplementary Fig. 1). Transcriptional derepression of the CYP27B1
gene by active DNA demethylation was hormonally inducible. Thus,
epigenetic switching at the DNA level reflects, at least in part, well-
established hormonal actions on gene regulation.

Hormonally regulated DNA demethylation of the CYP27B1 gene
promoter is mediated by glycosylase activity of MBD4 by PKC-
mediated phosphorylation. Although MBD4 is involved in repairing
mismatched T/G, structural alteration of MBD4 caused by phosphor-
ylation may shift its substrate specificity. Considering the association

of base-excision repair factors with MBD4 on 5mCpG sites in the
CYP27B1 gene promoter, it is likely that this form of active DNA
demethylation involves a base-excision repair process. The dissoci-
ation of DNMTs from VDIR and MBD4 in the presence of PTH seems
to preclude re-methylation of the repaired cytosine. Thus, DNA
repair-mediated DNA demethylation in metazoans is probably
accomplished by diverse processes that are dependent on the epige-
netic context25,28–30.

METHODS SUMMARY
Biochemical purification of VDIR-associated proteins. Preparation of the

nuclear extracts, anti-Flag affinity purification, and mass spectrometry were

performed as previously described17. Details are provided in Supplementary

Methods.

In vitro glycosylation assay. In vitro glycosylation assays were performed essen-

tially as previously described10,23,26. Recombinant GST–MBD4 and its derivatives

were purified from Escherichia coli, and subjected to a phosphorylation reaction

by PKC. 59-end [c-32P]-ATP-labelled DNA substrates were incubated with phos-

phorylated or non-phosphorylated GST–MBD4 as detailed in the

Supplementary Methods.

Bisulphite sequencing and methyl-specific PCR. Genomic DNA was isolated

from cell lines and wild-type or Mbd4-deficient mice, treated with vehicle, vitamin

D or PTH as indicated. Bisulphite treatment and sequencing were performed as

described. Results are representative of at least three independent experiments.

Details are provided in Supplementary Methods.

DNMT assay. The VDIR complex was purified by immunoprecipitation. 293F

cells were transfected as indicated with Flag-tagged VDIR, and cultured in the

presence or absence of vitamin D for 24 h, and then PTH for 24 h. After 48 h,

the cells were collected, and the Flag-tagged VDIR complex was purified by Flag

M2 agarose (Sigma). DNA methyltransferase activity was found in the VDIR

immunoprecipitates from the 293F cells only after treatment with vitamin D.

Activity is displayed as counts per minute (c.p.m.) of S-adenosyl-L-[methyl-3H]-

methionine incorporated into an oligonucleotide substrate.
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293F cells. The cells were transfected with MBD4 siRNA for 24 h, and
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localized in the uriniferous tubule cells. Original magnification, 3200.
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sequencing using whole murine kidneys (means 6 s.d., three independent
experiments, n 5 30).

NATURE | Vol 461 | 15 October 2009 LETTERS

1011
 Macmillan Publishers Limited. All rights reserved©2009



21. Takezawa, S. et al. A cell cycle-dependent co-repressor mediates photoreceptor
cell-specific nuclear receptor function. EMBO J. 26, 764–774 (2007).

22. Ballestar, E. & Wolffe, A. P. Methyl-CpG-binding proteins. Targeting specific gene
repression. Eur. J. Biochem. 268, 1–6 (2001).

23. Zhu, B. et al. 5-Methylcytosine DNA glycosylase activity is also present in the
human MBD4 (G/T mismatch glycosylase) and in a related avian sequence.
Nucleic Acids Res. 28, 4157–4165 (2000).

24. El-Osta, A., Kantharidis, P., Zalcberg, J. R. & Wolffe, A. P. Precipitous release of
methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated
human multidrug resistance gene (MDR1) on activation. Mol. Cell. Biol. 22,
1844–1857 (2002).

25. Métivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter.
Nature 452, 45–50 (2008).

26. Waters, T. R., Gallinari, P., Jiricny, J. & Swann, P. F. Human thymine DNA
glycosylase binds to apurinic sites in DNA but is displaced by human apurinic
endonuclease 1. J. Biol. Chem. 274, 67–74 (1999).

27. Tini, M. et al. Association of CBP/p300 acetylase and thymine DNA glycosylase
links DNA repair and transcription. Mol. Cell 9, 265–277 (2002).

28. Gehring, M. et al. DEMETER DNA glycosylase establishes MEDEA polycomb
gene self-imprinting by allele-specific demethylation. Cell 124, 495–506
(2006).

29. Barreto, G. et al. Gadd45a promotes epigenetic gene activation by repair-
mediated DNA demethylation. Nature 445, 671–675 (2007).

30. Kangaspeska, S. et al. Transient cyclical methylation of promoter DNA. Nature
452, 112–115 (2008).

Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.

Acknowledgements We thank A. Murayama, K. Saito and A. Matsukage for
discussions, Y. Imai and R. Fujiki for technical assistance, K. Sugasawa for plasmids,
and M. Yamaki and H. Yamazaki for preparing the manuscript. This work was
supported in part by priority areas from the Ministry of Education, Culture, Sports,
Science and Technology (to F.O. and S.K.).

Author Contributions M.-S.K., F.O. and S.K. designed the experiments. M.-S.K., S.F.
and F.O. performed biochemical assays. M.-S.K., M.-Y.Y., Y.Y., Y.S. and I.Y. conducted
the promoter analysis. T.K., S.T. and T.M. carried out the animal study. M.-S.K. and
K.-I.T. were responsible for the data interpretation. M.-S.K. and S.K. wrote the
manuscript. All authors discussed the results and commented on the manuscript.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. Correspondence and requests for materials should be
addressed to S.K. (uskato@mail.ecc.u-tokyo.ac.jp).

LETTERS NATURE | Vol 461 | 15 October 2009

1012
 Macmillan Publishers Limited. All rights reserved©2009

www.nature.com/nature
www.nature.com/reprints
mailto:uskato@mail.ecc.u-tokyo.ac.jp

	Title
	Authors
	Abstract
	Methods Summary
	Biochemical purification of VDIR-associated proteins
	In vitro glycosylation assay
	Bisulphite sequencing and methyl-specific PCR
	DNMT assay

	References
	Figure 1 Hormonal control of DNA methylation/demethylation of the CYP27B1 gene promoter.
	Figure 2 MBD4 is indispensable for PTH-induced DNA demethylation in the CYP27B1 promoter.
	Figure 3 The DNA glycosylase activity of MBD4 is potentiated by PKC-phosphorylation.
	Figure 4 MBD4-mediated DNA demethylation derepresses transcription of the vitamin D-transrepressed CYP27B1 gene.

