Sub-1 nm PtSn ultrathin sheet as an extraordinary electrocatalyst for methanol and ethanol oxidation reactions

Jee-Yee Chen a,1, Suh-Ciuan Lim a,1, Chun-Hong Kuo b, Hsing-Yu Tuan a,*

a Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
b Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan

Abstract

Sub-1 nm PtSn nanosheets of 0.6–0.9 nm in thickness were synthesized via a solution colloidal method and were applied as electrooxidation catalysts for methanol oxidation reaction (MOR) and ethanol oxidation (EOR) in alkaline and acid environments. Owing to the specific structural and compositional characteristics, the as-prepared PtSn nanosheets exhibits superior activity and durability relative to commercial Pt black and Pt/carbon catalysts. PtSn nanosheets not only exhibit an outstanding mass activity in MOR (871.6 mA mg Pt−1), which is 2.3 times (371 mA mg Pt−1) and 10.1 times (86.1 mA mg Pt−1) higher than that of commercial Pt/carbon and Pt black respectively, but also display an mass activity in EOR (673.6 mA mg Pt−1) with 5.3 times higher commercial Pt black (127.7 mA mg Pt−1) and 2.3 times higher than commercial Pt/C catalyst (295 mA mgPt−1). The reported value is the highest activity in both MOR and EOR examinations compared to the reported PtSn-based electrocatalysts. The improved performance may be due to the highly-reactive exposed (1 1 1) facet sites resulted from its sub-1 nm 2D sheet like morphology.

1. Introduction

Electrocatalysts play a major role in the development of direct alcohol fuel cells (DAFCs). Platinum (Pt)-based nanocatalysts are the most promising and active electrode in catalysing the electrochemical reactions, due to their high activity and durability [1–6]. However, the high cost and scarcity of Pt, as well as the critical problem of Pt surfaces poisoning upon formation of reaction intermediates, [7,8] thus limits the practical applications of DAFCs (particularly direct ethanol fuel cells, DEFCs) containing Pt/C catalyst. Therefore, to design of Pt-based electrode catalysts with reduced Pt amount, enhanced catalytic activity and stability is highly desirable. For instance, bimetallic Pt-based electrocatalysts such as PtSn, [9–11] CuPt, [12–14] RuPt, [15–20] RhPt, [21–23]
PtPd, [24–27] NiPd [28–32] have been employed for promotion of methanol oxidation reaction (MOR) or ethanol oxidation reaction (EOR) and alleviate catalysts poisoning [33–41].

Particularly, PtSn nanostructures have shown greater catalytic activity than the other reported Pt-based nanocatalysts, because Sn can supply surface oxygen-containing species for the oxidative removal of CO-like species strongly adsorbed on adjacent Pt active sites, which is the so-called bi-functional mechanism that alter the electronic structure of Pt atoms in PtSn nanostructures that favour EOR [42–45]. The presence of Sn component favors the C=C bond breaking at low overpotentials, causing the generation of acetaldehyde and acetic acid at high overpotentials, [46] and can further promote the MOR or EOR on Pt in acid media, [45] and enhance electrooxidation on both Pt and Pd in alkaline media [47].

In order to enhance the atom-utilization efficiencies, regulating the structures of Pt-based nanocatalysts with controllable high-energy facets exposure have recently been of particular interest [48–50]. Among them, ultrathin 2D sheet-like structures with single or few atomic layer thickness (<5 nm) poses excellent catalytic activities, due to their relatively high surface energy, high surface to volume ratio and high density of unsaturated atoms [51]. For instance, the electrocatalytic activity of ultrathin Pt nanosheets showed enhanced catalytic performance for ammonia oxidation compared with the flower-like Pt particles and commercial Pt/C catalyst, [52] and ultrathin PtCu alloy nanosheets demonstrated its higher catalytic activity in hydrogen evolution and hydrogenation reactions compare to spherical PtCu nanoparticles and a commercial Pt black catalyst [53].

