Electrical Spin Injection and Detection in Mn₅Ge₃/Ge/Mn₅Ge₃ Nanowire Transistors

Jianshi Tang,‡,* Chiu-Yen Wang,‡,†,∥†† Li-Te Chang,‡ Yabin Fan,‡ Tianxiao Nie,‡ Michael Chan,‡ Wanjun Jiang,‡ Yu-Ting Chen,‡ Hong-Jie Yang,§ Hsing-Yu Tuan,§ Lih-Juann Chen,§∥† and Kang L. Wang†,∥†

†Device Research Laboratory, Department of Electrical Engineering, University of California, Los Angeles, California, 90095, United States
‡Department of Materials Science and Engineering and ∥Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 10607, Republic of China
§Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 30013, Republic of China

ABSTRACT: In this Letter, we report the electrical spin injection and detection in Ge nanowire transistors with single-crystalline ferromagnetic Mn₅Ge₃ as source/drain contacts formed by thermal reactions. Degenerate indium dopants were successfully incorporated into as-grown Ge nanowires as p-type doping to alleviate the conductivity mismatch between Ge and Mn₅Ge₃. The magnetoresistance (MR) of the Mn₅Ge₃/Ge/Mn₅Ge₃ nanowire transistor was found to be largely affected by the applied bias. Specifically, negative and hysteretic MR curves were observed under a large current bias in the temperature range from T = 2 K up to T = 50 K, which clearly indicated the electrical spin injection from ferromagnetic Mn₅Ge₃ contacts into Ge nanowires. In addition to the bias effect, the MR amplitude was found to exponentially decay with the Ge nanowire channel length; this fact was explained by the dominated Elliot-Yafet spin-relaxation mechanism. The fitting of MR further revealed a spin diffusion length of l⃗s = 480 ± 13 nm and a spin lifetime exceeding 244 ps at T = 10 K in p-type Ge nanowires, and they showed a weak temperature dependence between 2 and 50 K. Ge nanowires showed a significant enhancement in the measured spin diffusion length and spin lifetime compared with those reported for bulk p-type Ge. Our study of the spin transport in the Mn₅Ge₃/Ge/Mn₅Ge₃ nanowire transistor points to a possible realization of spin-based transistors; it may also open up new opportunities to create novel Ge nanowire-based spintronic devices. Furthermore, the simple fabrication process promises a compatible integration into standard Si technology in the future.

KEYWORDS: Spin injection and detection, Ge nanowire transistor, Mn₅Ge₃, spin transport, spinFET

Received: April 6, 2013
Revised: August 7, 2013
Published: August 12, 2013

© 2013 American Chemical Society

scattering,3,17 while the insertion of a tunneling or Schottky barrier helps alleviate the conductivity mismatch,18,19 the preparation of a high-quality tunneling oxide without pinholes or a defects-free Schottky contact without Fermi-level pinning is not easy.20,21 Also, the localized states at the FM/SC interface and the surface roughness could significantly complicate and jeopardize the spin injection process.22 Therefore, the preparation of high-quality FM/SC structures is a key step toward realizing efficient spin injection into semiconductors. In an earlier work, we were able to fabricate single-crystalline Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors using a simple rapid thermal annealing (RTA) process23 in which the formed Mn$_5$Ge$_3$ Schottky contacts maintained atomically clean interfaces with Ge nanowires and the Mn$_5$Ge$_3$ nanowire exhibited ferromagnetic orderings up to room temperature.24 It should be pointed out that the Curie temperature of Mn$_5$Ge$_3$ can be further increased up to 445 K with appropriate carbon doping in order to build practical spintronic devices that can operate at room temperature.25 Moreover, such one-dimensional high-quality germanide/Ge contacts formed by RTA were found to effectively alleviate the Fermi level pinning,26 for which conventional metal/Ge contacts were suffered.27 This should allow us to probe the intrinsic spin property in the Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistor. Indeed, with a high spin polarization,28 Mn$_5$Ge$_3$ has been theoretically predicted to be a high-efficiency spin injection source into Ge.29 In this work, we demonstrate the spin injection into Ge nanowires through Mn$_5$Ge$_3$ source/drain contacts in Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors. We also study the bias effect and the temperature dependence of the spin transport, revealing a weak temperature dependence for the spin diffusion length of about 480 nm and the spin lifetime exceeding 244 ps in degenerately p-doped Ge nanowires. These numbers in Ge nanowires are much larger than those reported in bulk Ge with a similar doping level,30 which can be attributed to the significant suppression of spin relaxation because of quantum confinements in nanostructures.

