
 1

Design and Evaluation of an Open-Source Wireless

Mesh Networking Module for Environmental

Monitoring

Abstract—Wireless mesh networking extends the

communication range among cooperating multiple low-power

wireless radio transceivers and is useful for collecting data from

sensors widely distributed over a large area. By integrating an

off-the-shelf wireless design, such as the XBee module,

development of sensor systems with mesh networking capability

can be accelerated. This study introduces an open-source

wireless mesh network (WMN) module, which integrates the

functions of network discovery, automatic routing control, and

transmission scheduling. In addition, this design is open-source

in order to promote the use of wireless mesh networking for

environmental monitoring applications. Testing of the design

and the proposed networking module is reported. The proposed

wireless mesh networking module was evaluated and compared

to XBee. The average package delivery ratio and standard

deviation of the proposed WMN module and the XBee are

94.09%, 91.19%, 5.14% and 10.25%, respectively, in a 20 node

experiment. The proposed system was demonstrated to have the

advantages of low-cost combined with high reliability and

performance, and can aid scientists in implementing monitoring

applications without the complications of complex wireless

networking issues.

Index Terms—XBee, wireless sensor, mesh network module,

open-source, 802.15.4, ZigBee

I. INTRODUCTION

sing a wireless network to monitor the environment has the

advantage of imposing no constraints due to cabling for

data transmission. Wireless mesh networking combines

multiple wireless transceivers to cooperatively transmit and

relay their data, thereby extending the region of communication.

Wireless sensor networks (WSNs) based on this characteristic

enable environmental monitoring of large areas with multiple

wireless sensors. Environmental scientists already take

advantage of WSNs to facilitate the exploration of our world.

 WSNs have been used in many applications, including health

care [1], home monitoring [2], green house management [3],

power consumption monitoring [4][5], agricultural irrigation

control [6] and snail pest detection [7]. Wireless mesh

networking of WSNs is the key feature making these

applications possible. The ZigBee protocol [8] is one of the

most popular designs that supports wireless mesh networking

based on the IEEE 802.15.4 standard [9]; therefore,

environmental scientists can integrate an off-the-shelf ZigBee

module, i.e., the XBee design [10], into their sensor system and

enable wireless mesh networking with minimal effort.

Air quality sensor nodes

Data aggregator

(sink)

1 2 3 4

Fig. 1. An example of wireless mesh network for air quality

monitoring.

 For example, environmental scientists can integrate air

quality sensors with the XBee module and deploy these wireless

sensors in a distributive manner to measure atmospheric

pollutant concentrations in different locations of the same

region. The study [11] presents a typical scenario that using a

wireless mesh network for air quality monitoring. As shown in

Fig. 1, The sensors may be deployed in a square-grid topology

with equal distances, and each sensor cover the same size of

sensing region. The collected data of sensors send back to a data

server through a wireless mesh network for later analysis and

validation. Wireless mesh network can help to deliver data of

sensors even if some sensor nodes cannot directly communicate

wirelessly with the data aggregator (or sink), by requiring other

nodes to relay the data and transfer it to the sink. Given the

example scenario in Fig. 1, the sensor 4 cannot deliver its data

directly to the sink, and sensor 4 asked the other sensors,

including sensor 3, 2 and 1 to help relaying its data to the sink.

Wireless mesh network can extend the region of communication

for helping the geographical distributed sensors to deliver data

in an efficient manner. Other potential applications like

collecting human data with wearable sensors [12], detecting

pipe leakage with pressure sensors [13], can be enhanced by

using wireless mesh network to extend the region of monitoring.

 However, the use of such commercial products raises issues

that prohibit applications of this kind of wireless module. One

major concern is that the hardware and source code are not

made available to the general public because the commercial

product is based on proprietary software. During the design

Huang-Chen Lee, Senior Member, IEEE, Hsiao-Hsien Lin

U

 2

stage of a sensor system, users may neither understand how the

network of the module was formed, nor how the routing

topology was created. Without access to the source code, or a

detailed design of the wireless network module, the root cause

of a problem is difficult to determine. In order to respond to this

issue, a wireless mesh networking (WMN) module is proposed

in this study (shown in Fig. 2) that can be easily integrated into

the sensor system. The source code of this design is open to the

public to promote the usage of mesh networking.

RF

Transceiver
Process Unit

RAM

Memory Unit

Host

Processor

Receive

Transmit

Packet

Control Signal

Get Data

Packet

Store data

Control Signal

Packet

nRF24L01P ATMega328p

WMN Module

Fig. 2. The photo and functional block diagram of the proposed WMN

module.

 This study is extended from our previous work [14]. The

goals of developing a WMN module for WSN applications

include: (1) forming a wireless mesh networking topology, (2)

adjusting the topology according to the changes of the radio

interference, environment, obstacles, etc., (3) transferring the

sensor's data back to the sink, gateway, or data aggregator

(usually a computer, i.e., a PC), and (4) subsequently uploading

the aggregate data to the remote server.