Herein, we demonstrate the colloidal synthesis of PtSn nanosheets with thickness less than 1 nm for the first time. Sub-1 nm ultrathin PtSn nanosheets with thicknesses ranging from approximately 0.6–0.9 nm were prepared by decomposing tin (IV) iodide (SnI4) and platinum (II) iodide (PtI2) precursor in the presence of a mixture of oleylamine (OLA), trioctylphosphine (TOP), oleic acid (OA) and hexamethyldisilazane (HMDS) under argon atmosphere at 320 °C. The prepared PtSn alloy nanosheets can perform MOR and EOR at both acidic and alkaline media. Significantly, owing to their specific structural and compositional characteristics, PtSn nanosheets outperforming both commercial Pt black and Pt/C catalysts for MOR and EOR, showing 10.1 and 2.3 times higher mass activity toward MOR, 5.3 and 2.3 times higher mass activity toward EOR, respectively.

2. Experimental section

2.1. Chemicals

All chemicals are commercially analytical grade reagents. Tin (IV) iodide (SnI4; 99.99%), platinum (Pt, powder), trioctylphosphine (TOP; 90%), oleylamine (OLA; 70%), oleic acid (OA; 90%), 1-Dodecanethiol (DDT, ≥98%), hexamethyldisilazane (HMDS; ≥99%), toluene (99.5%), methanol (99.5%), ethanol (99.99%), platinum black (Pt black; 40–60 m^2/g, 99.95%) was purchased from Sigma-Aldrich corporation, 20 wt% Pt/Carbon was purchased from Fuel Cell store company.

2.2. Synthesis of PtSn nanosheets

PtSn nanosheets were synthesized in a 50 mL three-neck flask connected to the Schlenk line system under argon atmosphere. Firstly, 46.4 mg of PtI2, 6 mL of OLA, and 0.5 mL of TOP were loaded into 50 mL three-neck flask with an argon steam purged under the Schlenk line system, and preheated the mixture solution at 130 °C for 30 min with continuing stirring. Next, sonicated the stock solution which contained 60 mg of SnI4, 10 mL OLA and 0.75 mL OA into a 20 mL sample vial until dissolve completely. After all the preparation, 1 mL of HMDS and the dissolved stock solution were sequentially injected into the three-neck flask and reheated to 130 °C. Then we heated up the reaction to 320 °C by a rate of 2 °C/min. Once the temperature reached 320 °C, the flask was immediately quenched by a cold water batch instantly to room temperature for stopping the reaction. In order to discard by-products and unreacted precursors, the synthesized nanosheets were washed by centrifugation at 8000 rpm for 5 min with approximately 1:2 v/v toluene and ethanol several times.

2.3. Characterization

The morphologies of PtSn nanomaterials were characterized by a scanning electron microscopy (SEM), an energy-dispersive X-ray spectroscopy (EDS), a transmission electron microscopy (TEM) and an X-ray diffraction (XRD). With a HITACHI-S4800 field-emission SEM with 10–15 kV accelerating voltage and 8 mm working distance, the Spherical-abbreviation Corrected Field Emission Transmission Electron Microscope (HTREM) image for PtSn nanoparticles was recorded. As for the TEM images, the samples were prepared by the drop of PtSn nanomaterials in toluene onto 200 mesh carbon-coated copper grids. Furthermore, the EDS was used to confirm the element for the nanowire. Also, XRD was prepared by drying the PtSn nanomaterials solution on Si substrates, and the pattern was obtained with the Shimadzu XRD-6000 diffractometer equipped with Cu Kα radiation. Surface morphology and thickness of the nanosheets were characterized using a commercial scanning probe microscope system (Bruker, model: Dimension ICON in National Tsing Hua University Instruments centre).

2.4. Electrochemical measurements

All of the electrochemical measurements were performed in a three-electrode system on a potentiostate (VMP3 from Biologic with Ec-lab software). All experiments were conducted with a saturated calomel electrode (SCE) (in alkaline media) or Ag/AgCl electrode (in acidic media) as the reference electrode, a glassy carbon (GC) electrode as the working electrode and a Pt wire as the counter electrode. The cyclic voltammetry (CV) measurements were performed at room temperature, and the electrolyte was purged with argon for 30 min prior to electrochemical measurements.