Results and Discussion. Single-crystalline Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors were fabricated on a Ge nanowire with Mn metal contacts using a RTA process, as described in a prior work for the formation of ferromagnetic source/drain contacts in Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors.23 Figure 1a schematically illustrates the device structure, in which the formed Mn$_5$Ge$_3$ Schottky contacts maintained atomically clean interfaces with Ge nanowires and the Mn$_5$Ge$_3$ nanowire exhibited ferromagnetic orderings up to room temperature.24 It should be pointed out that the Curie temperature of Mn$_5$Ge$_3$ can be further increased up to 445 K with appropriate carbon doping in order to build practical spintronic devices that can operate at room temperature.25 Moreover, such one-dimensional high-quality germanide/Ge contacts formed by RTA were found to effectively alleviate the Fermi level pinning,26 for which conventional metal/Ge contacts were suffered.27 This should allow us to probe the intrinsic spin property in the Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistor. Indeed, with a high spin polarization,28 Mn$_5$Ge$_3$ has been theoretically predicted to be a high-efficiency spin injection source into Ge.29 In this work, we demonstrate the spin injection into Ge nanowires through Mn$_5$Ge$_3$ source/drain contacts in Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors. We also study the bias effect and the temperature dependence of the spin transport, revealing a weak temperature dependence for the spin diffusion length of about 480 nm and the spin lifetime exceeding 244 ps in degenerately p-doped Ge nanowires. These numbers in Ge nanowires are much larger than those reported in bulk Ge with a similar doping level,30 which can be attributed to the significant suppression of spin relaxation because of quantum confinements in nanostructures.

Figure 1. Characterization of single-crystalline Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors. (a) Schematic illustration of Ge nanowire transistors with thermally formed Mn$_5$Ge$_3$ as Schottky source/drain contacts. The setup for a standard 4-probe measurement is also illustrated. The magnetic field for the following measurements in this study was applied along the nanowire axial direction. (b) Optical microscope image of multiple as-fabricated Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors on a SiO$_2$/Si substrate. (c) I_{DS}-V_{GS} curves of three Ge nanowire transistors with different channel lengths ($L_{ch} = 450, 550,$ and 700 nm) with $V_{DS} = 10$ mV, showing a p-type transistor behavior with a field-effect hole mobility of about 10 cm2/V.s. (d) The 4-probe resistance-temperature (R-T) measurement on the Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistor with a channel length of $L_{ch} = 700$ nm, showing a decreasing resistance with the decreasing temperature. This confirms the degenerate indium doping in the Ge nanowire. The inset shows the first-order derivative of the R-T curve (black curve), showing a smooth transition near $T = 300$ K. For comparison, the data of a Mn$_5$Ge$_3$ nanowire (red curve, multiplied by a factor of 7) adopted from ref 24 is also plotted here.
liquid−solid growth process. Here in order to introduce a high doping density, as-grown Ge nanowires were exposed in an indium ambient at about 600 °C inside an ultrahigh-vacuum molecular beam epitaxy (MBE) chamber for 2 hours to drive indium atoms diffusing into Ge nanowires as p-type dopants, prior to being transferred onto SiO₂/Si substrates for device fabrication. The Ge nanowire morphology was inspected with transmission electron microscope (TEM) to ensure that the Ge nanowire maintained the cubic crystal structure after incorporating indium doping (see Figure S1 in Supporting Information). Furthermore, the energy-dispersive X-ray spectrum (EDS, with a resolution of about 0.1% atomic concentration) of indium-doped Ge nanowires revealed a very small peak of indium, affirming the successful incorporation of indium dopants into the Ge lattice (see Figure S2 in Supporting Information).

Figure 1b shows the optical microscope image of multiple as-fabricated Mn₅Ge₃/Ge/Mn₅Ge₃ nanowire transistors after transferring indium-doped Ge nanowires onto a SiO₂/Si substrates for device fabrication. The Ge nanowire morphology was inspected with transmission electron microscope (TEM) to ensure that the Ge nanowire maintained the cubic crystal structure after incorporating indium doping (see Figure S1 in Supporting Information). Furthermore, the energy-dispersive X-ray spectrum (EDS, with a resolution of about 0.1% atomic concentration) of indium-doped Ge nanowires revealed a very small peak of indium, affirming the successful incorporation of indium dopants into the Ge lattice (see Figure S2 in Supporting Information).

