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Abstract

The Liouville equation describes the time evolution of a phase-space distribution
function. L. Boltzmann formulated his equation in 1872 for a nonequilibrium system
of many particles in dilute gases by analyzing the elementary collision processes
between pairs of particles. A tremendous amount of hydrodynamic (HD) models
have been derived since then by means of the moment method which raises many
practical problems of the models associated with the so-called closure problem of the
method. In 1996, C. Levermore has derived the HD models based on the maximum
entropy principle which sets the derivation of classical HD and quantum HD models
on a clear physical and mathematically rigorous basis. These topics will be briefly
presented here with the 1D Euler equations of an ideal gas as an illustrative example.

The Single-Particle Liouville Equation

We first consider a particle of constant mass moving in a conservative force
field for which the total energy of the particle is

= + = constant (1)

where ( x) is the kinetic energy and (x) is the potential energy. The
particle is associated with the position vector x = ( 1 2 3)

3

x
, the ve-

locity vector v = ( 1 2 2)
3, and the momentum vector p = v =

( 1 2 2)
3

p
. Then the force F acting on the particle is given by

F =
v
= x . (2)
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From this equation, we obtain the system of ordinary di erential equations

x
= v (3)

p
= x = F (4)

which describes the trajectories of the particle in the phase (position-momentum)
space, i.e., in the 6 dimensional (x p)-space. Together with a given initial state
x ( = 0) = x0 p( = 0) = p0 this system constitutes an initial value problem
for the trajectory (x ( ) p( )) passing through (x0 p0). Instead of the precise
initial state (x0 p0), we assume that the particle is represented by probabil-
ity density (distribution) function ( x p) 0 such that its initial state is
expressed by ZZ

(0 x p) x p = 1 (5)

which means that at = 0 the particle exists in the whole (x p)-space (the
probability to locate it is 1). Thus, ( ) =

RR
( x p) x p means the

probability to find the particle in a subset of (x p)-space at the time . It is
reasonable to postulate that ( x p) does not change along the trajectories
of the particle (the shape of the distribution function of the particle does not
change), i.e., we assume

( x p) = (0 x p) x v and 0 (6)

Di erentiating (6) with respect to gives

0=
(0 x p)

=
( x p)

(7)

= +
3X
=1

Ã
+

!
(8)

= +
x
· x +

p
· p (9)

= +
x
· x x · p (10)

which is the classical Liouville (or transport) equation governing the evolution
of the distribution function of a particle in a force field.

Boltzmann’s Equation

For a system of particles (an ensemble of interacting particles), the
single-particle distribution function ( x p) in (5) is generalized to the many-
particle distribution function as
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( x p) denotes the number of particles per unit volume in x p,

( is a microscopic variable) (11)

with x 3

x
and p 3

p
such that

ZZ
( x p) x p = (12)

If the rate of change of the particle ensemble due to the convection caused by
the force field vanishes along its trajectories when collisions are neglected, we
have a similar equation as (10), i.e.,

Ã !
conv

:= +
x
· x x · p = 0 (13)

L. Boltzmann postulated in 1872 that for a nonequilibrium system of many
particles (dilute gases) it is reasonable to assume that the rate of change of the
ensemble due to convection and the rate of change due to collisions balance,
i.e., Ã !

conv

=

Ã !
coll

(14)

The Boltzmann equation hence reads as

+
x
· x x · p = ( ) (15)

where is the collision operator representing the short range collisions of
the particles with other particles and with their environment. The operator is
defined by
Ã !

coll

:= ( ) =
Z
[ (x p0 p) 0(1 ) (x p p0) (1 0)] p0 (16)

where 0 := ( x p0), the integral represents the ‘sum’ of rates of particles
being scattered from all possible states (x p0) into the state (x p) at time
minus the sum of the rates of the particles being scattered from (x p) into
(x p0), (1 ) is the probability that the state (x p) is not occupied, and
(x p0 p) p0 is the transition (scattering) rate for a particle with position
vector x to change its velocity p0 belonging to the volume p0 (around p0) to
p.

The Moment Method

The computational cost for solving the Boltzmann (integro-di erential) equa-
tion (15) in 7 dimensional ( x p)-space is extremely expensive albeit its phys-
ical accuracy. It also provides too much information than necessary. In appli-
cations, we are usually interested in a few macroscopic quantities that can be
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experimentally observed, for example, the macroscopic variables of particle
density ( x), particle mean (averaged) velocity u( x), and particle mean
temperature ( x).