For the working electrodes fabrication, typically 3 mg of PtSn or commercial Pt catalysts was dispersed in 1.5 mL toluene and 15 μL Nafion solution (5 wt%) sonicated for 1 h to form a homogeneous catalyst ink with a concentration of 2 mg/mL. Then, 10 μL of the dispersion was loaded onto GC electrode. The concentrations of Pt in the catalyst inks were obtained by inductively coupled plasma mass spectrometer (ICP-MS).

For methanol oxidation reaction (MOR) or ethanol oxidation reaction (EOR) measurement in alkaline media, the aqueous solutions of 0.2 M KOH containing 0.2 M methanol or ethanol were used for the electrolytes. The working electrode was initially cycled between −1.0 V and 0.4 V at 50 mV s⁻¹ in 0.2 M KOH for about 20 cycles removing the residues on catalyst surface. The MOR or EOR measurement was obtained by CV scans between −1.0 V and 0.4 V at 50 mV s⁻¹. Afterwards, the corresponding potential was held at −0.25 V during the chronoamperometry measurements in 0.2 M KOH and 0.2 M methanol or ethanol. On the other hand, for MOR or EOR measurement in acidic media, the aqueous solutions of 0.5 M H2SO4 containing 0.5 M methanol or ethanol were conducted as electrolytes. Similarly, prior to the electrochemical measurements, the catalyst coated electrodes were pre-treated between −0.2 V and 1.0 V at 50 mV s⁻¹ in 0.5 M H2SO4 for about 20 cycles for removing the surface possible contaminants on catalyst, then
the MOR or EOR measurement was obtained by CV scans between
-0.2V and 1.0V at 50mV s^{-1}.

3. Results and discussion

3.1. Synthesis and characterization

PtSn nanosheets were fabricated via heating up the solution
containing precursors and surfactants from 130°C to 320°C under
Schlenk line system with an argon steam. After obtained without
unconverted precursors by centrifugation, PtSn nanosheets were
analysed by X-ray diffraction (XRD), which the result is shown in
Fig. 1(a). With the comparison between nanosheets and standard
database ([ICDPD no. 89-2056], [54] all the analogue fingerprint
diffraction peaks indicated the nanosheets as PtSn with a primitive
hexagonal structure and the space group $P6_3$ with the following
lattice parameters: $a = 4.1 \text{Å}$, $b = 4.1 \text{Å}$, $c = 5.44 \text{Å}$. The four main
characteristic peaks for PtSn are at $25.05\degree$, $30.021\degree$, $41.793\degree$, and $44.126\degree$, which corresponded to crystal facets of $(1 0 1)$, $(0 1 1)$, $(0 1 2)$, and $(1 1 0)$. Also, Fig. 1(b) shows the simulation of layered
PtSn. Furthermore, PtSn nanosheets were examined by X-ray photoelectron spectroscopy (XPS) analysis to explore the surface
states. Shown in Fig. 1(c – e), the XPS spectrum indicated the
nanosheets contained only Pt and Sn. The region of Pt 4f and that
of Sn 3d are labelled, and all the binding energies have been cor-
rected with C 1s as reference. Displayed in Fig. 1(d), the Sn 3d

![Fig. 1.](image)

Fig. 1. (a) XRD pattern of PtSn nanosheets, (b) the simulated and piled nanosheets structures, (c-e) The XPS spectra of PtSn nanosheets: (c) C 1s, (d) Sn 3d, and (e) Pt 4f.

![Fig. 2.](image)

Fig. 2. (a and b) SEM images, (c) TEM image and (d) SAED image of PtSn nanosheets. (e, f) The HRTEM images of PtSn nanosheet, and FFT image is inserted.
peaks contain two valence states, the +2 and 0. Both the valence states split into two peaks, peaks at 484.9 and 493.3 eV represent the +0 valence state, and peaks at 486.2 and 494.5 eV represent the +2 valence state. The appearance of the Sn +2 valence state indicated the surface of PtSn nanosheets are partially oxidised as SnO. Fig. 1(e) displayed the Pt 4f region, and the peak is split into two peaks at 71.2 and 74.5 eV.