Figure 1b shows the optical microscope image of multiple as-fabricated Mn₅Ge₃/Ge/Mn₅Ge₃ nanowire transistors after transferring indium-doped Ge nanowires onto a SiO₂/Si substrate. No scanning electron microscope (SEM) image was taken to avoid undesirable damages on the device by the high-energy electron beam; however it was expected to be similar to the prior work. The Si substrate was degenerately doped and used as a back-gate electrode while the 300 nm thick SiO₂ layer grown on top by thermal oxidation served as the gate dielectric. Figure 1c shows the I_DS−V_GS curves of three Mn₅Ge₃/Ge/Mn₅Ge₃ nanowire transistors with different channel lengths (L_ch = 450, 550, and 700 nm) under V_DS = 10 mV measured in the room-temperature ambient (see Figure S3 in Supporting Information). They all showed a similar p-type transistor behavior with a field-effect hole mobility of about μ_h = 10 cm²/(V s), which was calculated from the transconductance as discussed in prior works. It was noted that the Ge nanowire transistors showed about 1 order of magnitude improvement in the carrier mobility after RTA at 450 °C (see Figure S4 in Supporting Information), and such an improvement was attributed to the formation of high-quality Mn₅Ge₃ source/drain contacts after annealing. Compared with the reported performance of Mn₅Ge₃/Ge/Mn₅Ge₃ nanowire transistors built on as-grown Ge nanowires, the devices here showed a much lower hole mobility and a smaller current on/off ratio while with a higher nanowire conductance. This result implied a high concentration of indium doping in the Ge nanowire due to the fact that it is difficult to deplete a heavily doped semiconductor and the high-concentration dopants drastically degrade the carrier mobility through impurity scatterings. To quantitatively evaluate the Ge nanowire resistivity and the indium doping concentration, temperature-dependent resistance measurements were performed on a Mn₅Ge₃/Ge/Mn₅Ge₃ nanowire transistor with a channel length of L_ch = 700 nm and with a diameter of about 60 nm. A standard 4-probe measurement setup with a lock-in technique was used to exclude the contact resistance and improve the signal-to-noise ratio in the measurement. The measurement setup is illustrated in Figure 1a. As shown in Figure 1d, the Mn₅Ge₃/Ge/Mn₅Ge₃ nanowire transistor exhibited a monotonically decreasing resistance with decreasing temperature down to T = 2 K. This behavior reaffirmed the degenerate doping in the Ge nanowire in which case the dominated
impurity scattering was effectively screened by the high-density free carriers. The first-order derivative of the 4-probe resistance with respect to the temperature (dR/dT) was also plotted in the inset of Figure 1d, showing a smooth change from 250 to 350 K for the Mn5Ge3/Ge/Mn5Ge3 nanowire transistor. Compared with the clear cusp in the dR/dT curve near Tc = 300 K for the Mn5Ge3 nanowire in ref 24 (also replotted in the inset of Figure 1d for comparison),24 this suggested that the part of the resistance from the Mn5Ge3 source/drain was small and most of the measured resistance came from the Ge nanowire channel. Quantitatively, using the previously measured resistivity value for the Mn5Ge3 nanowire,24 we calculated that the Mn5Ge3 contacts contributed less than 3% of the total Mn5Ge3/Ge/Mn5Ge3 resistance. Therefore, for simplicity, we assumed the measured total resistance equaled to the Ge nanowire channel resistance. Then the resistivity of the Ge channel was calculated to be ρGe = 2.58 × 10−3 Ω·cm at T = 300 K and decreased slightly to ρGe = 2.22 × 10−3 Ω·cm at T = 2 K. On the other hand, the previously reported resistivity values for the Mn5Ge3 nanowire were ρFM = 2.4 × 10−4 Ω·cm at T = 300 K and decreased to ρFM = 4.65 × 10−5 Ω·cm at T = 2 K.24 The conductivity ratio (inversely the resistivity ratio), σFM/σGe = ρGe/ρFM of the Mn5Ge3/Ge heterostructure was then evaluated to be between 10 and 50 in the temperature range of 2−300 K. This value is more than 20 times smaller than that of ordinary FM/Ge (e.g., Fe/Ge, Co/Ge) spin injection structures, given that the resistivity of commonly used ferromagnetic metals is typically on the order of 10−6 to 10−7 Ω·cm, or at least 20 times lower than that of Mn5Ge3. Therefore, compared with ordinary FM/Ge structures, the conductivity mismatch in the Mn5Ge3/Ge/Mn5Ge3 nanowire transistor should be significantly reduced to facilitate the spin injection into Ge. It is also worth mentioning that the spin polarization in Mn5Ge3 was experimentally reported to be about PFM = 42% at T = 1.2 K,28 which is comparable with that of conventional ferromagnetic metals (for instance, PFe = 45%, PCo = 42%, and PSi = 33%).28 The relatively low conductivity and high spin polarization of Mn5Ge3, along with the atomically clean interfaces with Ge nanowires, suggests that Mn5Ge3 is a promising ferromagnetic material for spin injection into Ge nanowires.

