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Abstract—The ability to measure and model water currents
is essential to ensure the safety and correct operations of many
water surface activities. For example, the complex currents in
harbors seriously affect the safety of vessels, while river turbu-
lence and vortices cause safety hazards for people participating in
white-water rafting, swimming, and other sports activities. In this
paper, we demonstrate a low-cost method to measure and model
surface currents. Specially designed GPS sensors are dropped into
the water to record their drifting trajectories, which are then
transformed into a current map to show the characteristics of the
currents, including their velocity and direction. A proof-of-concept
experiment shows the feasibility of the proposed method and how
turbulence locations can be identified. We further demonstrate
that the derived current map can be used to construct a mobility
model of a drifting object and generate its virtual drifting trajec-
tories. Our analyses show that the generated virtual trajectories
closely fit the collected trajectories.

Index Terms—Current measurement, drifting trajectory, GPS
sensor, mobiltiy model, modeling, surface current, water current.

I. INTRODUCTION

M EASURING currents, including ocean and river cur-
rents, plays a vital role in the safety management of

harbors and rivers. For example, the complex currents caused
by harbor structures and docks often pose threats and safety
hazards to vessels navigating through busy harbors and narrow
channels. An up-to-date current map should thus help the
vessels in avoiding these hazardous areas. This information
is also invaluable in water sports such as whitewater rafting
and swimming, as a current map of a river could be used as
an essential guide to avoid vortexes or turbulences and thus
improve safety. An affordable and easy-to-deploy method to
measure currents is therefore greatly needed.

Many sensing techniques have been developed to measure
surface currents. For example, the acoustic Doppler current
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profiler (ADCP) [1] can be installed on seabeds/riverbeds to
measure the velocity and direction of currents in a region. It
emits ultrasonic pulses that scatter moving particles in the water
to determine their velocity according to the signals that bounced
back. ADCPs have been deployed to measure currents [2]–[6]
with high accuracy and reliability.

One limitation of ADCPs is their fixed position and limited
range of monitoring. The maximum profiling range of com-
mercial available ADCPs is about 300 m in a cross section. To
obtain a comprehensive 2-D current map over a wide region, a
large number of ADCPs have to be deployed. Each commercial
ADCP costs around 16 000 to 100 000 USD, plus underwater
deployment, cabling, and maintenance costs. The high cost
limits ADCP use to mainly scientific research.

Another approach to surface current measurement is to use
remote sensing such as interferometric synthetic aperture radar
(InSAR) [7]–[11]. InSAR uses radar images from aircraft or
satellites; hence, the monitoring area can be very large, e.g.,
5 km × 5 km. The state-of-the-art InSAR satellite TerraSAR-X
[9] can provide up to 1 m of spatial resolution when measuring
the velocity of a surface current with an error of 10 cm/sec.
However, InSAR requires expensive facilities such as satellites
and airplanes to obtain images. Processing and accessing the
images are also very involved, and it is difficult for local
authorities to obtain the required information on a regular basis
using nonprofessional employees.

In this paper, we demonstrate a low-cost method to measure
the currents in a region. The system can easily be operated by
nonexpert personnel to obtain a current map on a regular basis
or as needed. It can serve as a stand-alone or as a complement
to the more expensive systems described earlier.

The workflow of the proposed method is shown in Fig. 1.
This project is an extension of our previous work [12], which
used a special wireless GPS sensor that could float on water
instead of using conventional stationary sensors. Several such
sensors are dropped into the water, drifting passively with the
water currents and recording their trajectories. The recorded
data are collected and used to build a parameter map of the
water way, which is a 2-D current map that shows important
parameters, such as current velocity and direction, of the cur-
rents at different locations.

An example parameter map is given in Fig. 2, showing the
directions of the currents in a harbor entrance. The region
of interest has been divided into rectangular areas, and the
arrows indicate flow direction. Such a map can have many uses.
For example, as mentioned earlier, it can be used by harbor
authority or vessel pilots to optimize the flow of ships and to
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Fig. 1. Workflow of the proposed method.