 These goals roughly depict the functions that a WMN module

must demonstrate. However, the various types of WSN

applications may have different requirements for data

transmission. For example, the measurement of air quality may

generate 10 bytes of data per 10 minutes per node. Conversely, a

WSN for monitoring streetlight lamps may need to measure

current, voltage, temperature, and lighting intensity of a lamp at

one Hz, which generates up to 30 bytes of data per second per

node. A survey of existing WSN applications [10] reveals that

the requirements are diverse. Nevertheless, it is essential for a

WMN module to provide reliable transmission at a relatively

low data rate , which may satisfy most WSN applications and

was the initial goal for our design. In summary, the significant

contributions of this study are:

1. A WMN module is proposed, which can be easily
integrated with a sensor system to enhance it by extending

the communication range and sensing coverage without

the hassle of a network configuration.

2. The module design is based on an 8-bit microprocessor
and a simple radio frequency (RF) transceiver without

special functional support (i.e., Radio Signal Strength

Indicator (RSSI), which is not supported by some

inexpensive RF transceivers, i.e., Nordic nRF24L01P).

Therefore, this design can be ported to other

microprocessors and RF transceivers.

3. The proposed wireless module is open-source in both
software and hardware. Therefore, it can not only be

integrated into a sensor system for environmental

monitoring, but it can also be used to study the

performance of wireless mesh networking in an actual

experiment, and to modify it depending on different

requirements. Therefore, the entry-level knowledge

required by users of wireless mesh networking is reduced.

The remainder of this paper is organized as follows: Section

II discusses related works and the goals of this project; Section

III describes the details of the architecture and design of the

system; Section IV illustrates the evaluation of the proposed

system; and Section V presents the conclusions of this study.

II. RELATED WORKS AND DESIGN GOALS

In this section, research related to the WMN module is

discussed. As shown in Fig. 3, a WMN module is connected to

the host processor via a GPIO, UART, SPI or I2C interface. The

host processor reads data from its sensors (i.e., temperature,

humidity, or air quality, etc.), and sends the collected data to the

WMN module. The WMN module buffers the data and transfers

it to the destination node in a wireless mesh network.

Fig. 3. Architecture of a typical sensor node integrated with a WMN

module.

XBee [10] is a popular WMN module for integration with

sensor systems. Variant versions of the XBee WMN module

support different protocols and standards, including 802.15.4

[9], ZigBee [8], and the proprietary DigiMesh [15]. Many

monitoring applications [1]-[7] are based on the XBee WMN

module. Similar off-the-shelf modules [21][22][23] are also

available to be used as a WMN interface in a sensor system.

 In addition to using a low-power RF transceiver, like IEEE

802.15.4/TI CC2530 or Nordic nRF24L01P, many Wi-Fi based

wireless mesh network projects [24][25] have been studied

previously for providing a larger coverage area and a

decentralized network infrastructure, which is suitable for

connecting computers in rural areas or preventing networks

having to be controlled by a centralized authority. These

projects are implemented on a PC or Wi-Fi network router;

therefore, both the hardware cost and power consumption are

higher than the proposed approach. These issues make using

Wi-Fi to form a wireless mesh network for environmental

monitoring infeasible in many practical applications.

 3

In the following section, we discuss common issues with

using such WMN modules in real applications. In the

deployment stage of a WMN module, it is common to

experience the problem that some nodes cannot transmit data

reliably to the sink. However, it is difficult to know the root

cause as no simple method exists to trace the routing path of the

data packet in the ZigBee or DigiMesh modules. The problem is

that the decisions for routing paths in the ZigBee and DigiMesh

modules are based on Ad hoc On-Demand Distance Vector

routing (AODV), which explores the routing path while a node

is attempting to send data. The benefit of AODV is that the node

in the mesh network is not required to maintain a memory-costly

large routing table.

Because the ZigBee is based on a comprehensive standard,

including forming the network, addressing the nodes, data

security, profiles and other features. The MeshBee system [18]

is an open-source ZigBee module based on the Jennic JN5168

[19]—a wireless microcontroller with an 802.15.4 RF

transceiver. The open-source format aids the user in debugging

and customizing their system. Nevertheless, the ZigBee

implementation is comprehensive, it is difficult to understand

and modify without a steep learning curve. Another open source

project [20] by Swiftlet Technology had been announced with a

similar goal as ours, but the recent progress is not available as

the funding was unsuccessful through KickStarter [20].

In consideration of these issues, the following design goals

were considered in this study:

1. The proposed open-source code of the WMN module
should be compact in contrast to the more complex ZigBee

design to allow the user to use and test the system without

the delay of a steep learning curve.

2. The correctness and reliability of the proposed WMN
module must be verified by application in actual

experiments to demonstrate that its performance is

comparable to an off-the-shelf module.

3. The design may not limited by the specific hardware
platform, which should reduce the costs of

implementation.

These design requirements are summarized in the design

specifications of the WMN module and are described in the

following section.

III. DESIGN OF WMN MODULE

 In this section, the design of the WMN module is described.