In the characterization of spin injection and transport, Hanle precession measurement is widely used to extract the spin lifetime and spin diffusion length.29 Usually nonlocal measurements with a four-terminal geometry are adopted to detect the intrinsic spin injection signal in order to avoid any spurious signals.39 Unfortunately, this technique could not be used for our Mn5Ge3/Ge/Mn5Ge3 nanowire transistor (see Figure S5 in Supporting Information for detailed explanation). Alternatively, we may use the Mn5Ge3/Ge/Mn5Ge3 nanowire transistor as a vertical spin valve with a current perpendicular-to-plane configuration.39,40 In this case, spin-polarized carriers are injected into the Ge nanowire from one ferromagnetic Mn5Ge3 contact (namely the spin injector) and then are scattered as they travel along the Ge nanowire channel before reaching the other ferromagnetic Mn5Ge3 contact (namely the spin detector). This process will be discussed in details later (illustrated in Figure 2d). For nonpolar semiconductors like Ge, the dominant spin relaxation mechanism is the Elliot-Yafet spin flip mechanism that occurs when scattered with phonons and impurities.3 In experiment, a constant dc bias current superimposed with a small ac current of 1.5 μA was flowed through the Mn5Ge3/Ge/Mn5Ge3 nanowire transistor, and the ac voltage signal was sensed with standard lock-in technique while sweeping the axial magnetic field. The easy-axis of the Mn5Ge3 nanowire was found to be along the nanowire axis, and the two ferromagnetic Mn5Ge3 contacts were intentionally designed to have different lengths and hence possibly different coercive fields. As the axial magnetic field was swept back and forth between −30 and 30 kOe, the relative magnetization directions of the spin injector and the spin detector were changed between parallel and antiparallel configurations. Figure 2a,b shows the MR of a Mn5Ge3/Ge/Mn5Ge3 nanowire transistor with a channel length of Lch = 700 nm under two different dc current biases in the temperature range from 2 to 50 K. The MR here is defined as MR = ((R(H) − Rmin)/Rmax) × 100% (positive MR) for Figure 2a, and MR = ((R(H) − Rmax)/Rmin) × 100% (negative MR) for Figure 2b. It is interesting to observe that the MR curves under a zero and a high dc bias current showed distinct characteristics: positive MR with no apparent hysteresis with Idc = 0 μA while there is a negative and hysteretic MR under Idc = 10 μA. It should be pointed out that while the positive MR under Idc = 0 μA is