Fig. 2. Parameter map showing current directions in a harbor entrance.
The region of the harbor entrance is divided into rectangular areas.

ensure navigational safety. We will discuss this in further detail
in the following sections.

Another important application of the parameter map is to
derive a mobility model of drifting objects in the region of in-
terest. The mobility model can be used to simulate the possible
moving trajectories of floating objects in the region [13]–[15],
which, in turn, can be used for various studies, for example, how
drifting logs, ice chunks, or even garbage move along a water
way and how these objects behave in the presence of different
safety measures.

A comparison of the proposed method and the existing
current measurement techniques is shown in Table I. In sum-
mary, our proposed method has the following advantages:
1) it makes it possible for nonspecialized parties to drop
and get information about the currents in a target region;
2) the cost of the system is low; each prototype wireless GPS-
sensor costs less than 60 USD; and 3) the proposed method
gives a comprehensive 2-D current map without a large-scale
deployment.

II. COLLECTING TRAJECTORIES

The main device used in our proposed system is a special
GPS sensor. Fig. 3 shows this device and its block diagram.
It is encapsulated to be waterproof and floats on the water.
The device is based on Telos [21], an ultralow-power wireless
sensor platform based on MSP430 [22]. It is integrated with an
MediaTek GPS module FPGMMOPA1 [23]. The errors of the
GPS module in terms of position, velocity, and timing are less
than 3 m, 5 cm/s, and 100 ns, respectively. Issues regarding GPS
accuracy will be discussed later in this paper. This sensor device
is programmed to record its latitude and longitude into internal
storage every second. In addition, it is also equipped with an
onboard 2.4-GHz radio transceiver, i.e., CC2420, which allows
it to wirelessly report its location to shore-based receivers in
real time.

Some modifications have been made to the sensor plat-
form. We modified the USB interface IC (FT232BM) and
the GPS module so that they share the same UART inter-
face of the MSP430. The GPS module was set to output an
NMEA 0183 string [24] every second to the MSP430 to report
the current location. To reduce the data storage required, the
MSP430 extracts the location, velocity, and direction from the
NMEA string “GPRMC” and converts them into a 9 bytes
abstracted data structure. These location data are logged into
the nonvolatile internal memory (M25P80) of Telos for later
downloading.

To prove the concept, we conducted an experiment over an
accessible segment of a river. This segment is within latitude
[N24◦49.255′ ∼ N24◦49.31′] and longitude [E121◦00.070′ ∼
E121◦00.082′], located in Hsinchu, Taiwan, which amounts to
an area about 10–15 m wide and 100 m long. Fig. 4 shows this
area. The reason for choosing this river segment is that it is
accessible and controllable without using boats.

The experiment was conducted by dropping the sensors
upstream and retrieving them downstream. This procedure was
repeated several times. A total of 45 trajectories were collected,
each consisting of a series of points with parameters in velocity
and direction. A point also stands for the runtime in 1 s of a
trajectory. There are about 7000 points in the 45 trajectories.

III. ANALYSIS AND BUILDING PARAMETER MAPS

The collected trajectories were processed to filter out im-
proper ones, e.g., those in which the GPS module lost its
GPS signal or the sensors were trapped by stones. Among the
45 collected trajectories, 15 were eliminated. The remaining
30 trajectories contained 4557 points, which are shown in the
scatter plot in Fig. 5.

The distributions of velocity and direction of the collected
trajectories are shown in Figs. 6 and 7, respectively. In Fig. 6,
the cumulative probability function (CDF) of velocity follows
a general Pareto distribution with a shape parameter (k) of
0.031 and a scale parameter (sigma) of 0.75. We denote this
Pareto distribution as Distvelocity and refer to it as the velocity
distribution. The velocity can be measured as a unit of nautical
miles per hour or knots, where 1 nmi is 1852 m and 1 knot
is about 0.5 m/s. In Fig. 6, we can see that, in 70.17% of the
running time, the velocity is smaller than 1 knot, and in 97.65%
of the time, it measures less than 2 knots.
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TABLE I
COMPARISON OF CURRENT MEASUREMENT TECHNIQUES

Fig. 3. Wireless GPS sensor used in the study.