A. Architecture of WMN

 The proposed WMN module (Fig. 2) is based on a generic

8-bit microprocessor (Atmel ATMega328p) and a low-cost RF

transceiver (Nordic nRF24L01P), whose output power is 1 mW

at 2.4 GHz. Interfacing to the host processor is accomplished

via implementation of UART and GPIO. A functional block

diagram of a WMN module is presented in Fig. 2. The primary

processor of the WMN module (ATMega328p) is connected to

the host processor for interfacing the control signal and the data

transferred from the host processor. The nRF24L01P is

connected to and managed by the ATMega328p microprocessor

via the SPI/I2C. In this design, the host processor only

communicates with the ATMega328p microprocessor when

sending and receiving the data packet. The host processor does

not need to be concerned with the transition state among

multiple modes, as shown in Fig. 4; therefore, the host processor

can focus on the application level design and utilize the WMN

module as a radio modem.

B. Operating Modes of a WMN Module and Detailed

Flowcharts

Sense

Mode

Idle

Mode

Process

Mode

Receive

Mode

Transmit

Mode

Initialization

Mode

Sleep

Mode

Fig. 4. Finite state machine of a WMN module.

 The finite state machine (FSM) of a WMN module

(connected to a sensor node) is illustrated in Fig. 4. As the

module is powered on, the WMN module starts in the

Initialization Mode while waiting to join a network. The system

switches to the Idle Mode after joining a network. Subsequently,

the WMN module switches its running mode according to the

work schedule assigned from the sink, including Sense Mode,

Sleep Mode, Process Mode, Transmit Mode, and Receive Mode.

The RF transceiver only turns on in Transmit Mode and Receive

Mode to save energy. The purpose of Sense Mode is to read data

from the analog-digital converter (ADC) of the microprocessor

of the WMN module, this design provides a similar function as

XBee, it allows for reading sensor data from an external sensing

component (i.e., a temperature sensor) without support from a

host processor.

 The proposed WMN module is based on Time Division

Multiple Access (TDMA) protocol and is sensitive to timing

control. The module needs to switch to suitable modes as listed

in Fig. 4 using exact timing. Because no operating system is

required in the design, it uses a hardware timer interrupt of the

microcontroller to trigger the timer interrupt service routine

(ISR) for ensuring timing correctness. As the timer ISR was

triggered in the beginning of a new timeslot, as shown in Fig. 5,

it toggles the Boolean variables corresponding to different

modes, i.e., Process Mode, Receive Mode, Transmit Mode,

Sensing Mode, etc. The timer ISR only modifies the Boolean

variables and ends the ISR immediately. The variables will be

referred to in the main loop program to control the system

behaviors.

 4

Timer triggered

ISR

TimeSync_Counter

+1

Begin of a new

Time slot?

My Time slot?

Go sample data?

ProcessMode=False

ReceiveMode=True

ReceiveMode=False

TransmitMode=True

SensingMode=True

ISR end

No No

Yes

Yes

Yes

No

Start

Fig. 5. Flow Chart: Timer ISR driven changes of WMN module's

mode.

B.1 Initialization Mode

Receive RF package# > 0

Retrieve RF

package

Package checksum correct?

Is it a Beacon package?

Discard package

Add source into

Sliding Windows

Satisfy Parent_Select

requirement?

Select Parent

InitialMode=False

Enter Idle Mode

No

No

No

No

Yes

Yes

Yes

Yes

Start

Fig. 6. Flow Chart: Initialization mode.

 In Initialization Mode, as shown in Fig. 6, the microcontroller

of the WMN module checks whether it received any packages

from the RF transceiver, and validates the checksum correctness.

If the package is valid and it is a Beacon (from another router), it

adds the source node ID into the parent buffer for later use by

the Parent_Select function (which will be introduced later in this

section). If the beacon queue buffers sufficient node IDs, then it

executes the Parent_Select function to determine the best parent

candidate; the module joins the selected parent's network and

enters Idle Mode.

B.2 Idle Mode

RecevieMode=True? TransmitMode=True?

SenseMode=True?

InitialMode=True?

Network Disconnected?

Go Initial. Mode Go Receive Mode Go Transmit Mode

Go Sense Mode

RF on

InitialMode=True

No No No

No

YesYesYes

Yes

No

Yes

Start

Fig. 7. Flow Chart: Idle mode.

 Depicted in Fig. 7, the microcontroller of the WMN module

in Idle Mode periodically checks the Boolean variables to go to

different modes, which were modified by the timer ISR. The

Initial Mode, Receive Mode and Transmit Mode are mutually

exclusive. The Sense Mode is checked for whether it needs to

sample data from the sensing component connected to the

WMN module. At the end of Transmit Mode and Receive Mode,

it also checks the status of the network connection (i.e., is the

current parent reachable?), and will execute Initial Mode to find

another, better parent if necessary.

