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Design and Evaluation of an Open-Source Wireless 

Mesh Networking Module for Environmental 

Monitoring 

Abstract—Wireless mesh networking extends the 

communication range among cooperating multiple low-power 

wireless radio transceivers and is useful for collecting data from 

sensors widely distributed over a large area. By integrating an 

off-the-shelf wireless design, such as the XBee module, 

development of sensor systems with mesh networking capability 

can be accelerated. This study introduces an open-source 

wireless mesh network (WMN) module, which integrates the 

functions of network discovery, automatic routing control, and 

transmission scheduling. In addition, this design is open-source 

in order to promote the use of wireless mesh networking for 

environmental monitoring applications. Testing of the design 

and the proposed networking module is reported. The proposed 

wireless mesh networking module was evaluated and compared 

to XBee. The average package delivery ratio and standard 

deviation of the proposed WMN module and the XBee are 

94.09%, 91.19%, 5.14% and 10.25%, respectively, in a 20 node 

experiment. The proposed system was demonstrated to have the 

advantages of low-cost combined with high reliability and 

performance, and can aid scientists in implementing monitoring 

applications without the complications of complex wireless 

networking issues. 

 

Index Terms—XBee, wireless sensor, mesh network module, 

open-source, 802.15.4, ZigBee 

 

I. INTRODUCTION 

sing a wireless network to monitor the environment has the 

advantage of imposing no constraints due to cabling for 

data transmission. Wireless mesh networking combines 

multiple wireless transceivers to cooperatively transmit and 

relay their data, thereby extending the region of communication. 

Wireless sensor networks (WSNs) based on this characteristic 

enable environmental monitoring of large areas with multiple 

wireless sensors. Environmental scientists already take 

advantage of WSNs to facilitate the exploration of our world.  

 WSNs have been used in many applications, including health 

care [1], home monitoring [2], green house management [3], 

power consumption monitoring [4][5], agricultural irrigation 

control [6] and snail pest detection [7]. Wireless mesh 

networking of WSNs is the key feature making these 

applications possible. The ZigBee protocol [8] is one of the 

most popular designs that supports wireless mesh networking 

based on the IEEE 802.15.4 standard [9]; therefore, 

environmental scientists can integrate an off-the-shelf ZigBee 

module, i.e., the XBee design [10], into their sensor system and 

enable wireless mesh networking with minimal effort. 
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Fig. 1. An example of wireless mesh network for air quality 

monitoring. 

 For example, environmental scientists can integrate air 

quality sensors with the XBee module and deploy these wireless 

sensors in a distributive manner to measure atmospheric 

pollutant concentrations in different locations of the same 

region. The study [11] presents a typical scenario that using a 

wireless mesh network for air quality monitoring. As shown in 

Fig. 1, The sensors may be deployed in a square-grid topology 

with equal distances, and each sensor cover the same size of 

sensing region. The collected data of sensors send back to a data 

server through a wireless mesh network for later analysis and 

validation. Wireless mesh network can help to deliver data of 

sensors even if some sensor nodes cannot directly communicate 

wirelessly with the data aggregator (or sink), by requiring other 

nodes to relay the data and transfer it to the sink. Given the 

example scenario in Fig. 1, the sensor 4 cannot deliver its data 

directly to the sink, and sensor 4 asked the other sensors, 

including sensor 3, 2 and 1 to help relaying its data to the sink. 

Wireless mesh network can extend the region of communication 

for helping the geographical distributed sensors to deliver data 

in an efficient manner. Other potential applications like 

collecting human data with wearable sensors [12], detecting 

pipe leakage with pressure sensors [13], can be enhanced by 

using wireless mesh network to extend the region of monitoring. 

 However, the use of such commercial products raises issues 

that prohibit applications of this kind of wireless module. One 

major concern is that the hardware and source code are not 

made available to the general public because the commercial 

product is based on proprietary software. During the design 
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stage of a sensor system, users may neither understand how the 

network of the module was formed, nor how the routing 

topology was created. Without access to the source code, or a 

detailed design of the wireless network module, the root cause 

of a problem is difficult to determine.  In order to respond to this 

issue, a wireless mesh networking (WMN) module is proposed 

in this study (shown in Fig. 2) that can be easily integrated into 

the sensor system. The source code of this design is open to the 

public to promote the usage of mesh networking.  
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Fig. 2. The photo and functional block diagram of the proposed WMN 

module. 

 This study is extended from our previous work [14]. The 

goals of developing a WMN module for WSN applications 

include:  (1) forming a wireless mesh networking topology, (2) 

adjusting the topology according to the changes of the radio 

interference, environment, obstacles, etc., (3) transferring the 

sensor's data back to the sink, gateway, or data aggregator 

(usually a computer, i.e., a PC), and (4) subsequently uploading 

the aggregate data to the remote server.  