Figure 3. (a) MR curves of three Mn5Ge3/Ge/Mn5Ge3 nanowire transistors with different channel lengths (Lch = 450, 550, and 700 nm) at T = 10 K under a dc current bias of Idc = 10 μA. The black and red arrows indicate the backward and forward sweeping directions of the axial magnetic field between −30 and 30 kOe, respectively. All the MR curves are intentionally offset by multiples of 0.1% for clarity. (b) Semilog plot of the MR magnitude at H// = 30 kOe versus the channel length for the three Mn5Ge3/Ge/Mn5Ge3 nanowire transistors. The linear fitting (red curve) yields a spin diffusion length of Lsd = 480 ± 13 nm in the p-type Ge nanowire at T = 10 K.
likely attributed to the longitudinal MR of Ge,42 the bias-dependent MR characteristics could not originate from the Ge nanowire, the Mn$_5$Ge$_3$ contact, and associated anisotropy magnetoresistance (see Figure S6 in Supporting Information for detailed explanation). The bias effect on the MR behavior can be simply explained from the energy band diagram schematically shown in Figures 2c,d: since there is a Schottky barrier height of about 0.25 eV for the ferromagnetic Mn$_5$Ge$_3$ contact to the p-type Ge nanowire,23 a large enough dc bias voltage (current) is required to reduce the Schottky barrier width in the reverse biased spin injector terminal to allow for sufficient spin-polarized carriers being injected into the Ge nanowire channel and moving toward the spin detector. The transport process of spin-polarized carriers in the Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistor is also schematically illustrated in Figure 2d. As shown in Figure 2b, with a dc current bias of $I_{dc} = 10 \mu$A we were able to observe the negative and hysteretic MR from $T = 2 \, \text{K}$ up to $T = 50 \, \text{K}$, unambiguously demonstrating the spin injection and detection in the Ge nanowire transistor. More MR curves are shown in the Supporting Information (see Figure S7 in Supporting Information). It is worth noting that similar bias effect on the MR behavior was also observed in the MnSi/Si/MnSi nanowire heterostructure in which spin-polarized carriers were injected from the Schottky MnSi contact into the p-type Si nanowire.43

To quantitatively determine the spin diffusion length, temperature-dependent MR measurements were performed on several Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors with different channel lengths. Figure 3a shows the MR curves of three Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors with three different channel lengths ($L_{ch} = 450, 550,$ and $700 \, \text{nm}$) at $T = 10 \, \text{K}$ under the same dc current bias of $I_{dc} = 10 \, \mu$A. They showed similar negative and hysteretic characteristics with a systematic decrease in the MR magnitude with the increasing Ge nanowire channel length. Recalling the Julliere’s model for a FM/insulator/FM structure,44 the tunneling magnetoresistance (TMR) is given by

$$\text{TMR} = \frac{2RP_1}{1 + RP_1}$$

(1)

Here P_1 and P_2 are the spin polarizations of the two FM electrodes defined as $P = (N_1 - N_2)/(N_1 + N_2)$ in which N_1 (N_2) is the density of states at the Fermi level for the majority (minority) spin direction. In our Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire with a fairly long Ge channel, the Julliere’s model of TMR can be modified as follows to include the spin relaxation in the Ge nanowire41

$$\text{TMR} = \frac{2RP_1e^{-k_{ch}/L_{ch}}}{1 + RP_1e^{-k_{ch}/L_{ch}}}$$

(2)

where L_{ch} is the Ge nanowire channel length, and L_{ch} is the spin diffusion length (see Figure S8 in Supporting Information for more discussions on the model). In the case where $P_1P_2e^{(-k_{ch}L_{ch})} \ll 1$, or equivalently the TMR magnitude is small (such as in this work), eq 2 can be further simplified as an exponential function

$$\text{TMR} \approx 2RP_1e^{-k_{ch}/L_{ch}}$$

(3)