 While considering low speed microcontrollers and potential

buffer-overrun of the RF transceiver, the receiving procedure is

separated into two modes, Receive Mode and Process Mode, to

deal with incoming data in a timely manner. The procedure

involves retrieving data from the buffer of the RF transceiver,

validating the incoming data package using a checksum

algorithm, determining the package type, synchronizing its

clock to the beacon , data conversion, and so on. In these steps,

data conversion, storage (into flash memory or external storage,

i.e., SD card) and display messaging (via UART for debugging)

are time consuming and often introduce un-deterministic delay

and buffer-overrun of the RF transceiver. As illustrated in Fig. 4,

Receive Mode retrieves the data package and validates the

checksum, and Process Mode deals with data conversion,

storage and display. This avoids a single function/mode

dominating the microprocessor for too long.

B.3 Receive Mode and Process Mode

 Receive Mode (shown in Fig. 9), starts by recording the

current start time of the timeslot, then turns on the RF

transceiver and waits for an incoming data package. This mode

ends after timeout. If a package is received, it checks the

checksum and forwards the data package to the corresponding

path. In this mode, we synchronize the internal clock if it is a

valid beacon package from its parent.

 In order to save energy, Process Mode (Fig. 10) checks the

corresponding variable and if it is false, goes to Sleep Mode

immediately. Otherwise, it processes data in the buffer until the

buffer is empty. As this design is timing sensitive, the total time

used by Receive Mode and Process Mode must not exceed the

length of a timeslot. In this design, the timer ISR toggles Process

 5

Mode to false if the runtime exceeds the timeslot, therefore,

ensuring the timing correctness between several nodes over

timeslots.

. . . Receive Mode Process Mode Sleep Mode Idle Mode

End

. . .

Time slot: nTime slot: n-1 Time slot: n+1

Start

Fig. 8. A detail schedule in a timeslot for receiving data.

Record start time

Turn on RF

transceiver
Receive data package?

Retrieve data from RF

transceiver

Checksum correct?

A Beacon?

Synchronize clock Save to data buffer

Discard package

Timeout?

Turn off RF

transceiver

Go Process Mode

Yes

Yes

Yes

Yes

No

No

No

No

ProcessMode=True

Update waiting

time

Start

Fig. 9. Flow Chart: Receive mode.

unprocessed

data package > 0?

Determine

data package

Process data

ProcessMode=True?

Need forward?

Save to send queue

Save data

Update node

parameters

Update routing

topology

No

No

No

Yes

Yes

Yes

.
.
.

Go SleepMode

Start

Fig. 10. Flow Chart: Process mode.

B.4 Sense Mode

Save to send buffer

Build data package

Collect data from

external sensors

Save to external

storage

Data stored?

Go Idle Mode

No

Yes

Start

Fig. 11. Flow Chart: Sense mode.

 In Sense Mode, the microprocessor collects data from its

external sensors (like the ADC implementation in XBee),

because the proposed WMN module can read from external

sensors independently without support from a host processor.

B.5 Transmit Mode

package in

send buffer > 0?

Send package

Turn on RF

transceiver

Turn off RF

transceiver

Send Beacon

Build Beacon

Go Sleep Mode

Yes

No

Start

Fig. 12. Flow Chart: Transmit mode.

 On the WMN module's timeslot, it sends all the data in the

buffer to the RF transceiver. After the send buffer is empty, it

goes to Sleep Mode to save energy.

C. Formation of Mesh Network: A TDMA approach

 The design of the proposed WMN module is aimed at

forming a wireless mesh network automatically. Three types of

roles are defined in design of the mesh network: End Device

(ED), Router and Sink. One of the modules in the network is set

as the Sink to collect data from all other modules. The other

modules in the initial state are acting as an ED. An ED is a

simple wireless sensor, collecting data and sending it back to its

parent. An ED changes its role to a Router if the ED can help

another ED/Router to relay data to its parent.

 In contrast to ZigBee, which is based on carrier sense

multiple access with collision avoidance (CSMA/CA) and Ad

hoc On-Demand Distance Vector Routing (AODV), the

proposed design uses Time Division Multiple Access (TDMA)

while keeping design complexity and manageability in mind.

This is further strengthened by the goals of most WSN

applications that are designed to collect data from a WSN. Data

is often periodically generated from the sensor nodes and is

collected and transferred to the sink. TDMA is suitable in such

applications as the TDMA schedule reserves a timeslot for each

node in the system, and increases the package delivery ratio and

reduces package collision in wireless media.

 In the design, each node in the system was pre-assigned a

unique ID number and has a corresponding and exclusive

timeslot in every TDMA cycle, to avoid multiple WMN sensor

nodes trying to transmit data at the same timeslot. In this design,

the WMN module with the ID 0 is functioning as a sink, which is

used to:

 6

(1) Broadcast the initial beacon signal and TDMA schedule to
manage other nodes

(2) Collect the data from nodes

 The other nodes (which the ID is not 0) are sensor nodes (or

ED/Router), which sense data and transfer it to the sink. Fig. 13

presents the working flowchart of a WMN sensor node. At the

beginning of a timeslot, WMN checks whether the current

timeslot belongs to itself by checking whether WMN's ID =

current timeslot number.

