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Abstract

The Poisson-Nernst-Planck (PNP) model is a basic continuum model for simulating
ionic flows in an open ion channel. It is one of commonly used models in theoretical
and computational studies of biological ion channels. The Poisson equation is derived
from Coulomb’s law in electrostatics and Gauss’s theorem in calculus. The Nernst-
Planck equation is equivalent to the convection-diffussion model.

3D PNP Projects:

Project A: Linear PNP, Domain: Box without Channel, Exact Solutions without
Singular Charges.

Project B: Linear PNP, Domain: Cylinder in Box, Channel: Cylinder, with Exact
Solutions without Singular Charges, Goal: Second-Order Convergence.

Project C: Linear GA PNP, Domain: GA in Box, Channel: GA, with Exact So-
lutions without Singular Charges.

Project D: Nonlinear GA PNP, Singualr Charges, Exact Solutions.

Project E: Nonlinear GA PNP, Singualr Charges, no Exact Solutions, Diffusion
Function.

Project F: Nonlinear GA PNP, Singualr Charges, no Exact Solutions, Diffusion
Function, van der Waas Potential.

Project G: Nonlinear GA PNP, Singualr Charges, no Exact Solutions, Diffusion
Function, Finite Size Effects.

Project H: Poisson-Boltzmann (PB) Model.

Methods: FDM (Finite Difference Method), MIB (Matched Interface and Bound-
ary Method).

Matrix: Nonsymmetric.

Solvers: CG, SOR, BiCGStab. 2011/9/16
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1 PNP Models

Biological ion channels seem to be a precondition for all living matter [17]. Ion
channels are porous proteins across cell membranes that control many biolog-
ical functions ranging from signal transfer in the nervous system to regulation
of secretion of hormones. Understanding the mechanism of ionic flows within
a channel as a function of ionic concentration, membrane potential, and the
structure of the channel is a central problem in molecular biophysics [9]. The
PNP model proposed by Eisenberg and coworkers [3,7] as a basic continuum
model for simulating the ionic flow in an open ion channel is one of com-
monly used models in theoretical and computational studies of biological ion
channels.

For modeling the flow of two species of ions through a channel, the steady-state
PNP model reads as

P : −∇ · (ε(r)∇φ(r)) =
NA∑
j=1
qjδ(r− rj) +

2∑
i=1
qiCi + F, r ∈ Ω (1.1)

NP1 : −∇ · J1(r) = F1, r ∈ Ωs, (1.2)
NP2 : −∇ · J2(r) = F2, r ∈ Ωs, (1.3)

Ji(r) = −Di(r) [∇Ci(r) + βiCi(r)∇φ(r)] (1.4)

where φ is the electrostatic potential, ε the electric permittivity, NA the total
number of atomic (partial) charges qj located (fixed) at rj = (xj, yj, zj) in
the channel protein, δ(r− rj) the delta function (and hence qj are singular
charges), Ci the concentration of an ion species i carrying charge qi (for exam-
ple, qK+ = +1e, qCl− = −1e), Ji the concentration flux (current density), Di
the spatially dependent diffusion coefficient, βi = qi/(kBT ), kB the Boltzmann
constant, T the absolute temperature, and e the proton charge. Note that the
diffusion coefficient Di and the parameter βi are related to the mobility coeffi-
cient µi by Einstein’s relation µi = |βi|Di. The domain Ω = Ωs ∪Ωm consists
of two subdomains, namely, the solvent subdomain Ωs and the biomolecular
subdomain Ωm. The electric permittivity has different values in subdomains

ε(r) = εrε0 =




εsε0, ∀r ∈ Ωs

εmε0, ∀r ∈ Ωm
(1.5)

where ε0 is the vacuum permittivity, εr = εs is the dielectric constant (relative
permittivity) of the solvent, and εr = εm is the dielectric constant of the mole-
cules. In most occurrences, we shall omit ε0 if there is no danger of confusion.
We consider the domain as a cubical box

Box = Ω = (−20Å, 20Å)× (−20Å, 20Å)× (−20Å, 20Å). (1.6)
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The channel protein is embedded in the biomolecular subdomain, for which
we consider

Channel :





None for Project A,

Cylinder for Project B,

GA for Projects C, D, E.