Fig. 4. Bird’s-eye view of the area for the proof-of-concept experiments.
The GPS sensors were dropped at the lower right (upstream) and retrieved at
the upper left (downstream).

Fig. 5. Scatter plot of 4557 points from 30 collected trajectories.

Fig. 6. CDF of the current velocity (Distvelocity).

Fig. 7. Probability distribution of the current direction (Distdirection).

Fig. 7 shows the distribution of the directional data. The di-
rectional data were retrieved from the NMEA string “GPMRC”
from the GPS module. It indicates the course over ground
degrees from the true north (i.e., 0◦ to the true north). The
probability distribution generally follows a normal distribution
with a mean of 340.97◦ and a standard deviation of 25.67◦. This
normal distribution is denoted as Distdirection.

In the following, we discuss how to transform the collected
trajectories into parameter maps. First, we enclose the area of
interest with a rectangle, denoted as Si, and divide it into m × n
cells. Each cell is denoted as Cx,y , where 1 ≤ x ≤ m and 1 ≤
y ≤ n, i.e.,

Si = {C1,1, C1,2, . . . , C1,n−1, C1,n, C2,1,

C2,2, . . . , Cm,n−1, Cm,n}. (1)
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Fig. 8. Point quantity map (N Pmap) from our proof-of-concept experiment.

The cell size should properly be chosen to include a sufficient
number of location points. In our proof-of-concept experiment,
we chose a cell size of 0.001 × 0.001 in longitude and latitude,
which is approximately 1.852 m × 1.852 m. Si is divided into
20 × 65 cells, as shown in Fig. 8.

Let Ti = {t1, t2, t3, . . .} denote the set of trajectories
t1, t2, t3, . . . collected from area Si. A trajectory tj consists of
a series of points p1, p2, p3, . . ., where each point pk holds its
longitude, its latitude, and some parameters such as velocity and
direction. A point stands for the location and movement of the
floating object in a single second. These are given as follows:

Ti = {t1, t2, t3, . . .}. (2)
tj = {p1, p2, p3, . . .} (3)
pk = (longitude(pk), latitude(pk),

velocity(pk), direction(pk)) . (4)

From the trajectories and cells, we then determine whether
a point p is inside a cell Cx,y . The set of points inside a cell
Cx,y is collected and denoted as Px,y . Let Nx,y = |Px,y| be the
number of points in the cell.

From all the points inside a cell Cx,y , we next calculate
the point quantity Nx,y , general velocity Vx,y , and general
direction Dx,y of the cell. Vx,y and Dx,y are the median value
of velocity and direction in Px,y . Note that the median value is
used instead of the mean value because the variation of velocity
and direction of the points within a cell may be high if there are
too few points in the cell, e.g., less than five points; the median
value is more statistically robust. The calculations are given as
follows:

For a specific cell Cx,y ∈ Si :
Px,y = {∀p ∈ Cx,y}
Nx,y = |Px,y|
Vx,y = median (velocity(p1), velocity(p2), . . .) (∀p ∈ Px,y)
Dx,y = median (direction(p1), direction(p2), . . .)

(∀p ∈ Px,y). (5)

After calculating Nx,y , Vx,y, and Dx,y for all Cx,y in Si, we
can now build the parameter maps for Si. For example, from
our proof-of-concept experiment, we can obtain the parameter
map of point quantity shown in Fig. 8. Note that the parameter

Fig. 9. General velocity map (V Pmap) from our proof-of-concept
experiment.

map is not scaled to the dimension of the real geographic area.
The point quantity map, denoted as N Pmap, could be used
to determine the probability that drifting objects might traverse
through a cell. This information is very useful for building the
mobility model, as discussed in the following sections.

Fig. 9 presents the parameter map of the general current
velocity, hereafter denoted as V Pmap, obtained from our
experiment. We can see that the velocities in the central portion
of the river (enclosed by the dotted red circle) are higher than in
the surrounding cells. This cautions harbor managers and vessel
pilots to be more careful in this area.