We introduce the moment functions (p) and the corresponding moments

:= h i :=
Z

3
p

( x p) (p) p, = 1 · · · (17)

As the most important moments (macroscopic variables), we mention

1 : = = h 1i = h 1i (mass density) (18)

2 : = u = h 2i = h pi (momentum density) (19)

3 : = = h 3i =
¿

1

2
|p|2

À
(energy density) (20)

Multiplying (15) by a moment function (p) and integrating over the momen-
tum space 3

p
, we have

Z
(p)

"
+ p · x x · p

#
p=

Z
(p) ( ) p (21)

+
3X
=1

Ã
h i

+

* +!
= h ( ) i (22)

The conservation laws of mass, momentum, and energy imply that

*
( )

1

p

1

2
|p|2

+
= 0 (23)

where the moment functions in (21) are chosen as in (18)-(20). We now derive
the first equation of (21) via (23). By the divergence theorem, we observe from
(21) and 1(p) = 1 that

Z
p

1(p)F · p p=
3X
=1

Z
p

1(p) p

=
3X
=1

ÃZ
p

1 p

Z
p

1
p

!

=
3X
=1

Z
p

1
p (24)

=
Z

p

F · p 1 p = 0 (25)
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where n = ( 1 2 3) is a unit outward vector on the boundary p of an
arbitrary open set p of

3

p
where we assume that vanishes. By (18), we

thus obtain the continuity equation (the conservation of mass)

+ x · ( u) = 0. (26)

Note that in this derivation process we have already introduced another (extra)
unknown variable u. Together with the unknown variable , we need to have
one more equation to determine the two variables ( 1 = 2 = u) uniquely.
We then do a similar derivation from (21) by choosing the second moment 2 =
p to get the extra equation of conservation of momentum (see below). However,
once we obtain the second equation, we will encounter a similar problem, i.e.,
one more unknown variable will be introduced. This means that there always
exists one more next equation waiting to be derived or the last unknown
variable has to be determined (closed) by some formula which is frequently
based on a heuristic physical or mathematical way. This is the so-called the
closure problem in the moment-based literature for deriving hydrodynamic
models from Boltzmann’s equation. In the literature, we may have as many as
35-moment equations. The more moment equations we have the more accurate
physical results we get with of course the more computational cost that we
must pay.

The Maximum Entropy Principle

Since Levermore’s 1996 paper [1], there has been a great deal of work on the
development of classical and quantum hydrodynamic (HD) models based on
the maximum entropy principle (MEP) “à la Levermore” [2,3]. This approach
stands upon a clear physical basis and mathematical rigorousness. It has been
shown to be robust and flexible in formulating various HD models in applica-
tions.

The MEP is a postulate stating that if a certain number of moments , =
1 · · · , are given, then there exists a distribution function ME that maximizes
the entropy functional

( ) =
Z
( ln ) p (27)

under the constraints

=
Z

(p) p. (28)

Introducing the Lagrange multipliers , this contrained optimization prob-
lem is equivalent to maximize the following Lagrange functional without con-
straints

( ) = ( ) + ·
µZ

(p) p µ

¶
(29)
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where , µ, and are -component vectors. The necessary condition that
all directional derivatives vanish at the maximizer ME leads to

0= =
Z
ln p+ ·

Z
(p) p

=
Z
(ln + · ) p (30)

so that
ln ME + · = 0 = ME = exp ( · ) (31)

where the Lagrange multipliers have to be chosen in such a way that the
moment constraints (28) are satisfied, i.e.,

=
Z
exp ( · ) (p) p (32)

Suppose that we are given the three moments µ associated with the three
moment functions as that in (18)-(20), i.e.,

µ =

1

2

3

= u

= 1

2
|u|2 + 3

2

, =

1

2

3

=

1

p

1

2
|p|2

(33)

it is shown [2] that the maximizer distribution function ME of the entropy
maximization problem (29) is the Maxwellian

Max =
(2 )3 2

exp

Ã
|p u|2

2

!
(34)

which satisfies

Z
Max

1

p

1

2
|p|2

= u

1

2
|u|2 + 3

2

(35)

By this equation, we thus now close the moment system (21) and obtain the
Euler equations of gas dynamics

u

1

2
|u|2 + 3

2

+ x ·

u

u u+ Id³
1

2
|u|2 + 5

2

´
u

=

0

x

u· x

(36)
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With the pressure = and without external force, the 1D Euler equations
of an ideal gas are

1

2

2 + 3

2

+ 2 +³
1

2

2 + 5

2

´ =

0

0

0

(37)

References

[1] C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys.
83 (1996) 1021—1065.

[2] P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy
principle, J. Stat. Phys. 112 (2003) 587—628.
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