HORNG LAB

 
K. Y. Huang, C. C. Yu, and J. C. Horng*. Conjugating catalytic polyproline fragments with a self-assembling peptide produces efficient artificial hydrolases. Biomacromolecules 2020, 21, 1195-1201. (DOI: 10.1021/acs.biomac.9b01620)
T. Y. Chen, W. J. Cheng, J. C. Horng, and H. Y. Hsu*. Artificial peptide-controlled protein release of Zn2+-triggered, self-assembled histidine-tagged protein microparticle. Colloids Surf. B 2020, 187, 110644. (DOI: 10.1016/j.colsurfb.2019.110644)
K. Y. Huang and J. C. Horng*. Impacts of the terminal charged residues on polyproline conformation. J. Phys. Chem. B 2019, 123, 138-147. (DOI: 10.1021/acs.jpcb.8b10864)
W. H. Tseng, M. C. Li, J. C. Horng, and S. K. Wang*. Strategy and effects of polyproline peptide stapling by copper(I)-catalyzed alkyne-azide cycloaddition reaction. ChemBioChem 2019, 20, 153-158. (DOI: 10.1002/cbic.201800575)
Y. H. Ting, H. J. Chen, W. J. Cheng, and J. C. Horng*. Zinc(II)-histidine induced collagen peptide assemblies: Morphology modulation and hydrolytic catalysis evaluation. Biomacromolecules 2018, 19, 2629-2637. (DOI: 10.1021/acs.biomac.8b00247)
C. Y. Chen*, T. P. Ko, K. F. Lin, B. L. Lin, C. H. Huang, C. H. Chiang, J. C. Horng. NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from Sulfolobus acidocaldarius. Sci. Rep. 2018, 8, 7176. (DOI:  10.1038/s41598-018-25361-4)
P. Y. Hung, Y. H. Chen, K. Y. Huang, C. C. Yu, and J. C. Horng*. Design of polyproline-based catalysts for ester hydrolysis. ACS Omega 2017, 2, 5574-5581. (DOI: 10.1021/acsomega.7b00928)
C. H. Chiang, Y. H. Fu, and J. C. Horng*. Formation of AAB-type collagen heterotrimers from designed cationic and aromatic collagen-mimetic peptides: Evaluation of the C-terminal cation-π interactions. Biomacromolecules 2017, 18, 985-993. (DOI: 10.1021/acs.biomac.6b01838)
Y. C. Lai, C. Y. Lin, M. R. Chung, P. Y. Hung, J. C. Horng*, I. C. Chen, and L. K. Chu*. Distance-dependent excited –state electron transfer from tryptophan to gold nanoparticles through polyproline helices. J. Phys. Chem. C 2017, 121, 4882-4890. (DOI: 10.1021/acs.jpcc.6b12640)
P. W. Huang, J. M. Chang, and J. C. Horng. Effects of glycosylated (2S,4R)-hydroxyproline on the stability and assembly of collagen triple helices. Amino Acids 2016, 48, 2765-2772. (DOI: 10.1007/s00726-016-2312-2)
C. H. Chiang and J. C. Horng*. Cation-π interaction induced folding of AAB-type collagen heterotrimers. J. Phys. Chem. B 2016, 120, 1205-1211. (DOI: 10.1021/acs.jpcb.5b11189)
Y. J. Lin, L. K. Chu, and J. C. Horng*. Effects of the terminal aromatic residues on polyproline conformation: thermodynamic and kinetic studies. J. Phys. Chem. B 2015, 119, 15796-15806. (DOI: 10.1021/acs.jpcb.5b08717)
K. Y. Huang and J. C. Horng*. Modulating the affinities of phosphopeptides for the human Pin1 WW domain using 4-substituted proline derivatives. Biochemistry 2015, 54, 6186-6194. (DOI: 10.1021/acs.biochem.5b00880)
W. L. Hsu, T. C. Shih, and J. C. Horng*. Folding stability modulation of the villin headpiece helical subdomain by 4-fluorophenylalanine and 4-methylphenylalanine. Biopolymers 2015, 103, 627-637. (DOI: 10.1002/bip.22689)
Y. J. Lin, C. H. Chang, and J. C. Horng*. The impact of 4-thiaproline on polyproline conformation. J. Phys. Chem. B 2014, 118, 10813-10820. (DOI: 10.1021/jp503915p)
Y. J. Lin and J. C. Horng*. Impacts of terminal (4R)-fluoroproline and (4S)-fluoroproline residues on polyproline conformation. Amino Acids 2014, 46, 2317-2324.(DOI: 10.1007/s00726-014-1783-2)
J. R. Hwu*, M. Kapoor, R. Y. Li, Y. C. Lin, J. C. Horng, and S. C. Tsay. Synthesis of nucleobase-functionalized carbon nanotubes and their hybridization with single-stranded DNA. Chem. Asian J. 2014, 9, 3408-3412.