 These goals roughly depict the functions that a WMN module 

must demonstrate. However, the various types of WSN 

applications may have different requirements for data 

transmission. For example, the measurement of air quality may 

generate 10 bytes of data per 10 minutes per node. Conversely, a 

WSN for monitoring streetlight lamps may need to measure 

current, voltage, temperature, and lighting intensity of a lamp at 

one Hz, which generates up to 30 bytes of data per second per 

node. A survey of existing WSN applications [10] reveals that 

the requirements are diverse. Nevertheless, it is essential for a 

WMN module to provide reliable transmission at a relatively 

low data rate , which may satisfy most WSN applications and 

was the initial goal for our design. In summary, the significant 

contributions of this study are: 

 

1. A WMN module is proposed, which can be easily 
integrated with a sensor system to enhance it by extending 

the communication range and sensing coverage without 

the hassle of a network configuration. 

2. The module design is based on an 8-bit microprocessor 
and a simple radio frequency (RF) transceiver without 

special functional support (i.e., Radio Signal Strength 

Indicator (RSSI), which is not supported by some 

inexpensive RF transceivers, i.e., Nordic nRF24L01P). 

Therefore, this design can be ported to other 

microprocessors and RF transceivers.  

3. The proposed wireless module is open-source in both 
software and hardware. Therefore, it can not only be 

integrated into a sensor system for environmental 

monitoring, but it can also be used to study the 

performance of wireless mesh networking in an actual 

experiment, and to modify it depending on different 

requirements. Therefore, the entry-level knowledge 

required by users of wireless mesh networking is reduced. 

 

The remainder of this paper is organized as follows: Section 

II discusses related works and the goals of this project; Section 

III describes the details of the architecture and design of the 

system; Section IV illustrates the evaluation of the proposed 

system; and Section V presents the conclusions of this study. 

II. RELATED WORKS AND DESIGN GOALS 

In this section, research related to the WMN module is 

discussed. As shown in Fig. 3, a WMN module is connected to 

the host processor via a GPIO, UART, SPI or I2C interface. The 

host processor reads data from its sensors (i.e., temperature, 

humidity, or air quality, etc.), and sends the collected data to the 

WMN module. The WMN module buffers the data and transfers 

it to the destination node in a wireless mesh network. 

 

 
Fig. 3. Architecture of a typical sensor node integrated with a WMN 

module. 

XBee [10] is a popular WMN module for integration with 

sensor systems. Variant versions of the XBee WMN module 

support different protocols and standards, including 802.15.4 

[9], ZigBee [8], and the proprietary DigiMesh [15]. Many 

monitoring applications [1]-[7] are based on the XBee WMN 

module. Similar off-the-shelf modules [21][22][23] are also 

available to be used as a WMN interface in a sensor system. 

 In addition to using a low-power RF transceiver, like IEEE 

802.15.4/TI CC2530 or Nordic nRF24L01P, many Wi-Fi based 

wireless mesh network projects [24][25] have been studied 

previously for providing a larger coverage area and a 

decentralized network infrastructure, which is suitable for 

connecting computers in rural areas or preventing networks 

having to be controlled by a centralized authority. These 

projects are implemented on a PC or Wi-Fi network router; 

therefore, both the hardware cost and power consumption are 

higher than the proposed approach. These issues make using 

Wi-Fi to form a wireless mesh network for environmental 

monitoring infeasible in many practical applications. 
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In the following section, we discuss common issues with 

using such WMN modules in real applications. In the 

deployment stage of a WMN module, it is common to 

experience the problem that some nodes cannot transmit data 

reliably to the sink. However, it is difficult to know the root 

cause as no simple method exists to trace the routing path of the 

data packet in the ZigBee or DigiMesh modules. The problem is 

that the decisions for routing paths in the ZigBee and DigiMesh 

modules are based on Ad hoc On-Demand Distance Vector 

routing (AODV), which explores the routing path while a node 

is attempting to send data. The benefit of AODV is that the node 

in the mesh network is not required to maintain a memory-costly 

large routing table.  

Because the ZigBee is based on a comprehensive standard, 

including forming the network, addressing the nodes, data 

security, profiles and other features. The MeshBee system [18] 

is an open-source ZigBee module based on the Jennic JN5168 

[19]—a wireless microcontroller with an 802.15.4 RF 

transceiver. The open-source format aids the user in debugging 

and customizing their system. Nevertheless, the ZigBee 

implementation is comprehensive, it is difficult to understand 

and modify without a steep learning curve. Another open source 

project [20] by Swiftlet Technology had been announced with a 

similar goal as ours, but the recent progress is not available as 

the funding was unsuccessful through KickStarter [20]. 