(1) If WMN's ID＝current timeslot number

If the WMN has joined a network, then it broadcasts its

beacon to notify its near neighbors. If it has not yet joined

any network, it skips this round.

(2) If WMN's ID ≠ current timeslot number
If a node does not have the current timeslot and receives a

beacon from another node, then it will run the

Parent_Select function, if it has not yet joined any

network.

Joined a network?

Sync. my clock to

the BeaconRun Parent_Select

function

Its Time slot?

Broadcast Beacon

Receive a

Beacon?

Yes

Yes

Yes

No

From my Parent?

YesNo

No

Start of the round

No

Joined a network?

Yes

No

End of the round

Fig. 13. Flow Chart: Mesh network formation from the view of a
WMN module

D. Parent_Select Function: A Hardware-Independent

Approach

 The WMN modules form a mesh network and route data

based on a hop-count distance estimation approach, rather than

using Radio Signal Strength (RSS) or LQI (Link Quality

Indicator) to determine the quality of a path. Because RSS and

LQI are not always available, i.e., Nordic nRF24L01P is not

capable of measuring RSSI and LQI. Therefore, in this design

the parent node of the WMN module is determined by selecting

the node with the smallest hop count.

 Meanwhile, the parent node will be changed if:

(1) The current parent is not available (not receiving its
beacon) for a predefined length of time, or

(2) A better parent becomes available, even if its hop count is
equal to the hop count of the current parent

 The received beacons from parent candidates are stored in a

FIFO queue. If a WMN module receives beacons from multiple

parents it determines the best candidate according to the

frequency of the beacons received within the sliding window of

the beacon queue. This approach has the advantages that the

computation complexity is fixed and the memory requirement is

small. Since in a network, there might be some nodes is

unreliable, due to hardware failure or network problem, but still

appeared to be a good parent node candidate to others. It might

cause PDR decrease and significant transmission delay if such a

node been selected as a parent node. Therefore, in this design,

each node has a blacklist that is used to mark such an unhealthy

parent node, and prevent the node from being selected

repetitively.

IV. EVALUATION AND DISCUSSION

 The proposed WMN module was evaluated to verify the

correctness of the design. Twenty wireless sensor nodes based

on the proposed WMN module were deployed over an office

floor at the university campus, while twenty XBee DigiMesh 2.4

based wireless sensors were also installed in the same locations

(Fig. 14) for performance comparison. Table I presents the

details of the two versions of wireless sensor node. Note that for

the sensor with XBee, an additional microcontroller Atmel

Atmega328p is connected to the XBee (Fig. 14 right) to control

the timing of sample and sending data, therefore, synchronizing

the frequency of data generation from the two types of nodes.

MCU

XBeenRF24L01P

For control to sample

data, send data,

network formation,

routing, etc,.

MCU

For control to sample

data and send data to

XBee.

The sensor with

proposed WMN

module

The sensor with

XBee

Fig. 14. The proposed WMN module (left) and off-the-shelf XBee

DigiMesh 2.4 (right).

 The WMN module was configured at an output level of 1 mW

RF at 2.4 GHz with a 3dBi omni-directional antenna, the same

as the XBee DigiMesh 2.4. We set timeslots to 1 second and a

TDMA cycle contains 20 timeslots in our WMN module. Each

node was configured to send one data packet per minute to

simulate a periodic reporting application. The data packet will

eventually be relayed by the other nodes and delivered to the

sink (denoted as 'S' in the Fig. 18). The experiment was

conducted for five days to evaluate the performance of the

packet delivery and the stability of the network topologies.

Table I shows the configuration details.

 In this experiment design, some sensor nodes (at location 16,

17 and so on) were intentionally installed in the open space at

the left-side shown in Fig. 18, where there is no Line-of-Sight

 7

(LOS) to the sink. Therefore, these sensor nodes always need

other nodes for relaying data to the sink. In addition, we can

evaluate how the higher deployment density and number of

sensor nodes can affect the network performance. This

experiment was conducted for 218 hours or about 9 days.

Table I: Configurations of the sensor with WMN module and XBee

WMN Module

(in Fig. 14 left)

XBee DigiMesh

 (in Fig. 14 right)

Protocol The proposed protocol DigiMesh

MCU

ATmega328P, 16MHz

(for control sending data,

network formation,

routing, etc,.)

ATmega328P, 16MHz

(for control sending data)

RF Transceiver Nordic nRF24L01P XBee DigiMesh

RF Frequency 2.4GHz 2.4GHz

RF Power 1mW 1mW

Antenna
Omni Directional

SMA, 3dBi

Omni Directional

RP-SMA, 3dBi

1) Dynamic Routing

 As shown in Fig. 18(a), we can see that in the beginning of the

experiment all the WMN sensor nodes can reach the sink. The

WMN sensor at location 16 can transfer its data along the path

16-19-1-S(sink). After several days, the topology changed as

shown in the snapshot in Fig. 18(b). In addition, the WMN

module at location 13 (hereafter denoted by WMN 13) stopped

working due to hardware failure. This can be expected based on

Fig. 18, where none of the WMN nodes selected WMN 13 as

their parent, because it did not seem to be a reliable parent

candidate. The performance of dynamic routing is presented in

the figure. The WMN module at location 16 in Fig. 18(a)

transfers its data along the path 16-19-1-S, but changed the path

to 16-17-14-S. This indicates that WMN 16 considered WMN

17 a better parent in Fig. 18(b), based on the Parent_Select

function.