Fig. 10 shows the parameter map of the general current
direction, hereafter denoted as D Pmap. In the bottom-right
portion of this map (enclosed by the dotted green circle), we
can see that the directions of the currents consistently point to
the upper left portion of the map. From the map, we can also
indentify two areas of turbulence, enclosed by the two dotted
red circles, which should be noted for navigational safety.

The parameter maps have various uses, depending on their
applications. Even when applied to safety management, differ-
ent applications may have different requirements. For example,
while parameter maps provide essential information for appli-
cations to use, a turbulence of 5 × 5 m may pose a serious threat
to whitewater rafting but may not affect cargo ships. In the next
section, we will examine one application in more detail, i.e., the
derivation of a mobility model of drifting objects in the area of
interest.

IV. MOBILITY MODEL OF DRIFTING OBJECTS

Mobility models have widely been used in research areas
such as mobile networks, transportation, and disease dissem-
ination. In mobile wireless networks, research on network
routing and deployment often requires appropriate mobility
models to evaluate performance. Unfortunately, most existing
mobility models focus on objects moving on solid ground. With
an increasing interest in deploying wireless sensor nodes on
fluid flows for natural disaster prevention and environmental
protection [13]–[15], the creation of mobility models of drifting
objects on currents is imperative.
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Fig. 10. General direction map (D Pmap) from our proof-of-concept
experiment.

Existing mobility models can be categorized as synthetic and
trace based. Synthetic approaches generate virtual trajectories
without referring to field information. Instead, mobility is mod-
eled purely on mathematical definitions, and thus, it is difficult
to capture real situations. On the other hand, trace-based ap-
proaches use information collected in real environments as the
basis for the mobility model.

One of the most popular synthetic mobility models is the
random waypoint model [16]. The movements of a node are
modeled following a walk-and-pause cycle. The destination
and moving speeds are randomly chosen. The model is simple
and easy to use for numerical analysis and programming in
simulators. In [17], a mobility model considering obstacles is
proposed, in which a Voronoi diagram is used to determine
the paths of simulated nodes. Another well-known mobility
model is the reference point group mobility model [18], which
assumes that nodes in the same group have similar behaviors
and that the path of a group follows predefined checkpoints of
the group’s logical center. In addition, the members of the group
randomly move around the logical center. These synthesis

mobility models generate nodes’ movements using algorithmic
or mathematical formulations based on intuition and not on
real-world behaviors.

Trace-based mobility models generate the moving behaviors,
e.g., the virtual trajectories, of nodes based on information col-
lected in the field. For example, the wireless local area network
(WLAN) mobility model [19] is based on the accessing log of
WLANs on the Swiss Federal Institute of Technology Zurich
(ETH Zurich) campus. In [20], a 13-month history log of net-
work associations is examined to acquire the movement char-
acteristics of Wi-Fi devices. The mobility models obtained by
the trace-based approaches are akin to real-world behavior, al-
though they may be confined to the environment where the data
are collected. In this paper, we follow the trace-based approach
to build a mobility model for drifting objects. As mentioned
in Section I, such a mobility model can be used to study how
drifting logs, ice chunks, or even garbage may move along a
waterway and how they behave under different safety measures.

Given the parameter maps N Pmap, V Pmap, and D Pmap,
we discuss how to construct the mobility model of drifting
objects. The mobility model can be utilized as a function to
generate the movements of an object in time and spatial do-
mains. The movements may be expressed as a virtual trajectory
generated from a stochastic computation point by point. The
pseudocode of the proposed trajectory generation algorithm and
the block diagram are shown in Fig. 11.