The morphologies of synthesized PtSn nanosheets were observed by several electron microscopy analyses, including SEM, TEM and HRTEM. Fig. 2(a, b) are the SEM images with different magnifications, and the majority of these PtSn nanosheets are hexagonal structures. Furthermore, observed from SEM images, these nanosheets are easily piled one above another, and this might because of van der Waals force [55]. Also, these nanosheets have a wide diameter range from 200 nm to 1 μm. The dark field TEM image is displayed in Fig. 2(c), and the magnified SAED image is displayed in Fig. 2(d). From the SAED image, the four ring patterns of (0 1 1), (0 1 2), (0 2 2) and (1 2 2) facets appear on the surface of the nanosheets, which are corresponded to the peaks of 30.021°, 44.126°, 62.395°, and 79.562° in XRD database respectively. For further detailed morphologies of PtSn nanosheets, the HRTEM images were shown in Figs. 2(e, f) and S1. The diameter of the PtSn nanosheet shown in Fig. 2(e) is nearly 200 nm, and the measured two lattice d-spacings are 0.297 nm and 0.205 nm, corresponding to the crystal facets (0 1 1) and (1 1 0). Furthermore, the corresponding Fast Fourier Transform (FFT) (inserted in Fig. 2(f)) also displayed the (0 1 1) and (1 1 0) crystal facets appear on the surface of PtSn nanosheets, which indicate the two main growing facets are the (0 1 1) and (1 1 0) crystal facets. The STEM and EDS mapping results double confirm that the nanosheets contained only Pt and Sn and which are with even element distribution (Fig. S2). From the SEM images above, the varied range of the PtSn nanosheet diameter and many studies suggest a possible synthetic mechanism [56–59]. The well dissolved tin solution was injected

Fig. 3. (a, b) AFM image of a PtSn nanosheet (b) represents the results of thickness from AFM test in different directions, corresponding to the direction in (a). (c, f) The HRTEM images of PtSn nanosheet, and the measured thickness is displayed.
into the platinum precursor solution; the forming intermediates would be thermal decompose at high temperature and the nucleate PtSn with hexagonal planar structure. The decomposed intermediates dissolved in the nucleus lead to the growth of the nanosheets; and under the surfactant environment, the nucleus have six facet growth direction that maintain the hexagonal structure. During the overall synthesis, the nucleation and the growth continuing competing, which in the SEM images, the wide diameter ranges of the nanosheets support the hexagonal nucleation and growth mechanism. However, this synthesis mechanism hypothesis would still need to be further analysed and confirmed.

The thickness of the nanosheets is crucial for 2D material since it would affect the surface energy density and volume to surface ratio. Here, the Fig. 3(a and b) shows the typical atomic force microscope (AFM) images for the PtSn nanosheets. From the AFM measurement, the thickness of nanosheets is around 0.6 nm. Also, as displayed in Fig. S3, the single nanosheet or one from the stacked nanosheets obtain a average thickness that under 1 nm as well. However, even though AFM is one of the most accurate thickness measure instruments, its limits still remained in measuring ultrathin thickness under few nanometers. Also, from the SEM images, these nanosheets tend to be piled instead of separated, which might because of Van der Waal force as discussed in previous paragraphed [60–62]. Moreover, when analysis with AFM, we found out that not only the sample solution concentration would affect the piling phenomenon, but also these nanosheets would

![Image](image-url)