2) Package Delivery Ratio and Received Package Number

 We further investigated the package delivery ratio and

received package number during the experiment, for both the

proposed WMN module and the XBee as present in Fig. 15.

This figure shows the received number of data packages from

the WMN module and the XBee are all very similar in most

locations; except the WMN at location 13 and the XBee at

location 9, which malfunctioned due to hardware failure,

therefore, the received package numbers are much less. The

power outage of the sensors at location 11 during the

experiment also caused a fewer number of data packages

received.

 For the package delivery ratio (PDR, the percentage of data

sent from the sender that can be delivered to the sink), the

proposed WMN module-based wireless sensors are relatively

stable among various locations, as the PDRs of XBee have

higher fluctuations. As shown in Fig. 15, the average PDR and

standard deviation of the proposed WMN module and XBee are

94.09%, 91.19%, 5.14% and 10.25%, respectively. Under the

same configurations, the experiment results support the

proposed WMN module can offer comparable or even better

performance than commercial products such as the XBee, since

the XBee's standard deviation of PDR is higher than the

proposed WMN showing it is relative unreliable.

3) PDR vs. Number of Parent Change and Average Hops

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

DigiMesh(#) 13079 13111 12922 13112 12922 13070 12536 12799 5156 12836 8640 13070 13098 13113 13097 12863 13099 13107 13086

WMN(#) 13114 13117 13110 12673 12781 12639 12642 12396 12715 12610 8546 13062 1841 13096 12844 12269 12572 12627 12433

DigiMesh(%) 97.13%99.60%96.32%99.02%97.90%92.70%75.99%76.96%87.92%66.99%99.31%99.14%98.64%97.74%95.37%76.79%95.71%93.23%90.37%

WMN(%) 99.05%99.06%99.19%92.95%81.20%96.23%96.86%91.40%94.62%85.97%98.16%99.10%99.13%96.90%94.64%89.24%89.65%94.37%95.54%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

P
a
c
k

e
t N

u
m

b
e
r

P
a
c
k

a
g
e
 D

e
liv

e
r
y
 R

a
tio

(%
)

Package Delivery Ratio and Package Number

Fig. 15. Package delivery ratio and received package number.

 In the design of the proposed WMN module, the change

parent is triggered if (1) the current parent disappears, or (2) a

better parent candidate is present, meaning we may infer the link

between a node and its current parent is unstable. Therefore, the

parent change is the result of detecting a weak link, but not the

root cause of a low PDR. A weak link may occur due to (1) the

distance between nodes being too far, (2) obstacle appear, or (3)

existence of co-channel interference. Because we were unable

to retrieve any networking information from the XBee,

therefore, analysis of the root cause of package loss of XBee is

not present in this study.

 Fig. 16 shows the relationship between PDR and Number of

Parent Change (hereafter denoted by NPC). We can observe

that WMN 16 has a very high NPC, approximately 920, but the

PDR is not the lowest. The lowest PDR in this experiment is on

WMN 5, for which the NPC is only about 140. The correlation

coefficient between PDR and NPC is -0.41, which indicates the

relationship is not significant.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0

100

200

300

400

500

600

700

800

900

1000

1100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P
D

R
(%

)

N
u

m
b

e
r
 o

f P
a

r
e
n

t C
h

a
n

g
e

PDR vs Number of Parent Change

Number of Parent Change PDR

Fig. 16. PDR vs Number of Parent Change

 Fig. 17 investigates how the average hop(s) of a node’s

transfer of the data to the sink may affect PDR. WMN 16 holds

the highest average hops, approximately 2.8, due to its location

 8

does not line-of-sight to the sink. WMN 16 must rely on other

nodes, such as WMN 17, 18 and 19, to help relay its data

delivery to the sink. For the locations close to the sink, i.e.,

WMN 1, 2, 3, 11, 12, the average hop(s) is 1 as they do not need

other nodes to relay data, they can reach the sink directly. The

correlation coefficient between PDR and the average hop(s) is

-0.60, which indicates a moderate negative relationship.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P
D

R
(%

)

A
v

e
r
a

g
ed

 H
o

p
(s)

PDR vs Averaged Hop(s)

Average Hop(s) PDR

Fig. 17. PDR vs Averaged Hop(s)

Table II: The data paths of WMN 16.