In the MR curves of Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors shown in Figure 3a, it is difficult to determine the TMR magnitude, because typical abrupt resistance steps were not observed as in previous organic spin valves that comprised two different ferromagnetic contacts.40,41 This could be attributed to a possibly small difference in the coercive field for the Mn$_5$Ge$_3$ spin injector and detector (with the same diameter but slightly different lengths). In addition, the presence of multiple domains in the ferromagnetic Mn$_5$Ge$_3$ nanowire would also prevent the abrupt switching of its magnetization.24 Further investigation may be required to understand the detailed mechanism. Here, in order to extract the spin diffusion length in the Ge nanowire, we obtained the MR magnitude of three Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors with different L_{ch} at the same temperature and magnetic field. Here we picked the largest magnetic field in our measurements to ensure the magnetization of all the Mn$_5$Ge$_3$ nanowires in parallel. The rationale is to compare the MR ratio of three Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors with different Ge nanowire channel lengths while keeping all other parameters the same (same temperature and bias condition, etc.). Therefore, the change in the MR ratio should closely related to the spin relaxation in the Ge nanowire. A semilog plot of the MR magnitude at $H_L = 30 \, \text{kOe}$ versus the channel length is then plotted at $T = 10 \, \text{K}$ in Figure 3b. Using eq 3, one yields a spin diffusion length of $L_{ch} = 480 \pm 13 \, \text{nm}$ in the p-type Ge nanowire at $T = 10 \, \text{K}$. To make a meaningful comparison with previous results in Ge, we first estimated the doping concentration in our Ge nanowires. Using the resistivity-doping concentration relation in bulk Ge as an approximation,45 the resistivity value of $\rho_{Ge} = 2.58 \times 10^{-3} \, \Omega \cdot \text{cm}$ at $T = 300 \, \text{K}$ corresponds to a p-type doping concentration of about $N_d = 8 \times 10^{18} \, \text{cm}^{-3}$. Measurements from more than 10 devices yielded a p-doping concentration in the range between 6×10^{18} and $9 \times 10^{18} \, \text{cm}^{-3}$. From the literature,50 p-type bulk Ge with a similar doping concentration of $N_d = 8.2 \times 10^{18} \, \text{cm}^{-3}$ was reported to have a spin diffusion length of about $L_{ch} = 80 \, \text{nm}$ (calculated at $T = 300 \, \text{K}$ but it is also valid for temperature down to $T = 5 \, \text{K}$ as both the spin lifetime τ_{sp} and the diffusion constant D_{sp} have a weak temperature dependence in heavily doped semiconductors7,30,46). The significant enhancement in the spin diffusion length in the one-dimensional Ge nanowire channel could be attributed to the effective suppression of electron–phonon scattering and thus spin relaxation by quantum confinements in nanostructures with a reduced density of states. From eq 3, we can also extract the spin polarization of Mn$_5$Ge$_3$ to be about 8% at $T = 10 \, \text{K}$, which is much smaller than the reported (42 ± 5)% at $T = 1.2 \, \text{K}$ from point contact Andreev reflection measurements.28 This large deviation is mainly because that the simplified TMR model here does not include the spin injection efficiency from Mn$_5$Ge$_3$ into Ge (see Figure S8 in Supporting Information for more discussions).

To estimate the spin lifetime, we first calculated the diffusion constant, which can be obtained in degenerately doped semiconductors using the full Fermi-Dirac expression35

$$D_{sp} = \frac{2\mu_h k_B T}{q} \frac{F_{1/2}(\eta_{th})}{F_{-1/2}(\eta_{th})}$$

(4)

in which μ_h is the hole mobility, k_B is the Boltzmann constant, q is the electron charge, $\eta_{th} = (E_F - E_{F1/2})/k_B T$ while $F_{1/2}(\eta_{th})$ and $F_{-1/2}(\eta_{th})$ are the Fermi-Dirac integrals. The Fermi-level position in degenerate semiconductors can be determined using the Joyce-Dixon approximation28.

dx.doi.org/10.1021/nl401238p | Nano Lett. 2013, 13, 4036—4043
Using the measured field-effect hole mobility of $\mu_h = 10$ cm2/V s at $T = 300$ K we can calculate the diffusion constant to be $D_h = 0.377$ cm2/s given $N_A = 8 \times 10^{18}$ cm$^{-3}$ and $N_c = 6 \times 10^{18}$ cm$^{-3}$. As the diffusion constant is weakly dependent on the temperature, we assume the same value for low temperatures so we can further estimate the spin lifetime at $T = 10$ K using

$$\tau_{sf} = \frac{l_f^2}{D_h} = 6.11 \text{ ns}$$

It is recognized that the mobility value extracted from the I_{ds} vs. V_{gs} curves may underestimate the conductivity mobility considering the back-gated device structure and the round shape of Ge nanowires. Therefore, the above-calculated τ_{sf} is the upper limit for the spin lifetime. If we adopt the reported hole mobility of $\mu_h = 250$ cm2/V s from a p-type Ge thin film with a similar doping concentration, eq 6 would yield the lower limit for the spin lifetime of about $\tau_{sf} = 244$ ps with $D_h = 9.43$ cm2/s. Still this value is 1 order of magnitude larger than that observed in bulk Ge, again implying the advantage of low-dimensional nanostructures in the building of spintronic devices with long spin lifetime and spin diffusion length.