In consideration of these issues, the following design goals 

were considered in this study: 

 

1. The proposed open-source code of the WMN module 
should be compact in contrast to the more complex ZigBee 

design to allow the user to use and test the system without 

the delay of a steep learning curve.  

2. The correctness and reliability of the proposed WMN 
module must be verified by application in actual 

experiments to demonstrate that its performance is 

comparable to an off-the-shelf module. 

3. The design may not limited by the specific hardware 
platform, which should reduce the costs of 

implementation. 

 

These design requirements are summarized in the design 

specifications of the WMN module and are described in the 

following section.  

 

III. DESIGN OF WMN MODULE 

 In this section, the design of the WMN module is described.  

 

A. Architecture of WMN  

 The proposed WMN module (Fig. 2) is based on a generic 

8-bit microprocessor (Atmel ATMega328p) and a low-cost RF 

transceiver (Nordic  nRF24L01P), whose output power is 1 mW 

at 2.4 GHz. Interfacing to the host processor is accomplished 

via implementation of UART and GPIO. A functional block 

diagram of a WMN module is presented in Fig. 2. The primary 

processor of the WMN module (ATMega328p) is connected to 

the host processor for interfacing the control signal and the data 

transferred from the host processor. The nRF24L01P is 

connected to and managed by the ATMega328p microprocessor 

via the SPI/I2C. In this design, the host processor only 

communicates with the ATMega328p microprocessor when 

sending and receiving the data packet. The host processor does 

not need to be concerned with the transition state among 

multiple modes, as shown in Fig. 4; therefore, the host processor 

can focus on the application level design and utilize the WMN 

module as a radio modem.  

 

B. Operating Modes of a WMN Module and Detailed 

Flowcharts 
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Fig. 4. Finite state machine of a WMN module. 

 The finite state machine (FSM) of a WMN module 

(connected to a sensor node) is illustrated in Fig. 4. As the 

module is powered on, the WMN module starts in the 

Initialization Mode while waiting to join a network. The system 

switches to the Idle Mode after joining a network. Subsequently, 

the WMN module switches its running mode according to the 

work schedule assigned from the sink, including Sense Mode, 

Sleep Mode, Process Mode, Transmit Mode, and Receive Mode. 

The RF transceiver only turns on in Transmit Mode and Receive 

Mode to save energy. The purpose of Sense Mode is to read data 

from the analog-digital converter (ADC) of the microprocessor 

of the WMN module, this design provides a similar function as 

XBee, it allows for reading sensor data from an external sensing 

component (i.e., a temperature sensor) without support from a 

host processor.  

 The proposed WMN module is based on Time Division 

Multiple Access (TDMA) protocol and is sensitive to timing 

control. The module needs to switch to suitable modes as listed 

in Fig. 4 using exact timing. Because no operating system is 

required in the design, it uses a hardware timer interrupt of the 

microcontroller to trigger the timer interrupt service routine 

(ISR) for ensuring timing correctness. As the timer ISR was 

triggered in the beginning of a new timeslot, as shown in  Fig. 5, 

it toggles the Boolean variables corresponding to different 

modes, i.e., Process Mode, Receive Mode, Transmit Mode, 

Sensing Mode, etc. The timer ISR only modifies the Boolean 

variables and ends the ISR immediately. The variables will be 

referred to in the main loop program to control the system 

behaviors. 
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Fig. 5. Flow Chart: Timer ISR driven changes of WMN module's 

mode. 
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Fig. 6. Flow Chart: Initialization mode. 

 

 In Initialization Mode, as shown in Fig. 6, the microcontroller 

of the WMN module checks whether it received any packages 

from the RF transceiver, and validates the checksum correctness. 

If the package is valid and it is a Beacon (from another router), it 

adds the source node ID into the parent buffer for later use by 

the Parent_Select function (which will be introduced later in this 

section). If the beacon queue buffers sufficient node IDs, then it 

executes the Parent_Select function to determine the best parent 

candidate; the module joins the selected parent's network and 

enters Idle Mode. 

B.2 Idle Mode 
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Fig. 7. Flow Chart: Idle mode. 

 Depicted in Fig. 7, the microcontroller of the WMN module 

in Idle Mode periodically checks the Boolean variables to go to 

different modes, which were modified by the timer ISR. The 

Initial Mode, Receive Mode and Transmit Mode are mutually 

exclusive. The Sense Mode is checked for whether it needs to 

sample data from the sensing component connected to the 

WMN module. At the end of Transmit Mode and Receive Mode, 

it also checks the status of the network connection (i.e., is the 

current parent reachable?), and will execute Initial Mode to find 

another, better parent if necessary.  