Path Package Number Percentage

16-14-S 780 7.12%

16-15-S 1577 14.40%

2 Hops 2357 21.53%

16-15-1-S 1859 16.98%

16-18-1-S 148 1.35%

16-19-1-S 894 8.17%

16-15-3-S 165 1.51%

16-19-3-S 73 0.67%

16-17-14-S 4227 38.61%

16-18-14-S 38 0.35%

3 Hops 7404 67.62%

16-17-18-1-S 351 3.21%

16-19-6-1-S 29 0.26%

4 Hops 380 3.47%

others 808 7.38%

 We further examined the data path of WMN 16 as it is at the

remotest location from the sink. Table II shows all the data paths

of WMN 16. It shows WMN 16 changes its path whenever a

better path is available, and the path 16-17-14-S (Sink) is

chosen 38.61% of the time, more often than all other paths. We

further investigated the PDR of WMN 16, 17 and 14 over the

first 154 hours of the experiment, since these three nodes are

usually connected and form a path to the sink, as shown in Fig.

18(b) and in Table II.

4) Reliability

 Fig. 19 shows the PDR of WMN 14 is relatively stable over

time, because WMN 14 is close to the sink and can often

connect to the sink with single-hop. In contrast, WMN 17 and

18 need other nodes to relay their data to the sink mostly; they

usually take two or more hops to reach the sink. Therefore, the

PDR of WMN 17 and 18 have greater fluctuation, which

implies that more hops almost always cause instability. This

may help us to improve the Parent_Change function to select a

parent with fewer hop counts, although occasionally it might not

be the best choice.

 In the design, a node will automatically forward data from its

child to its parent node in its timeslot, to carry out multi-hop

data delivery. Many reliable transport protocols have been

studied comprehensively [26]-[28] in the last decade, based on

the feedback message from nodes to recover and resend the

missing packages. The protocols can help to increase the

completeness of data delivered to the sink. However, the

implementation of these reliable transport protocols does

increase the network message and design complexity, and will

make the system difficult to handle. In addition, the WMN

module needs to save all the transferred data in temporary

storage, i.e., RAM or flash memory, which raises the memory

requirement of the WMN module. This contradict to the

original goals of this design that should made of an inexpensive,

memory limited microprocessor. To strike to the balance

between the design complexity and data reliability, the practical

solutions to deal with this issue are to implement

transmission-acknowledgement mechanisms in the application

layer, or to send the same data redundantly to multiple parent

nodes, in order to increase the delivery ratio of data that can

eventually transfer to the sink.

V. CONCLUSIONS AND FUTURE WORK

 In this research, the design and implementation of a prototype

WMN module were presented, and its performance in an actual

experiment was evaluated. The proposed WMN module was

evaluated and compared to XBee, an off-the-shelf product. The

average PDR and standard deviation of the proposed WMN

module and XBee are 94.09%, 91.19%, 5.14% and 10.25%,

respectively, in a 20 node experiment. The results support that

the proposed WMN module can offer comparable or even better

performance than commercial products. In addition, it is a

hardware-independent design because no special hardware

capability is required. This design is available as open-source

and can help to promote the use of wireless mesh networks for

environmental monitoring. In the future, we envision further

investigating the performance and power consumption of the

proposed WMN module, and keep improving this design to aid

scientists in implementing monitoring applications with less

efforts on wireless networking issues.

 9

223224 222 221open

space

stair

case

S

1 2 3 4 6

7 8

9

10

5

11

12

13

1415

16

17

18

19

 (a) The snapshot at 21:43, 2014/06/4.

223224 222 221open

space

stair

case

S

1 2 3 4 6

7 8

9

10

5

11

12

13

1415

16

17

18

19

(b) The snapshot at 00:16, 2014/06/12.

Fig. 18. The deployment location and network topology snapshot of the WMN sensor nodes. The distance between location 10 and 18 was

approximately 73 m.

Fig. 19. The PDR of WMN 16, 17 and 14 over the first 154 hours of the experiment. The results implies the nodes with more hops to the sink

have greater PDR fluctuation, and more hops almost always cause instability.

ACKNOWLEDGEMENTS

The authors would like to thank Yen-Shuo Huang, Wen-Yin Yu,

Pei-Jyi Lee and Pin-Chen Kuo for their excellent technical

assistance.

REFERENCES

[1] Suryadevara, N.K.; Mukhopadhyay, S.C., "Wireless Sensor
Network Based Home Monitoring System for Wellness
Determination of Elderly," Sensors Journal, IEEE , vol.12, no.6,
pp.1965,1972, June 2012

 10

[2] Kelly, S.D.T.; Suryadevara, N.K.; Mukhopadhyay, S.C.,
"Towards the Implementation of IoT for Environmental
Condition Monitoring in Homes," Sensors Journal, IEEE , vol.13,
no.10, pp.3846,3853, Oct. 2013

[3] Mirabella, O.; Brischetto, M., "A Hybrid Wired/Wireless
Networking Infrastructure for Greenhouse Management,"
Instrumentation and Measurement, IEEE Transactions on ,
vol.60, no.2, pp.398,407, Feb. 2011

[4] Xu, Q.R.; Paprotny, I.; Seidel, M.; White, R.M.; Wright, P.K.,
"Stick-On Piezoelectromagnetic AC Current Monitoring of
Circuit Breaker Panels," Sensors Journal, IEEE , vol.13, no.3,
pp.1055,1064, March 2013