Fig. 4. Electrochemistry and MOR performance of the PtSn nanosheet, commercial Pt black and Pt/C. (a) CVs of these three catalysts in 0.2 M KOH aqueous solution at scan rate of 50 mV s$^{-1}$, (b) MOR curves of these three catalysts in 0.2 M KOH + 0.2 M CH$_3$OH at scan rate of 50 mV s$^{-1}$, (c) mass and specific activities of these three catalysts at their corresponding peak potentials in the CV curves in (b), and (d) J-t curves of PtSn nanosheet, commercial Pt black and Pt/C at 0.25 V (vs SCE). (e, f) Durability comparison of these three catalysts. “J” represents the mass current density.
pack more severe when approaching to the wafer edges. In order to confirm the thickness of PtSn nanosheets which under 1 nm certainly, the PtSn nanosheets were also analysed under HRTEM (shown in Fig. 3(c–f)). From the HRTEM cross view, it is very clear that the most of the nanosheets are stacking on one another, and which these nanosheets obtain around 0.9 nm thickness. Hence, according to the measured evidence provided by both AFM and HRTEM, the average thickness of PtSn nanosheets is confirmed as under 1 nm.

3.2. Methanol oxidation reaction (MOR)

PtSn has caught attention in the usage as electrocatalyst for MOR and EOR. The electrocatalyst activity of MOR was examined in the standard electrochemical arrangement with the working electrode prepared by drop coating the PtSn nanoink onto a 0.196 cm² rotating disk electrode in an aqueous solution of KOH (0.2 M) and CH₂OH (0.2 M) at room temperature with the scan rate of 50 mV s⁻¹ (results are shown in Fig. 4). The result of the cyclic voltammetry (CV) examination is displayed and normalized by the amount of Pt as the catalyst loading on the electrode. The electrochemical surface area (ECSA) was measured from the area of the hydrogen adsorption–desorption peaks after correcting for the double layer charging current from the CV (Fig. 4(a)) [63]. The ECSA value of the PtSn is calculated to be 66 m² g⁻¹ of Pt, which is higher than that of Pt black (24.8 m² g⁻¹) and Pt/C (28.6 m² g⁻¹). Note that the higher ECSA value of a catalyst indicating that it poses higher electrocatalytic activity. Therefore, it is expected that PtSn have a higher electrocatalytic activity than pure Pt on the glass carbon (GC) electrode.

Furthermore, the mass activity of PtSn nanosheets in MOR is the highest (871.6 mA mg⁻¹ PtSn) by comparing to Pt/C (371 mA mg⁻¹ PtC) and Pt black (86.1 mA mg⁻¹ Pt) with the reactive work potential in the range of −1.0 to 0.45 V (vs SCE) (shown in Fig. 4(b)), which is 10.1 times and 2.3 times higher than Pt black and Pt/C catalysts respectively (shown in Fig. 4(c)). Also, shown in Figs. S4(d) and 4(c), the specific activity of PtSn (15.86 mA cm⁻²) as electrocatalyst in MOR is 3.6 times and 3.9 times higher than commercial Pt black (4.39 mA cm⁻²) and Pt/C (4.04 mA cm⁻²) catalysts. Furthermore, the electrocatalytic stability of PtSn nanosheets was also investigated by the amperometric measurement at the work potential of −0.25 V (vs SCE) (shown in Fig. 4(d)) and a continues 500-cycles CV sweeps test (exhibited in Figs. 4(e, f) and S4(a–c, e–f)). The mass activity of PtSn still remained as the highest compared to commercial Pt Black and Pt/C catalysts after 3600-seconds-amperometric measurement. On the other hand, after 500-cycles CV sweeps, mass activity of PtSn remained 48% of its initial value, while the retention of commercial Pt/C and Pt black are only 17.6% and 10.6% of their initial value (shown in Fig. 4(f)). These results of the retention value have demonstrated the enhanced the MOR-catalyst–activity durability of the PtSn nanosheets. The enhanced performance might be owing to the larger volume-surface ratio that leads to more reaction area are exposed.