 While considering low speed microcontrollers and potential 

buffer-overrun of the RF transceiver, the receiving  procedure is 

separated into two modes, Receive Mode and Process Mode, to 

deal with incoming data in a timely manner. The procedure 

involves retrieving data from the buffer of the RF transceiver, 

validating the incoming data package using a checksum 

algorithm, determining the package type, synchronizing its 

clock to the beacon , data conversion, and so on. In these steps, 

data conversion, storage (into flash memory or external storage, 

i.e., SD card) and display messaging (via UART for debugging) 

are time consuming and often introduce un-deterministic delay 

and buffer-overrun of the RF transceiver. As illustrated in Fig. 4, 

Receive Mode retrieves the data package and validates the 

checksum, and Process Mode deals with data conversion, 

storage and display. This avoids a single function/mode 

dominating the microprocessor for too long. 

B.3 Receive Mode and Process Mode 

 Receive Mode (shown in Fig. 9), starts by recording the 

current start time of the timeslot, then turns on the RF 

transceiver and waits for an incoming data package. This mode 

ends after timeout. If a package is received, it checks the 

checksum and forwards the data package to the corresponding 

path. In this mode, we synchronize the internal clock if it is a 

valid beacon package from its parent.   

 In order to save energy, Process Mode (Fig. 10) checks the 

corresponding variable and if it is false, goes to Sleep Mode 

immediately. Otherwise, it processes data in the buffer until the 

buffer is empty. As this design is timing sensitive, the total time 

used by Receive Mode and Process Mode must not exceed the 

length of a timeslot. In this design, the timer ISR toggles Process 
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Mode to false if the runtime exceeds the timeslot, therefore, 

ensuring the timing correctness between several nodes over 

timeslots. 
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End

. . .

Time slot: nTime slot: n-1 Time slot: n+1

Start

 
Fig. 8. A detail schedule in a timeslot for receiving data. 
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Fig. 9. Flow Chart: Receive mode. 
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Fig. 10. Flow Chart: Process mode. 
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Fig. 11. Flow Chart: Sense mode. 

 In Sense Mode, the microprocessor collects data from its 

external sensors (like the ADC implementation in XBee), 

because the proposed WMN module can read from external 

sensors independently without support from a host processor. 

B.5 Transmit Mode 
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Fig. 12. Flow Chart: Transmit mode. 

 

 On the WMN module's timeslot, it sends all the data in the 

buffer to the RF transceiver. After the send buffer is empty, it 

goes to Sleep Mode to save energy. 

 

C. Formation of Mesh Network: A TDMA approach 

 The design of the proposed WMN module is aimed at 

forming a wireless mesh network automatically. Three types of 

roles are defined in design of the mesh network: End Device 

(ED), Router and Sink. One of the modules in the network is set 

as the Sink to collect data from all other modules. The other 

modules in the initial state are acting as an ED. An ED is a 

simple wireless sensor, collecting data and sending it back to its 

parent. An ED changes its role to a Router if the ED can help 

another ED/Router to relay data to its parent.  

 In contrast to ZigBee, which is based on carrier sense 

multiple access with collision avoidance (CSMA/CA) and Ad 

hoc On-Demand Distance Vector Routing (AODV), the 

proposed design uses Time Division Multiple Access (TDMA) 

while keeping design complexity and manageability in mind. 

This is further strengthened by the goals of most WSN 

applications that are designed to collect data from a WSN. Data 

is often periodically generated from the sensor nodes and is 

collected and transferred to the sink. TDMA is suitable in such 

applications as the TDMA schedule reserves a timeslot for each 

node in the system, and increases the package delivery ratio and 

reduces package collision in wireless media.  

 In the design, each node in the system was pre-assigned a 

unique ID number and has a corresponding and exclusive 

timeslot in every TDMA cycle, to avoid multiple WMN sensor 

nodes trying to transmit data at the same timeslot. In this design, 

the WMN module with the ID 0 is functioning as a sink, which is 

used to: 
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( 1 ) Broadcast the initial beacon signal and TDMA schedule to 
manage other nodes 

( 2 ) Collect the data from nodes 
 

 The other nodes (which the ID is not 0) are sensor nodes (or 

ED/Router), which sense data and transfer it to the sink. Fig. 13 

presents the working flowchart of a WMN sensor node. At the 

beginning of a timeslot, WMN checks whether the current 

timeslot belongs to itself by checking whether WMN's ID = 

current timeslot number.  

 

( 1 ) If WMN's ID＝current timeslot number 

If the WMN has joined a network, then it broadcasts its 

beacon to notify its near neighbors. If it has not yet joined 

any network, it skips this round.  