[5] Suryadevara, N.K.; Mukhopadhyay, S.C.; Kelly, S.D.T.; Gill,
S.P.S., "WSN-Based Smart Sensors and Actuator for Power
Management in Intelligent Buildings," in Mechatronics,
IEEE/ASME Transactions on , vol.20, no.2, pp.564-571, April
2015

[6] Gutierrez, J.; Villa-Medina, J.F.; Nieto-Garibay, A;
Porta-Gandara, M.A, "Automated Irrigation System Using a
Wireless Sensor Network and GPRS Module," Instrumentation
and Measurement, IEEE Transactions on , vol.63, no.1,
pp.166,176, Jan. 2014

[7] Ferro, E.; Brea, V.M.; Cabello, D.; Lopez, P.; Iglesias, J.;
Castillejo, J., "Wireless sensor mote for snail pest detection,"
in SENSORS, 2014 IEEE , vol., no., pp.114-117, 2-5 Nov. 2014

[8] ZigBee Alliance, URL: http://www.zigbee.org

[9] IEEE 802.15.4,
URL: http://standards.ieee.org/about/get/802/802.15.html

[10] XBee, URL: http://www.digi.com/xbee/

[11] Lay-Ekuakille, A.; Vergallo, P.; Giannoccaro, N.I.; Massaro, A.;
Caratelli, D., "Prediction and validation of outcomes from air
monitoring sensors and networks of sensors," inSensing
Technology (ICST), 2011 Fifth International Conference on , vol.,
no., pp.73-78, Nov. 28 2011-Dec. 1 2011

[12] Mukhopadhyay, S.C., "Wearable Sensors for Human Activity
Monitoring: A Review," in Sensors Journal, IEEE , vol.15, no.3,
pp.1321-1330, March 2015

[13] Lay-Ekuakille, A.; Vergallo, P., "Decimated Signal
Diagonalization Method for Improved Spectral Leak Detection in
Pipelines," in Sensors Journal, IEEE , vol.14, no.6, pp.1741-1748,
June 2014

[14] Hsiao-Hsien Lin; Hsi-Yuan Tsai; Teng-Chieh Chan; Yen-Shuo
Huang; Yuan-Sun Chu; Yu-Chieh Chen; Tai-Shan Liao;
Yao-Min Fang; Bing-Jean Lee; Huang-Chen Lee, "An
open-source wireless mesh networking module for environmental
monitoring," in Instrumentation and Measurement Technology

Conference (I2MTC), 2015 IEEE International, pp.1002-1007,
11-14 May 2015

[15] DigiMesh, URL: http://www.digi.com/technology/digimesh/

[16] Kumar, A; Kim, H.; Hancke, G.P., "Environmental Monitoring
Systems: A Review," Sensors Journal, IEEE , vol.13, no.4,
pp.1329,1339, April 2013

[17] Huang-Chen Lee, "Towards a general wireless sensor network
platform for outdoor environment monitoring," Sensors, 2012
IEEE , vol., no., pp.1,5, 28-31 Oct. 2012

[18] MeshBee, URL: http://www.seeedstudio.com/wiki/Mesh_Bee

[19] Jennic JN5168,
http://www.tw.nxp.com/products/microcontrollers/wireless_micr
ocontrollers/JN5168.html

[20] Swift01,
https://www.kickstarter.com/projects/1279986649/swift01-open
-source-mesh-networking-by-swiftlet-te

[21] RF Monolithics XDM2510H,
URL: www.rfm.com/products/data/xdm2510hc.pdf

[22] Laird Technologies ZB2430, URL: http://www.lairdtech.com/

[23] CEL FreeStar Pro ZFSM-201-1,
URL: www.cel.com/pdf/datasheets/zfsm_201_1_ds.pdf

[24] FabFi, URL: https://code.google.com/p/fabfi/wiki/WikiHome

[25] B.A.T.M.A.N , URL:
https://www.open-mesh.org/projects/batman-adv/wiki/Wiki

[26] Sukun Kim, Rodrigo Fonseca, Prabal Dutta, Arsalan Tavakoli,
David Culler, Philip Levis, Scott Shenker, and Ion Stoica. 2007.
Flush: a reliable bulk transport protocol for multihop wireless
networks. In Proceedings of the 5th international conference on
Embedded networked sensor systems (SenSys '07). ACM, New
York, NY, USA, 351-365.

[27] Jeongyeup Paek and Ramesh Govindan. 2010. RCRT:
Rate-controlled reliable transport protocol for wireless sensor
networks. ACM Trans. Sen. Netw. 7, 3, Article 20 (October
2010), 45 pages.

[28] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, Maria
Kazandjieva, David Moss, and Philip Levis. 2013. CTP: An
efficient, robust, and reliable collection tree protocol for wireless
sensor networks. ACM Trans. Sen. Netw. 10, 1, Article 16
(December 2013), 49 pages.