The trajectory generation function generates a trajectory in
Si starting from some points in INITIAL_LOCATION (line 04).
The initial point is randomly selected from within INITIAL_
LOCATION to enhance the variability of the virtual trajecto-
ries. In our proof-of-concept experiment, INITIAL_LOCATION
is located at [E121◦00.080′ ± 0.001′,N24◦49.265′ ± 0.003′].
The points in the virtual trajectory are then recursively gen-
erated point by point. For example, if the present point is p′k
and p′k ∈ Cx1,y1, the direction and velocity of the next point
p′k+1 is generated using the parameters Vx1,y1 and Dx1,y1

of cell Cx1,y1. The function get_cell_id() (line 05) refers
to current_location and returns the cell ID Cx,y , where the
current_location ∈ Cx,y . The points are sequentially gener-
ated until the runtime is longer than MAX_TIME or current_
location is in GOAL. For our experiment, MAX_TIME = 450,
and GOAL = [∀ location|latitude > N24◦49.304′].

The function isvalid() (line 08 and 12) returns FALSE if the
input point p′ is in Cx,y and the corresponding Nx,y = 0, indi-
cating that the cell is an empty cell. We define the set of empty
cells as a boundary cell set Cboundary = {Cx,y|∀Cx,y ∈ Si ∧
Nx,y = 0}, so the virtual trajectories are constrained in the cell
set {Si − Cboundary}. Without boundary constraints, the gener-
ated trajectories might enter locations the collected trajectories
never visited, e.g., shores or obstacles. The function generate_
movement() (line 7 and 28) calculates each single movement
according to Vx,y and Dx,y and the current location p′ ∈ Cx,y .

The function generate_velocity() (line 21) uses the input
Vx,y to randomly generate the velocity of the next movement
from the velocity Pareto distribution, i.e., Distvelocity, and the
generate_direction() (line 22) uses Dx,y to generate the direc-
tion of the next movement from the direction normal distribu-
tion Distdirection. (Note that Distvelocity and Distdirection are
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Fig. 11. Pseudocode of the proposed trajectory generation algorithm and the flow chart.

Fig. 12. Point quantities of the surrounding cells of CurrentCell are used to determine the probabilities of the direction of the bouncing movement.

based on the collected trajectories of Si.) In lines 21–22, the ve-
locity and direction of the next movements are obtained by ran-
domly sampling a value from their corresponding distributions.
Line 23 generates the 2-D movement in the target space Si.

The function get_bounce() (lines 11 and 13) defines how a
bouncing movement is generated. A drifting object on water
will bounce when it hits certain obstacles such as stones or
the shore. For example, if the movement m′ generated by
generate_movement() (line 07) causes the next point p′k+1 =
p′k + m′ to fall into an empty cell Cempty ∈ Cboundary, then
m′ must be discarded and get_bounce() is used to generate
a bouncing movement. The bouncing direction is calculated
based on the idea that cells with a higher point quantity N have
a higher probability of being visited. Therefore, the bouncing
movement has a higher probability of moving into the direction
of the surrounding cell, which holds more points.

Fig. 12 shows an example describing how the bouncing
movement direction is determined. In this example, the present
point p is within CurrentCell. The point quantities of the sur-
rounding cells of CurrentCel are indicated by N1, N2, . . . , N8,
respectively. The sum of the point quantity of the surrounding
cells is Nsum = N1 + N2 + N3 + · · · + N8 = 24. The proba-
bility of bouncing direction degree of 0 is denoted by P (0◦),
which is given by P (0◦) = N2/Nsum = 5/24 = 0.208. The
probabilities of other bouncing directions can similarly be
computed. Next, the direction of the bouncing movement can
randomly be sampled from these probabilities.

The proposed trajectory generating function was evaluated
using Matlab [25]. Three virtual trajectories using the parame-
ter maps from our experiment are presented in Fig. 13. Note
that the generated virtual trajectories look very much like the
collected real trajectories. This was further evaluated using
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Fig. 13. Three virtual trajectories (in red) are shown over the points of the
collected trajectory (in green).

statistical analyses. We generated 1229 virtual trajectories that
consisted of 39 × 104 points. Their probability distributions
were compared to the collected real trajectories in terms of
current velocity and direction.

Figs. 14 and 15 show the velocity and direction CDFs of the
collected and virtual trajectories. In Fig. 14, the velocity CDF of
the virtual trajectories is compared to the CDF of the collected
trajectory. In the virtual trajectories, the probability that the
velocity is smaller than 2 knots is slightly higher than that in

Fig. 14. Cumulative probability of current velocity.