(1.7)

The model is nonlinear because the unknown functions φ, C1, and C2 are
coupled together in (1.1)-(1.3).

Note that
F = Fi = 0 (1.8)

in the real PNP model without reaction. They are usually not equal to zero if
we want to construct exact solutions for φ and Ci in order to test whether our
numerical methods and our code are correct before applying to a real model
problem for which we know that the solutions exist but cannot be expressed
in analytical forms (called analytical solutions).

Introducing the Slotboom variable Ĉi [19] by

Ci = Ĉi exp(−βiφ) (1.9)

the concentration flux is then reformulated to

Ji = −Di exp(−βiφ)∇Ĉi = −αi∇Ĉi, αi = Di exp(−βiφ) (1.10)

Consequently, the self-adjoint PNP is

−∇ · (ε∇φ) =
NA∑
j=1
qjδ(r− rj) +

2∑
i=1
qiCi, (1.11)

−∇ · Ji = ∇ ·
[
αi∇Ĉi

]
= 0. (1.12)

Dirichlet boundary conditions (BCs) for both P and NP equations (1.1)-(1.3)
are assumed, namely,

φ(r) = g(r), ∀r ∈ ∂Ω, (1.13)
Ci(r) = gi(r), ∀r ∈ ∂Ωs\Γ, (1.14)

where
Γ = Ωs ∩ Ωm (1.15)

is the interface set between Ωs and Ωm. One of the main concerns of this
lecture note is to properly handle the jump conditions associated with the
interface.

Fig. 1 illustrates a VMD [10] simulation system of the KcsA channel with
membrane, water, and ions [1]. The channel protein is in the central part of
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Fig. 1. VMD simulation system of the KcsA channel with membrane, water, and
ions.

Fig. 2. Top view of GA channel.

the simulation domain (a box) as shown in green color. The membrane consists
of bilipid layers shown in light blue surrounding the channel. The upper and
lower regions represent the extracellular (outside of a cell) and intracellular
(inside) solvent regions, respectively, that consist of water and ions. Fig. 2 is a
top view of the Gramicidin A (GA) channel generated by the VMD program.
Fig. 3 is a side view of the GA channel embedded in the membrane [21]. Fig.
4 is a cross section of a 3D PNP simulation domain for the GA channel [4].

2 Linear and Nonlinear PNP

For both linear and nonlinear PNP models, the exact solutions [21] are chosen
to be
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Fig. 3. Side view of the GA channel embedded in the membrane.

Fig. 4. A cross section of 3D PNP simulation domain for GA channel.

ExactSolP() : φEx(r) = cosx cos y cos z, r ∈ Ω (2.1)

ExactSolNP1() : CEx
1 (r) =




0, r ∈ Ωm

0.2 cosx cos y cos z + 0.3, r ∈ Ωs
(2.2)

ExactSolNP2() : CEx
2 (r) =




0, r ∈ Ωm

0.1 cosx cos y cos z + 0.3, r ∈ Ωs
(2.3)

D1 = 1, β1 = 1, D2 = 1, β2 = −1, for Projects A-D, (2.4)

m_diM = εm = 1, m_diS = εs = 80. (2.5)

Note that the naming convention like ExactSolP() is used in our 3DPNP code
in conjunction with the mathematical notation used in the lecture notes. The
linear PNP model means that P, NP1, and NP2 (1.1)-(1.3) are decoupled
(independent of each other). For example, the right hand sides of (1.1)-(1.3)
are chosen as
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P:
2∑
i=1
qiCi = 0,

F =




3εm cos x cos y cos z in Ωm

3εs cos x cos y cos z in Ωs
(2.6)

NP1: F1 = −∇ · J1 = ∇ ·
[
D1

(
∇CEx

1 + β1C
Ex
1 ∇φ

Ex
)]