The area distribution of PtSn nanosheets on electrodes would also affect the electrocatalytic performance. Exhibited in Figs. S5 and S6(b – e), different concentrations of PtSn nanoink, 4 mg/mL, 2 mg/mL and 0.5 mg/mL were examined and the SEM images (Fig. S5(a – c)) were also displayed. From Fig. S5(d), the concentration of 2 mg/mL nanoink shows the highest activity among all the concentrations. Compared with the SEM images (Fig. S5(a – c)), the PtSn nanosheets would aggregate more vigorous in concentration of 0.5 mg/mL than 2 mg/mL, and the nanosheets is more likely to pile on one another in the higher concentration 4 mg/mL. Previous researchers have illustrated the importance of solution concentration in products’ dispersion [64,65]. The nanosheets would aggregate while the concentration is too dilute or too high, only the appropriate concentration would perform better dispersion of the nanosheets. Furthermore, the degree of dispersion of the nanosheets would affect the active surface area revealing in the electrocatalystic test, and would affect the catalytic performance. As a result, the appropriate concentration of 2 mg/mL would demonstrate better performance in electrochemical examinations.

Furthermore, MOR in acid media (aqueous solution of 0.5 M H₂SO₄ and 0.5 M CH₂OH) also have been studied at 50 mV s⁻¹,

Fig. 5. Electrochemistry and EOR performance of the PtSn nanosheet, commercial Pt black and Pt/C. (a) EOR curves of these three catalysts in 0.2 M KOH + 0.2 M C₂H₅OH at scan rate of 50 mV s⁻¹, (b) mass and specific activities of these three catalysts at their corresponding peak potentials in the CV curves in (a), and (c) J−t curves of PtSn nanosheet, commercial Pt black and Pt/C at 0.25 V (vs SCE), (d,e) Durability comparison of these three catalysts.
Table 1

Comparison of various PtSn related catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Reaction</th>
<th>Electrolyte</th>
<th>Cathodic peak current density (mA/mgPt) vs pure Pt</th>
<th>Cathodic peak mass activity (mA/mgPt) vs Pt/C0</th>
<th>Cathodic peak mass activity (mA/mgPt) vs Pt/C0</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PtSn nanosheets</td>
<td>MOR</td>
<td>0.5 M H2SO4 + 0.5 M methanol</td>
<td>3.6 times</td>
<td>2.3 times</td>
<td></td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>EOR</td>
<td>0.2 M KOH + 0.2 M ethanol</td>
<td>2.2 times</td>
<td>1.8 times</td>
<td></td>
<td>[66]</td>
</tr>
<tr>
<td>PtSn/XC-72</td>
<td>EOR</td>
<td>0.5 M H2SO4 + 1.0 M ethanol</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>[46]</td>
</tr>
<tr>
<td>PtSn/rGO</td>
<td>EOR</td>
<td>1.0 M HClO4 + 1.0 M ethanol</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>[68]</td>
</tr>
<tr>
<td>PtSn/CNT</td>
<td>EOR</td>
<td>1.0 M KOH + 1.0 M ethanol</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>[68]</td>
</tr>
<tr>
<td>PtSn nanoparticles</td>
<td>MOR</td>
<td>0.5 M H2SO4 + 0.5 M methanol</td>
<td>1.7 times</td>
<td>1.2 times</td>
<td>–</td>
<td>[9]</td>
</tr>
<tr>
<td></td>
<td>EOR</td>
<td>0.5 M H2SO4 + 0.5 M methanol</td>
<td>1.7 times</td>
<td>1.2 times</td>
<td>–</td>
<td>[9]</td>
</tr>
<tr>
<td>PtSn thin films</td>
<td>EOR</td>
<td>0.5 M H2SO4 + 0.5 M methanol</td>
<td>1.5 times</td>
<td>1.1 times</td>
<td>–</td>
<td>[9]</td>
</tr>
<tr>
<td>PtSn/C</td>
<td>EOR</td>
<td>0.5 M H2SO4 + 0.5 M methanol</td>
<td>1.5 times</td>
<td>1.1 times</td>
<td>–</td>
<td>[9]</td>
</tr>
</tbody>
</table>