( 2 ) If WMN's ID ≠ current timeslot number 
If a node does not have the current timeslot and receives a 

beacon from another node, then it will run the 

Parent_Select function, if it has not yet joined any 

network.  
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Fig. 13. Flow Chart: Mesh network formation from the view of a 
WMN module 

D. Parent_Select Function: A Hardware-Independent 

Approach 

 The WMN modules form a mesh network and route data 

based on a hop-count distance estimation approach, rather than 

using Radio Signal Strength (RSS) or LQI (Link Quality 

Indicator) to determine the quality of a path. Because RSS and 

LQI are not always available, i.e., Nordic nRF24L01P is not 

capable of measuring RSSI and LQI. Therefore, in this design 

the parent node of the WMN module is determined by selecting 

the node with the smallest hop count.  

 

 Meanwhile, the parent node will be changed if: 

( 1 ) The current parent is not available (not receiving its 
beacon) for a predefined length of time, or 

( 2 ) A better parent becomes available, even if its hop count is 
equal to the hop count of the current parent 

 

 The received beacons from parent candidates are stored in a 

FIFO queue. If a WMN module receives beacons from multiple 

parents it determines the best candidate according to the 

frequency of the beacons received within the sliding window of 

the beacon queue. This approach has the advantages that the 

computation complexity is fixed and the memory requirement is 

small. Since in a network, there might be some nodes is 

unreliable, due to hardware failure or network problem, but still 

appeared to be a good parent node candidate to others. It might 

cause PDR decrease and significant transmission delay if such a 

node been selected as a parent node. Therefore, in this design, 

each node has a blacklist that is used to mark such an unhealthy 

parent node, and prevent the node from being selected 

repetitively.   

IV. EVALUATION AND DISCUSSION 

 The proposed WMN module was evaluated to verify the 

correctness of the design. Twenty wireless sensor nodes based 

on the proposed WMN module were deployed over an office 

floor at the university campus, while twenty XBee DigiMesh 2.4 

based wireless sensors were also installed in the same locations  

(Fig. 14) for performance comparison. Table I presents the 

details of the two versions of wireless sensor node. Note that for 

the sensor with XBee, an additional microcontroller Atmel 

Atmega328p is connected to the XBee (Fig. 14 right) to control 

the timing of sample and sending data, therefore, synchronizing 

the frequency of data generation from the two types of nodes. 
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Fig. 14. The proposed WMN module (left) and off-the-shelf XBee 

DigiMesh 2.4 (right). 

 The WMN module was configured at an output level of 1 mW 

RF at 2.4 GHz with a 3dBi omni-directional antenna, the same 

as the XBee DigiMesh 2.4. We set timeslots to 1 second and a 

TDMA cycle contains 20 timeslots in our WMN module. Each 

node was configured to send one data packet per minute to 

simulate a periodic reporting application. The data packet will 

eventually be relayed by the other nodes and delivered to the 

sink (denoted as 'S' in the Fig. 18). The experiment was 

conducted for five days to evaluate the performance of the 

packet delivery and the stability of the network topologies.  

Table I shows the configuration details. 

 In this experiment design, some sensor nodes (at location 16, 

17 and so on) were intentionally installed in the open space at 

the left-side shown in Fig. 18, where there is no Line-of-Sight 
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(LOS) to the sink. Therefore, these sensor nodes always need 

other nodes for relaying data to the sink. In addition, we can 

evaluate how the higher deployment density and number of 

sensor nodes can affect the network performance. This 

experiment was conducted for 218 hours or about 9 days.  

Table I: Configurations of the sensor with WMN module and XBee  

 
WMN Module 

(in Fig. 14 left) 

XBee DigiMesh  

 (in Fig. 14 right) 

Protocol The proposed protocol DigiMesh  

MCU  

ATmega328P, 16MHz 

(for control sending data, 

network formation, 

routing, etc,.) 

ATmega328P, 16MHz  

(for control sending data) 

RF Transceiver Nordic nRF24L01P  XBee DigiMesh  

RF Frequency 2.4GHz  2.4GHz  

RF Power 1mW  1mW  

Antenna 
Omni Directional  

SMA, 3dBi 

Omni Directional  

RP-SMA, 3dBi 

 

1) Dynamic Routing 

 

 As shown in Fig. 18(a), we can see that in the beginning of the 

experiment all the WMN sensor nodes can reach the sink. The 

WMN sensor at location 16 can transfer its data along the path 

16-19-1-S(sink). After several days, the topology changed as 

shown in the snapshot in Fig. 18(b). In addition, the WMN 

module at location 13 (hereafter denoted by WMN 13) stopped 

working due to hardware failure. This can be expected based on 

Fig. 18, where none of the WMN nodes selected WMN 13 as 

their parent, because it did not seem to be a reliable parent 

candidate. The performance of dynamic routing is presented in 

the figure. The WMN module at location 16 in Fig. 18(a) 

transfers its data along the path 16-19-1-S, but changed the path 

to 16-17-14-S. This indicates that WMN 16 considered WMN 

17 a better parent in Fig. 18(b), based on the Parent_Select 

function.   
 