Fig. 15. Cumulative probability of current direction.

the collected trajectory. Nevertheless, the two distributions are
very similar.

Fig. 15 shows the CDFs of the current direction. The direc-
tion CDF of the virtual trajectories is similar to the CDF of
the collected trajectories. However, the probability curve of the
virtual trajectories is more flattened than that of the collected
trajectories. The reason for this might be the sample size of
the virtual trajectories, which is much larger than the collected
trajectory. This causes the distribution of the current direction
of the virtual trajectory to approximate more toward a normal
distribution.

Next, we compare the two groups of trajectories in terms of
their geographical distributions. To the best of our knowledge,
there is no general method that can be used to quantify the
similarity of two sets of trajectories. Therefore, in this paper, we
propose two metrics, i.e., the coverage ratio Rcoverage and the
matching ratio Rmatching, to quantify the difference between
the collected and virtual trajectories.

The matching ratio Rmatching = [0, 1] is adopted from pat-
tern matching [30] in image processing, which determines the
difference between two images. This is defined in this paper as

Rmatching =
1

1+
∑

∀Cx,y∈Si

abs (PR(Nx,y))−PR
(
N ′

x,y

) . (6)
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In the equation, PR(Nx,y) is the percentage of Nx,y of a
specific cell Cx,y over the total number of points in the col-
lected trajectory. PR(N ′

x,y) denotes the same for the virtual
trajectory. The function abs() returns the absolute value, while
the denominator of the equation computes the summation of
the differences between PR(Nx,y) and PR(N ′

x,y) for all cells
in Si. A Rmatching close to 1 indicates that the two groups of
trajectories have a high similarity.

The coverage ratio Rcoverage = [0, 1] is defined as a relative
ratio in the view of the cells covered by the collected and virtual
trajectories, based on the following intuition. If two groups of
trajectories (i.e., collected and virtual) are inherently identical,
in any location in the target space (i.e., a cell in Si) where
the collected trajectories have visited, the generated virtual
trajectories should have visited as well. Rcoverage defines the
ratio as the number of cells visited by both the collected and
the virtual trajectories over the number of cells visited by the
collected trajectories only. In other words, if a cell Cx,y is
visited by trajectory tj , there exists a point pk such that pk ∈ tj
and pk ∈ Cx,y , i.e.,

Rcoverage =

∑

∀Cx,y∈Si

1
∣
∣
∣
∣
(
Nx,y > 0 ∧ N ′

x,y > 0
)

∑

∀Cx,y∈Si

1
∣
∣
∣
∣(Nx,y > 0)

. (7)

In (7), the nominator represents the number of cells Cx,y

in Si in which both Nx,y and N ′
x,y are larger than zero. That

is, both the collected and virtual trajectory sets contain a least
one point that has visited this cell. The denominator depicts
the number of cells visited by the collected trajectories. The
higher Rcoverage is, the higher the variability in the generated
trajectories becomes.

We applied the evaluation method previously described to the
data collected from the proof-of-concept experiment. We also
used the proposed trajectory generation algorithm to generate
virtual trajectories with parameter maps from the experiment.
The trajectories were generated using different levels of point
quantities, ranging from 1 × 104 to 39 × 104. For each point
quantity, ten sets of virtual trajectories were generated to obtain
the average matching ratio and coverage ratio.

Figs. 16 and 17 show the matching ratio and coverage
ratio under different point quantities. Both figures show that a
larger point quantity in the virtual trajectory results in a higher
matching ratio and a higher coverage ratio. In Fig. 16, there
is a plateau in the matching ratio when the point quantity is
10 × 104. However, for the coverage ratio in Fig. 17, the plateau
starts at 25 × 104. These results suggest that to evaluate the
trajectory-generated algorithm, the point quantity of the virtual
trajectory should be greater than 25 × 104 to provide a rea-
sonable result. Fig. 17 also shows that the proposed trajectory
generation function can generate highly variable trajectories, as
more than 95% of the cells were visited by the virtual trajecto-
ries when the point quantity was approximately 14 × 104.