H. C. Tang, Y. J. Lin, and J. C. Horng*. Modulating the folding stability and ligand binding affinity of Pin1 WW domain by proline ring puckering. Proteins 2014, 82, 67-76. (DOI: 10.1002/prot.24359)
C. C. Hong*, C. P. Chen, J. C. Horng, and S. Y. Chen. Point-of care protein sensing platform based on immuno-like membrane with molecularly-aligned nanocavities. Biosens. Bioelectron. 2013, 50, 425-430.
M. C. Lu, L. L. Chiu, L. Y. Chiu, C. Y. Lin, and J. C. Horng*. Highly selective and water-soluble peptidyl chemosensors for copper(II) and mercury(II) ions based on a β-hairpin structure. Anal. Methods 2013, 5, 1702-1707. (DOI: 10.1039/C3AY26524B)
W. Hsu, Y. L. Chen, and J. C. Horng*. Promoting self-assembly of collagen-related peptides into various higher-order structures by metal-histidine coordination. Langmuir 2012, 28, 3194-3199. (DOI: 10.1021/la204351w)
 Z. S. Lin, F. C. Lo, C. H. Li, C. H. Chen, W. N. Huang, I. J. Hsu, J. F. Lee, J. C. Horng, and W. F. Liaw*. Peptide-bound dinitrosyliron complexes (DNICs) and neutral/reduced-form Roussin’s red esters (RREs/rRREs): understanding nitrosylation of [Fe-S] clusters leading to the formation of DNICs and RREs using a de novo design strategy. Inorg. Chem. 2011, 50, 10417-10431.
C. C. Chen, W. Hsu, T. C. Kao, and J. C. Horng*. Self-assembly of short collagen-related peptides into fibrils via cation-π interactions. Biochemistry 2011, 50, 2381-2383. (DOI:10.1021/bi1018573)
C. C. Chen, W. Hsu, K. C. Hwang, J. R. Hwu, C. C. Lin, and J. C. Horng*. Contributions of cation-π interactions to the collagen triple helix stability. Arch. Biochem. Biophys. 2011, 508, 46-53. (DOI:10.1016/j.abb.2011.01.009)
J. C. Horng. Book Review on “Protein Folding and Metal Ions: Mechanisms, Biology and Disease. Edited by Cláudio M. Gomes and Pernilla Wittung-Stafshede.” Chembiochem 2011, 12, 647. (DOI: 10.1002/cbic.201100017)
Y. S. Chen, C. C. Chen, and J. C. Horng*. Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide. Biopolymers (Pept. Sci.) 2011, 96, 60-68. (DOI: 10.1002/bip.21470)
T. Y. Zheng, Y. J. Lin, and J. C. Horng*. Thermodynamic consequences of incorporating 4-substituted proline derivatives into a small helical protein. Biochemistry 2010, 49, 4255-4263. (DOI: 10.1021/bi100323v)
Y. C. Chiang, Y. J. Lin, and J. C. Horng*. Stereoelectronic effects on the transition barrier of polyproline conformational interconversion. Protein Sci. 2009, 18, 1967-1977. (DOI: 10.1002/pro.208)
Y. W. Chiang*, T. Y. Zheng, C. J. Kao, and J. C. Horng. Determination of interspin distance distributions by CW-ESR is a single linear inverse problem. Biophys. J. 2009, 97, 930-936.
J. H. Cho, S. Sato, J. C. Horng, B. Anil, and D. P. Raleigh*. Electrostatic interactions in the denatured state ensemble: their effect upon protein folding and protein stability. Arch. Biochem. Biophys. 2008, 469, 20-28.
J. C. Horng, F. W. Kotch, and R. T. Raines*. Is glycine a surrogate for a D-amino acid in the collagen triple helix? Protein Sci. 2007, 16, 208-215.
J. C. Horng, A. J. Hawk, Q. Zhao, E. S. Benedict, S. D. Burke, and R. T. Raines*. Macrocyclic scaffold for the collagen triple helix. Org. Lett. 2006, 8, 4735-4738
Y. Li, J. C. Horng and D. P. Raleigh*. pH Dependent thermodynamic and amide exchange studies of the C-terminal domain of the ribosomal protein L9: implications for unfolded state structure. Biochemistry 2006, 45, 8499-8506.
J. C. Horng and R. T. Raines*. Stereoelectronic effects on polyproline conformation. Protein Sci. 2006, 15, 74-83.
K. L. Maxwell, D. Wildes, A. Zarrine-Afsar, M. A. de los Rios, A. G. Brown, C. T. Friel, L. Hedberg, J. C. Horng et al. Protein folding: Defining a "standard" set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Sci. 2005, 14, 602-616.
J. C. Horng, S. M. Tracz, K. J. Lumb*, and D. P. Raleigh*. Slow folding of a three-helix protein via a compact intermediate. Biochemistry 2005, 44, 627-634.
J. C. Horng, J. H. Cho, and D. P. Raleigh*. Analysis of the pH-dependent folding and stability of histidine point mutants allows characterization of the denatured state and transition state for protein folding. J. Mol. Biol. 2005, 345, 163-173.