2) Package Delivery Ratio and Received Package Number 

 

 We further investigated the package delivery ratio and 

received package number during the experiment, for both the 

proposed WMN module and the XBee as present in Fig. 15. 

This figure shows the received number of data packages from 

the WMN module and the XBee are all very similar in most 

locations; except the WMN at location 13 and the XBee at 

location 9, which malfunctioned due to hardware failure, 

therefore, the received package numbers are much less. The 

power outage of the sensors at location 11 during the 

experiment also caused a fewer number of data packages 

received.  

 For the package delivery ratio (PDR, the percentage of data 

sent from the sender that can be delivered to the sink), the 

proposed WMN module-based wireless sensors are relatively 

stable among various locations, as the PDRs of XBee have 

higher fluctuations.  As shown in  Fig. 15, the average PDR and 

standard deviation of the proposed WMN module and XBee are 

94.09%, 91.19%, 5.14% and 10.25%, respectively. Under the 

same configurations, the experiment results support the 

proposed WMN module can offer comparable or even better 

performance than commercial products such as the XBee, since 

the XBee's standard deviation of PDR is higher than the 

proposed WMN showing it is relative unreliable.  

 

3) PDR vs. Number of Parent Change and Average Hops 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

DigiMesh(#) 13079 13111 12922 13112 12922 13070 12536 12799 5156 12836 8640 13070 13098 13113 13097 12863 13099 13107 13086

WMN(#) 13114 13117 13110 12673 12781 12639 12642 12396 12715 12610 8546 13062 1841 13096 12844 12269 12572 12627 12433

DigiMesh(%) 97.13%99.60%96.32%99.02%97.90%92.70%75.99%76.96%87.92%66.99%99.31%99.14%98.64%97.74%95.37%76.79%95.71%93.23%90.37%

WMN(%) 99.05%99.06%99.19%92.95%81.20%96.23%96.86%91.40%94.62%85.97%98.16%99.10%99.13%96.90%94.64%89.24%89.65%94.37%95.54%
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Fig. 15. Package delivery ratio and received package number.  

 In the design of the proposed WMN module, the change 

parent is triggered if (1) the current parent disappears, or (2) a 

better parent candidate is present, meaning we may infer the link 

between a node and its current parent is unstable. Therefore, the 

parent change is the result of detecting a weak link, but not the 

root cause of a low PDR. A weak link may occur due to (1) the 

distance between nodes being too far, (2) obstacle appear, or (3) 

existence of co-channel interference. Because we were unable 

to retrieve any networking information from the XBee, 

therefore, analysis of the root cause of package loss of XBee is 

not present in this study.  

 Fig. 16 shows the relationship between PDR and Number of 

Parent Change (hereafter denoted by NPC). We can observe 

that WMN 16 has a very high NPC, approximately 920, but the 

PDR is not the lowest. The lowest PDR in this experiment is on 

WMN 5, for which the NPC is only about 140. The correlation 

coefficient between PDR and NPC is -0.41, which indicates the 

relationship is not significant.  
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Fig. 16. PDR vs Number of Parent Change 

 

 Fig. 17 investigates how the average hop(s) of a node’s 

transfer of the data to the sink may affect PDR. WMN 16 holds 

the highest average hops, approximately 2.8, due to its location 
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does not line-of-sight to the sink. WMN 16 must rely on other 

nodes, such as WMN 17, 18 and 19, to help relay its data 

delivery to the sink. For the locations close to the sink, i.e., 

WMN 1, 2, 3, 11, 12, the average hop(s) is 1 as they do not need 

other nodes to relay data, they can reach the sink directly. The 

correlation coefficient between PDR and the average hop(s) is 

-0.60, which indicates a moderate negative relationship.  
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Fig. 17. PDR vs Averaged Hop(s)  

 
Table II: The data paths of WMN 16. 

Path Package Number Percentage 

16-14-S 780 7.12% 

16-15-S 1577 14.40% 

2 Hops 2357 21.53% 

16-15-1-S 1859 16.98% 

16-18-1-S 148 1.35% 

16-19-1-S 894 8.17% 

16-15-3-S 165 1.51% 

16-19-3-S 73 0.67% 

16-17-14-S 4227 38.61% 

16-18-14-S 38 0.35% 

3 Hops 7404 67.62% 

16-17-18-1-S 351 3.21% 

16-19-6-1-S 29 0.26% 

4 Hops 380 3.47% 

others 808 7.38% 

 

 We further examined the data path of WMN 16 as it is at the 

remotest location from the sink. Table II shows all the data paths 

of WMN 16. It shows WMN 16 changes its path whenever a 

better path is available, and the path 16-17-14-S (Sink) is 

chosen 38.61% of the time, more often than all other paths. We 

further investigated the PDR of WMN 16, 17 and 14 over the 

first 154 hours of the experiment, since these three nodes are 

usually connected and form a path to the sink, as shown in Fig. 