Furthermore, EOR was measured by CV in an aqueous solution of 0.2 M KOH and 0.2 M C2H5OH at room temperature and scan rate of 50 mV s–1. The current density of each CV curve is normalized against the Pt loading on the electrode, and a significant difference in catalytic activity of the different catalysts can be clearly observed. The CV curve of PtSn nanosheets shows much stronger hydrogen absorption peak compared to the commercial Pt black and Pt/C catalysts (Fig. 5(a)), indicating the larger electrochemical active surface area in comparison with the commercial Pt black and Pt/C catalysts. Also, the PtSn nanosheets exhibit highest current for EOR at reactive work potential in the range of 0.4 to –0.1 V (vs SCE) (Fig. 5(b)), with the corresponding peak potential of 673.6 mA mgPt–1, which is 5.3 times that of commercial Pt black (127.7 mA mgPt–1) and 2.3 times that of commercial Pt/C catalyst (295 mA mgPt–1) (Fig. 5(c)). The electrocatalytic stability of PtSn nanosheets was also investigated by the amperometric measurement at the work potential of –0.25 V (vs SCE) (Fig. 5d) and after the electrocatalytic EOR proceeded for 1200 s, PtSn nanosheets kept 16% of its initial response current while the commercial Pt black and Pt/C catalysts showed almost no response current, suggesting the higher electrocatalytic stability of PtSn nanosheets compared to the commercial Pt black and Pt/C catalysts. We also carried out the EOR durability tests of these three catalysts. (Fig. 5(e and f) and Fig. S7). The mass activity of PtSn nanosheets maintained for 73.9% of its initial value, while the commercial Pt black and Pt/C catalysts maintained only 58.2% and 22.8% mass activities after 500 sweeping cycles respectively, highlighting the enhanced catalytic durability of the PtSn nanosheets. Furthermore, EOR in acid media (aqueous solution of 0.5 M H2SO4 and C2H5OH) also have been studied at 50 mV s–1, and the representative CVs are shown in Fig. S8(a). The mass peak current density (normalized to the mass of Pt) of PtSn nanosheets (292.6 mA mgPt–1) is almost 4.9 times higher than that of Pt black (60 mA mgPt–1) and 2.0 times higher than that of commercial Pt/C (143.4 mA mgPt–1) (Fig. S8(b)). These fascinating findings indicate that PtSn nanosheets can perform EOR at both alkaline and have a much higher mass catalytic activity than Pt black and commercial Pt/C generated.

3.3. Ethanol oxidation reaction (EOR)

EOR was measured by CV in an aqueous solution of 0.2 M KOH and 0.2 M C2H5OH at room temperature and scan rate of 50 mV s–1. The current density of each CV curve is normalized against the Pt loading on the electrode, and a significant difference in catalytic activity of the different catalysts can be clearly observed. The CV curve of PtSn nanosheets shows much stronger hydrogen absorption peak compared to the commercial Pt black and Pt/C catalysts (Fig. 5(a)), indicating the larger electrochemical active surface area in comparison with the commercial Pt black and Pt/C catalysts. Also, the PtSn nanosheets exhibit highest current for EOR at reactive work potential in the range of 0.4 to –0.1 V (vs SCE) (Fig. 5(b)), with the corresponding peak potential of 673.6 mA mgPt–1, which is 5.3 times that of commercial Pt black (127.7 mA mgPt–1) and 2.3 times that of commercial Pt/C catalyst (295 mA mgPt–1) (Fig. 5(c)). The electrocatalytic stability of PtSn nanosheets was also investigated by the amperometric measurement at the work potential of –0.25 V (vs SCE) (Fig. 5d) and after the electrocatalytic EOR proceeded for 1200 s, PtSn nanosheets kept 16% of its initial response current while the commercial Pt black and Pt/C catalysts showed almost no response current, suggesting the higher electrocatalytic stability of PtSn nanosheets compared to the commercial Pt black and Pt/C catalysts. We also carried out the EOR durability tests of these three catalysts. (Fig. 5(e and f) and Fig. S7). The mass activity of PtSn nanosheets maintained for 73.9% of its initial value, while the commercial Pt black and Pt/C catalysts maintained only 58.2% and 22.8% mass activities after 500 sweeping cycles respectively, highlighting the enhanced catalytic durability of the PtSn nanosheets. Furthermore, EOR in acid media (aqueous solution of 0.5 M H2SO4 and C2H5OH) also have been studied at 50 mV s–1, and the representative CVs are shown in Fig. S8(a). The mass peak current density (normalized to the mass of Pt) of PtSn nanosheets (292.6 mA mgPt–1) is almost 4.9 times higher than that of Pt black (60 mA mgPt–1) and 2.0 times higher than that of commercial Pt/C (143.4 mA mgPt–1) (Fig. S8(b)). These fascinating findings indicate that PtSn nanosheets can perform EOR at both alkaline and have a much higher mass catalytic activity than Pt black and commercial Pt/C generated.