By comparing the collected and virtual trajectories using
the two metrics, we can see their similarities. The virtual
trajectories are able to capture the characteristics of the real
environment and can thus be used to study simulations of, for

Fig. 16. Matching ratio versus the point quantity of the virtual trajectory.

Fig. 17. Coverage ratio versus the point quantity of the virtual trajectory.

example, the potential hazards caused by floating ice chunks,
logs, and garbage in a waterway.

To summarize, in this section, we used parameter maps to
build a mobility model of drifting objects and to evaluate the
virtual trajectory in velocity/direction distribution, matching
ratio, and coverage ratio. The results confirmed the correctness
of the proposed mobility model.

V. DISCUSSIONS

In this paper, we demonstrated the feasibility of the proposed
method via a proof-of-concept experiment. In this section,
we discuss the issues related to the accuracy of the proposed
method and its uses in real-life situations.

Regarding the accuracy and potential measurement errors of
the proposed method, we refer to the related works that applied
a similar approach. In [33], a drifting GPS device that measures
the velocity of a surface current is compared to a conventional
impellor meter. The result of this paper shows that there is a
strong correlation (r > 0.8) between the measurements from
the conventional flow meter and the GPS device. The measured
average velocity error is 17.5 cm/s. Another study [34] com-
pares the velocity measurement from a GPS on a float and a
high-frequency radar system. The latter has been demonstrated
to have a velocity accuracy of 10 cm/s [35], [36]. The results
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from this paper show that the measured velocity difference is
around 9.8–9.9 cm/s, which is close to the value shown in the
datasheet of the GPS module [23] integrated in our wireless
sensor platform. For safety-related applications such as those
mentioned earlier in this paper, errors within centimeters may
be acceptable. Again, this is application dependent.

Since the focus of this paper is on a method for measuring
water currents, the accuracy and choice of the GPS module do
not affect the proposed method. If a higher level of accuracy
is required, we can always choose higher end GPS modules
such as assisted GPS, differential GPS [37], and wide-area
augmentation system [38]. Furthermore, calibration can be
performed before use to control the measurement accuracy.

Our proposed method can be used as a stand-alone or to
complement existing methods. For example, the sensing region
of ADCP is limited, and a widespread deployment would be
very expensive. We can thus deploy ADCPs at some strategic
locations and use our proposed method to collect information
between ADCPs. The ADCPs can further be used to calibrate
the outputs from our GPS devices. This way, we can strike a
balance between cost and accuracy.

The GPS sensor discussed in this paper can only float on
the surface and move along with the water. However, there are
applications in which the sensors have to move autonomously to
certain locations or following a certain route. We may therefore
enhance the sensor with an autonomous underwater vehicle or
remotely controlled model boat (RC boat). This would also
facilitate the retrieval of the sensors. If real-time information is
required, we can equip the GPS devices with wireless commu-
nication capability so that they can immediately upload the col-
lected data to the base stations on the shore. If communication
range is a concern, we can drop more wireless sensors and use
multihop communication to relay data. A dense deployment is
feasible because our sensors are inexpensive. Even if some of
these sensors do not return, they are expendable due to their
low cost.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a low-cost method to
measure water currents. A proof-of-concept experiment has
been conducted to show the feasibility and effectiveness of
this method. The obtained parameter maps provide information
about the currents in a waterway and can be used to identify
potential turbulence and vortexes in rivers or harbors. They can
also be used to derive mobility models for drifting objects in
the water. We have shown that the generated virtual trajectories
are very similar to the collected trajectories and can therefore
reflect real-world behaviors.

The proposed method can also be applied to other appli-
cations, such as the study of fish migration paths, renewable
energy harvesting systems based on surface currents, channel
safety mechanisms for boats, and how the greenhouse effect
changes tides and currents offshore. We can also perform
other near-surface measurements such as seawater salinity and
temperature measurements by integrating appropriate sensing
components into the sensing platform to provide more informa-
tion for scientists to study.
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