18(b) and in Table II.  
 

4) Reliability 
 

 Fig. 19 shows the PDR of WMN 14 is relatively stable over 

time, because WMN 14 is close to the sink and can often 

connect to the sink with single-hop. In contrast, WMN 17 and 

18 need other nodes to relay their data to the sink mostly; they 

usually take two or more hops to reach the sink. Therefore, the 

PDR of WMN 17 and 18 have greater fluctuation, which 

implies that more hops almost always cause instability. This 

may help us to improve the Parent_Change function to select a 

parent with fewer hop counts, although occasionally it might not 

be the best choice.  

 In the design, a node will automatically forward data from its 

child to its parent node in its timeslot, to carry out multi-hop 

data delivery. Many reliable transport protocols have been 

studied comprehensively [26]-[28] in the last decade, based on 

the feedback message from nodes to recover and resend the 

missing packages. The protocols can help to increase the 

completeness of data delivered to the sink. However, the 

implementation of these reliable transport protocols does 

increase the network message and design complexity, and will 

make the system difficult to handle. In addition, the WMN 

module needs to save all the transferred data in temporary 

storage, i.e., RAM or flash memory, which raises the memory 

requirement of the WMN module. This contradict to the 

original goals of this design that should made of an inexpensive, 

memory limited microprocessor. To strike to the balance 

between the design complexity and data reliability, the practical 

solutions to deal with this issue are to implement 

transmission-acknowledgement mechanisms in the application 

layer, or to send the same data redundantly to multiple parent 

nodes, in order to increase the delivery ratio of data that can 

eventually transfer to the sink.  

V. CONCLUSIONS AND FUTURE WORK 

 In this research, the design and implementation of a prototype 

WMN module were presented, and its performance in an actual 

experiment was evaluated. The proposed WMN module was 

evaluated and compared to XBee, an off-the-shelf product. The 

average PDR and standard deviation of the proposed WMN 

module and XBee are 94.09%, 91.19%, 5.14% and 10.25%, 

respectively, in a 20 node experiment. The results support that 

the proposed WMN module can offer comparable or even better 

performance than commercial products. In addition, it is a 

hardware-independent design because no special hardware 

capability is required. This design is available as open-source 

and can help to promote the use of wireless mesh networks for 

environmental monitoring.  In the future, we envision further 

investigating the performance and power consumption of the 

proposed WMN module, and keep improving this design to aid 

scientists in implementing monitoring applications with less 

efforts on wireless networking issues. 
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 (a) The snapshot at 21:43, 2014/06/4. 
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(b) The snapshot at 00:16, 2014/06/12. 

Fig. 18. The deployment location and network topology snapshot of the WMN sensor nodes. The distance between location 10 and 18 was 

approximately 73 m. 

 

  
Fig. 19. The PDR of WMN 16, 17 and 14 over the first 154 hours of the experiment. The results implies the nodes with more hops to the sink 

have greater PDR fluctuation, and more hops almost always cause instability. 

 

 

ACKNOWLEDGEMENTS 

The authors would like to thank Yen-Shuo Huang, Wen-Yin Yu, 

Pei-Jyi Lee and Pin-Chen Kuo for their excellent technical 

assistance.   

REFERENCES 

[1] Suryadevara, N.K.; Mukhopadhyay, S.C., "Wireless Sensor 
Network Based Home Monitoring System for Wellness 
Determination of Elderly," Sensors Journal, IEEE , vol.12, no.6, 
pp.1965,1972, June 2012 



 10

[2] Kelly, S.D.T.; Suryadevara, N.K.; Mukhopadhyay, S.C., 
"Towards the Implementation of IoT for Environmental 
Condition Monitoring in Homes," Sensors Journal, IEEE , vol.13, 
no.10, pp.3846,3853, Oct. 2013 

[3] Mirabella, O.; Brischetto, M., "A Hybrid Wired/Wireless 
Networking Infrastructure for Greenhouse Management," 
Instrumentation and Measurement, IEEE Transactions on , 
vol.60, no.2, pp.398,407, Feb. 2011 

[4] Xu, Q.R.; Paprotny, I.; Seidel, M.; White, R.M.; Wright, P.K., 
"Stick-On Piezoelectromagnetic AC Current Monitoring of 
Circuit Breaker Panels," Sensors Journal, IEEE , vol.13, no.3, 
pp.1055,1064, March 2013 

[5] Suryadevara, N.K.; Mukhopadhyay, S.C.; Kelly, S.D.T.; Gill, 
S.P.S., "WSN-Based Smart Sensors and Actuator for Power 
Management in Intelligent Buildings," in Mechatronics, 
IEEE/ASME Transactions on , vol.20, no.2, pp.564-571, April 
2015 