Previous studies of PtSn related electrocatalysts for MOR and EOR are listed and compared in Table 1, such as PtSn nanoparticles, PtSn thin film, and PtSn with support [9–11,66–70]. PtSn nanosheets exhibit higher amplification of catalytic activity than PtSn in other different morphologies. When compared with the PtSn system, the nanosheets have the highest activity as electrocatalyst. The extraordinary performance of PtSn nanosheets as electrocatalyst in both EOR and MOR may be due to its 2D structure. In the past decade, many studies have indicated that the crucial advantage of 2D material is that all the catalytically active sites are expose [71]. In nanosheets, since the thickness is below one nanometre, all the surface and active sites can be seen as all exposed. Furthermore, the simulation of PtSn nanosheets, displayed in Fig. 1(b), indicates the (1 1 1) crystal facet is the dominate site expose in the surface. Previous studies have verified that the adsorption of CO and OH is strongly prefer on (1 1 1) facets of Pt [72]. With the strong and large active site of (1 1 1) facets and the representative CVs are shown in Fig. S6(a). The mass peak current density (normalized to the mass of Pt) of PtSn nanosheets (10.89 mA cm–2) is almost 2.5 times higher than that of Pt/C (4.3 mA cm–2). These fascinating findings indicate that PtSn nanosheets can perform EOR at both alkaline and have a much higher mass catalytic activity than Pt black and commercial Pt/C generated.
exposed, nanosheet displayed the highest amplification of catalytic activity among all the different PtSn morphologies.

4. Conclusion

In summary, we have developed a facile colloid synthesis method for the preparation of ultrathin PtSn nanosheets with thickness ranging from 0.6 to 0.9 nm. As electrocatalysts in MOR and EOR examination, PtSn nanosheets not only exhibit an outstanding mass activity in MOR (871.6 mA mg Pt⁻¹), which is 2.3 times (371 mA mg⁻¹) and 10.1 times (86.1 mA mg⁻¹) higher than that of commercial Pt/carbon and Pt black respectively, but also display a mass activity in EOR (673.6 mA mg⁻¹) with 5.3 times higher commercial Pt black (127.7 mA mg⁻¹) and 2.3 times higher than commercial Pt/C catalyst (295 mA mg⁻¹). By comparing the previous studies of PtSn with different morphologies or carbon supports, the improved performance may be due to the large area of (1 1 1) facet sites. PtSn nanosheets exhibited good electro-oxidation properties for MOR and EOR in both acidic and alkaline environment, owing to their ultrathin 2D structure dramatically enhance the cleavage of C=O bond but also improve the removal of CO_ads, species formed on the platinum surface during alcohol electro-oxidation. Their high current densities, enhanced durability and relatively higher efficiency compared to commercial Pt catalysts will provide a motivation to extend synthesis of other ultrathin 2D nanomaterials with desired functions in the development of high-performance catalyst systems.

Acknowledgements

We acknowledge the financial support by the Ministry of Science and Technology through the grants of MOST 106-2221-E-007-005-MY3, and 103-2221-E-007-005-MY3, and 103-2628-E-007-005-MY3, and 106-2628-E-007-005-MY3, and MOST 106-2622-8-007-017, and by National Tsing Hua University through the grant of 107Q2708E1.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcis.2019.02.082.

References