J. C. Horng and D. P. Raleigh*. ϕ-Values beyond the ribosomally encoded amino acids: kinetic and thermodynamic consequences of incorporating trifluoromethyl amino acids in a globular protein. J. Am. Chem. Soc. 2003, 125, 9286-9287.
Y. Wei, J. C. Horng, A. C. Vendel, D. P. Raleigh, and K. J. Lumb*. Contribution to stability and folding of a buried polar residue at the CARM1 methylation site of the KIX domain of CBP. Biochemistry 2003, 42, 7044-7049.
J. C. Horng, S. J. Demarest, and D. P. Raleigh*. pH Dependent stability of the human α-lactalbumin molten globule state: contrasting roles of the 6 to 120 disulfide and the β-subdomain at low and neutral pH. Proteins 2003, 52, 193-202.
J. C. Horng, V. Moroz, and D. P. Raleigh*. Rapid cooperative two-state folding of a miniature-protein and design of a thermostable variant. J. Mol. Biol. 2003, 326, 1261-1270.
J. C. Horng, V. Moroz, D. J. Rigotti, R. Fairman, and D. P. Raleigh*. Characterization of large peptide fragments derived from the N-terminal domain of the ribosomal protein L9: definition of the minimum folding motif and characterization of local electrostatic interactions. Biochemistry 2002, 41, 13360-13369.
S. J. Demarest, J. C. Horng, and D. P. Raleigh*. A protein dissection study demonstrates that two specific hydrophobic clusters play a key role in stabilizing the core structure of the molten globule state of human α-lactalbumin. Proteins 2001, 42, 237-242.
https://doi.org/10.1021/acs.biomac.9b01620https://www.sciencedirect.com/science/article/abs/pii/S092777651930788X?via%3Dihubhttps://pubs.acs.org/doi/10.1021/acs.jpcb.8b10864https://onlinelibrary.wiley.com/doi/full/10.1002/cbic.201800575https://pubs.acs.org/doi/10.1021/acs.biomac.8b00247https://pubs.acs.org/doi/10.1021/acs.biomac.8b00247https://dx.doi.org/10.1038%2Fs41598-018-25361-4https://dx.doi.org/10.1038%2Fs41598-018-25361-4http://pubs.acs.org/doi/full/10.1021/acsomega.7b00928http://pubs.acs.org/doi/full/10.1021/acsomega.7b00928http://pubs.acs.org/doi/abs/10.1021/acs.biomac.6b01838http://pubs.acs.org/doi/abs/10.1021/acs.biomac.6b01838http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b12640http://link.springer.com.nthulib-oc.nthu.edu.tw/article/10.1007/s00726-016-2312-2http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.5b11189http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.5b11189http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.5b08717http://pubs.acs.org/doi/abs/10.1021/acs.biochem.5b00880http://onlinelibrary.wiley.com/doi/10.1002/bip.22689/abstracthttp://pubs.acs.org/doi/abs/10.1021/jp503915phttp://link.springer.com/article/10.1007%2Fs00726-014-1783-2http://onlinelibrary.wiley.com.nthulib-oc.nthu.edu.tw/doi/10.1002/prot.24359/abstracthttp://pubs.rsc.org.nthulib-oc.nthu.edu.tw/en/content/articlelanding/2013/ay/c3ay26524bhttp://pubs.acs.org/doi/abs/10.1021/la204351whttp://pubs.acs.org/doi/abs/10.1021/bi1018573http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WB5-51YBTKB-2&_user=1576494&_coverDate=04%2F01%2F2011&_rdoc=6&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info%28%23toc%236701%232011%23994919998%232970746%23FLA%23display%23Volume%29&_cdi=6701&_sort=d&_docanchor=&_ct=14&_acct=C000053838&_version=1&_urlVersion=0&_userid=1576494&md5=fe22122c05c03d3f5b63e0dc7f5ca750&searchtype=ahttp://onlinelibrary.wiley.com/doi/10.1002/cbic.201100017/abstracthttp://onlinelibrary.wiley.com/doi/10.1002/bip.21470/abstracthttp://pubs.acs.org/doi/abs/10.1021/bi100323vhttp://onlinelibrary.wiley.com/doi/10.1002/pro.208/abstracthttps://pubs.acs.org/doi/10.1021/acs.jpcb.8b10864shapeimage_1_link_0shapeimage_1_link_1shapeimage_1_link_2shapeimage_1_link_3shapeimage_1_link_4shapeimage_1_link_5shapeimage_1_link_6shapeimage_1_link_7shapeimage_1_link_8shapeimage_1_link_9shapeimage_1_link_10shapeimage_1_link_11shapeimage_1_link_12shapeimage_1_link_13shapeimage_1_link_14shapeimage_1_link_15shapeimage_1_link_16shapeimage_1_link_17shapeimage_1_link_18shapeimage_1_link_19shapeimage_1_link_20shapeimage_1_link_21shapeimage_1_link_22shapeimage_1_link_23shapeimage_1_link_24shapeimage_1_link_25shapeimage_1_link_26shapeimage_1_link_27shapeimage_1_link_28shapeimage_1_link_29

Selected Publications: *corresponding author