Furthermore, to investigate the temperature dependence of the spin diffusion length, we obtained the temperature-dependent MR magnitudes at $H_{//} = 30$ kOe for three Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors with different channel lengths ($L_{ch} = 450, 550$, and 700 nm) as shown in Figure 4a. Their MR magnitudes showed a similar temperature dependence: the MR magnitude linearly increases with reducing temperature from $T = 50$ K and then gradually saturates as the temperature went below $T = 10$ K. Using eq 3, we obtained the temperature-dependent spin diffusion length as given in Figure 4b, showing a weak temperature dependence of the spin diffusion length in the range of $T = 2$ K to $T = 50$ K. The calculated spin lifetime at each temperature using eq 6 is also plotted, assuming a constant diffusion constant of $D_h = 9.43$ cm2/s. Such a weak temperature dependence of the spin diffusion length and lifetime was also observed in heavily doped Si thin films. This fact may be explained by the effectively screened ionized impurity scatterings in the heavily doped Ge nanowires, resulting in a weak dependence on the temperature for the momentum relaxation and hence the spin relaxation (as manifested by the spin diffusion length and the spin lifetime).

Conclusions. To sum up, we have successfully demonstrated electrical spin injection and detection in single-crystalline Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors fabricated on degenerately indium-doped Ge nanowires. Under zero current bias, the Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistor showed positive and symmetric MR characteristics with no apparent hysteresis; on the other hand, negative and hysteretic MR characteristics were observed under a large voltage (current) bias from $T = 2$ K up to $T = 50$ K. The hysteretic MR signature clearly indicated spin injection from the ferromagnetic Mn$_5$Ge$_3$ contact into the Ge nanowire, and the large bias helped reduce depletion region width of the Mn$_5$Ge$_3$/Ge junction to increase the spin injection efficiency. Furthermore, based on the modified Julliere’s model, the MR of three Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors gave a spin diffusion length of $l_d = 480 \pm 13$ nm and a long spin lifetime exceeding 244 ps in p-type Ge nanowires at $T = 10$ K. The estimated spin diffusion length is significantly larger than the channel length of state-of-the-art MOS transistors and has a weak temperature dependence. The long spin diffusion length and its weak temperature dependence were explained by the dominant Elliot-Yafet spin-relaxation mechanism as the result of the impurity scatterings in Ge, which were effectively screened in degenerately doped semiconductors. These observed spin diffusion length and spin lifetime in one-dimensional Ge nanowires were much larger than those reported from bulk Ge, which implied that the spin relaxation can be effectively suppressed in the one-dimensional channel because of the quantum confinement effect.
With a relatively long spin diffusion length and the convenient fabrication process for Mn$_5$Ge$_3$/Ge/Mn$_5$Ge$_3$ nanowire transistors, it is possible to integrate Ge nanowire-based spintronic devices into standard CMOS technology. With spin-based transistors, this may help create novel functional devices with low power dissipation and fast switching. One promising prototype, as shown in Figure 5, is to integrate a diluted magnetic semiconductor (DMS) nanowire, whose ferromagnetism can be effectively controlled by a gate electrode, with the high-quality ferromagnetic contacts for spin injection demonstrated in this work. Another variant of the ferromagnetic source/drain contacts could be Co(Fe)/MgO tunnel junctions for spin injection.9 Our previous work has successfully demonstrated in this work. Another variant of the ferromagnetic source/drain contacts could be Co(Fe)/MgO tunnel junctions for spin injection.9 Our previous work has successfully demonstrated the electric field control of ferromagnetism in Mn-doped Ge DMS quantum dots up to 300 K,49,50 and similar effect is expected in Mn$_5$Ge$_{3-x}$ DMS nanowires. In this spin-based transistor (transpinor), the information is stored as the magnetization of the ferromagnetic Mn$_5$Ge$_3$ contacts (nanomagnets), and it can be read out and manipulated by a magnetic tunnel junction that converts the spin signal into a current/voltage signal. Other conversion strategies may involve spin valve structures or the inverse spin Hall effect.52 The magnetic moments are transferred from the source to the channel and then to the drain.

![Figure 5. Schematic illustration of a nonvolatile transpinor device, which is built on a Mn$_5$Ge$_{1-x}$ DMS nanowire with ferromagnetic Mn$_5$Ge$_3$ contacts. Another choice for the source/drain contacts could be Co(Fe)/MgO tunnel junctions. The CoFe/MgO magnetic tunnel junctions are used to read out/manipulate the magnetization of the Mn$_5$Ge$_3$ nanomagnets. Other strategies could involve spin valve structures or the inverse spin Hall effect. The ferromagnetism of the Mn$_5$Ge$_{1-x}$ DMS nanowire channel can be controlled by the gate electric field. The magnetic moments are transferred from the source to the channel and then to the drain.](image-url)