[6] Gutierrez, J.; Villa-Medina, J.F.; Nieto-Garibay, A; 
Porta-Gandara, M.A, "Automated Irrigation System Using a 
Wireless Sensor Network and GPRS Module," Instrumentation 
and Measurement, IEEE Transactions on , vol.63, no.1, 
pp.166,176, Jan. 2014 

[7] Ferro, E.; Brea, V.M.; Cabello, D.; Lopez, P.; Iglesias, J.; 
Castillejo, J., "Wireless sensor mote for snail pest detection," 
in SENSORS, 2014 IEEE , vol., no., pp.114-117, 2-5 Nov. 2014 

[8] ZigBee Alliance, URL: http://www.zigbee.org 

[9] IEEE 802.15.4,  
URL: http://standards.ieee.org/about/get/802/802.15.html 

[10] XBee, URL: http://www.digi.com/xbee/ 

[11] Lay-Ekuakille, A.; Vergallo, P.; Giannoccaro, N.I.; Massaro, A.; 
Caratelli, D., "Prediction and validation of outcomes from air 
monitoring sensors and networks of sensors," inSensing 
Technology (ICST), 2011 Fifth International Conference on , vol., 
no., pp.73-78, Nov. 28 2011-Dec. 1 2011 

[12] Mukhopadhyay, S.C., "Wearable Sensors for Human Activity 
Monitoring: A Review," in Sensors Journal, IEEE , vol.15, no.3, 
pp.1321-1330, March 2015 

[13] Lay-Ekuakille, A.; Vergallo, P., "Decimated Signal 
Diagonalization Method for Improved Spectral Leak Detection in 
Pipelines," in Sensors Journal, IEEE , vol.14, no.6, pp.1741-1748, 
June 2014  

[14] Hsiao-Hsien Lin; Hsi-Yuan Tsai; Teng-Chieh Chan; Yen-Shuo 
Huang; Yuan-Sun Chu; Yu-Chieh Chen; Tai-Shan Liao; 
Yao-Min Fang; Bing-Jean Lee; Huang-Chen Lee, "An 
open-source wireless mesh networking module for environmental 
monitoring," in Instrumentation and Measurement Technology 

Conference (I2MTC), 2015 IEEE International, pp.1002-1007, 
11-14 May 2015 

[15] DigiMesh, URL: http://www.digi.com/technology/digimesh/ 

[16] Kumar, A; Kim, H.; Hancke, G.P., "Environmental Monitoring 
Systems: A Review," Sensors Journal, IEEE , vol.13, no.4, 
pp.1329,1339, April 2013 

[17] Huang-Chen Lee, "Towards a general wireless sensor network 
platform for outdoor environment monitoring," Sensors, 2012 
IEEE , vol., no., pp.1,5, 28-31 Oct. 2012 

[18] MeshBee, URL: http://www.seeedstudio.com/wiki/Mesh_Bee 

[19] Jennic JN5168, 
http://www.tw.nxp.com/products/microcontrollers/wireless_micr
ocontrollers/JN5168.html 

[20] Swift01, 
https://www.kickstarter.com/projects/1279986649/swift01-open
-source-mesh-networking-by-swiftlet-te 

[21] RF Monolithics XDM2510H,  
URL: www.rfm.com/products/data/xdm2510hc.pdf 

[22] Laird Technologies ZB2430, URL: http://www.lairdtech.com/ 

[23] CEL FreeStar Pro ZFSM-201-1,  
URL: www.cel.com/pdf/datasheets/zfsm_201_1_ds.pdf 

[24] FabFi, URL: https://code.google.com/p/fabfi/wiki/WikiHome 

[25] B.A.T.M.A.N , URL: 
https://www.open-mesh.org/projects/batman-adv/wiki/Wiki 

[26] Sukun Kim, Rodrigo Fonseca, Prabal Dutta, Arsalan Tavakoli, 
David Culler, Philip Levis, Scott Shenker, and Ion Stoica. 2007. 
Flush: a reliable bulk transport protocol for multihop wireless 
networks. In Proceedings of the 5th international conference on 
Embedded networked sensor systems (SenSys '07). ACM, New 
York, NY, USA, 351-365.  

[27] Jeongyeup Paek and Ramesh Govindan. 2010. RCRT: 
Rate-controlled reliable transport protocol for wireless sensor 
networks. ACM Trans. Sen. Netw. 7, 3, Article 20 (October 
2010), 45 pages.  

[28] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, Maria 
Kazandjieva, David Moss, and Philip Levis. 2013. CTP: An 
efficient, robust, and reliable collection tree protocol for wireless 
sensor networks. ACM Trans. Sen. Netw. 10, 1, Article 16 
(December 2013), 49 pages.  

 

  

 

 

 

  