(2.7)

=D1∆C
Ex
1 +D1β1

(
CEx
1 ∆φ

Ex +∇CEx
1 · ∇φEx

)
(2.8)

=D1*DelC1+ ... (2.9)

NP2: F2 = D2∆C
Ex
2 +D2β2

(
CEx
2 ∆φ

Ex +∇CEx
2 · ∇φEx

)
(2.10)

m_Func2[i]=D1*DelC1+D1*beta1*(C1*DelPhi

+C1Dx*PhiDx+C1Dy*PhiDy+C1Dz*PhiDz) (2.11)

m_Func3[i]=D2*DelC2+D2*beta2*(C2*DelPhi

+C2Dx*PhiDx+C2Dy*PhiDy+C2Dz*PhiDz) (2.12)

3 Domain Notation for Projects B, C, D, E

With Figs. 3 and 4, the following domain notation is adopted in our model
and in the 3DPNP code (for both Cylinder and GA Channels).

Define m_NodeTpye[ i ] =

(1) ‘P’ (the protein and membrane regions not including the channel wall),
(2) ‘C’ (the channel pore region not including the channel wall)
(3) ‘W’ (the channel wall of the pore region),
(4) ‘E’ (the extracellular solvent region not including the interface)
(5) ‘I’ (the intracellular solvent region not including the interface)
(6) ‘F’ (the interface between ‘P’ and ‘C’, ‘E’, or ‘I’)
(7) ‘1’ (the East side face (boundary) of the box in X axis)
(8) ‘2’ (the West side face of the box)
(9) ‘3’ (the South side face of the box in Y axis)
(10) ‘4’ (the North side face of the box)
(11) ‘5’ (the Down side face of the box in Z axis. The positive direction of Z

is pointing upward. The origin is at the center of the channel or of the
box.)

(12) ‘6’ (the Up side face of the box)

• ‘P’, ‘W’, ‘F’ ⊂ Ωm,
• ‘C’, ‘E’, ‘I’, ⊂ Ωs,
• ‘5’, ‘6’ ⊂ Ωs ∩ ∂Ω; ∂Ω = the boundary of Ω, Ωs = the closure of Ωs,
• ‘1’, ‘2’, ‘3’, ‘4’ ⊂ Ωs ∩ ∂Ω or ⊂ Ωm ∩ ∂Ω,
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• ‘W’ ∪ ‘F’ = Γ (the interface Ωs ∩ Ωm).

4 MIB for P

Discretization of the left hand side of (1.1) by the central finite difference
method (FDM) yields

−
∂

∂x

(
ε(r)

∂φ(xi, y, z)

∂x

)
≈
−εi− 1

2

φi−1 +
(
εi− 1

2

+ εi+ 1

2

)
φi − εi+1

2

φi+1

∆x2
(4.1)

for all (xi, y, z) ∈ Ωm or Ωs,
∂φ(x,y,z)

∂x
= φx, φi ≈ φ(xi, y, z), ∆x = xi−xi−1 = h,

and xi are FD grid points. We assume a uniform partition of the box in each
direction, i.e., ∆x = ∆y = ∆z = h. To simplify the notation, we write (1.1)
in 1D as

−
∂

∂x

(
ε(x)

∂φ(x)

∂x

)
= f (4.2)

The second-order, denoted by O(h2) (convergence order is 2), central FD ap-
proximation of (4.2) is

−εi− 1

2

φi−1 +
(
εi− 1

2

+ εi+ 1

2

)
φi − εi+ 1

2

φi+1

∆x2
= fi (4.3)

For interface problems, we always assume that

xi−1 < γ = xi− 1

2

< xi, (4.4)

i.e., every jump position γ ∈ Γ = ‘W’ ∪ ‘F’ is at the middle of some neighboring
grid points. We consider the following jump conditions for the P problem (1.1)

[φ] = 0, for both linear and nonlinear PNP (4.5)

[εφ
n
] =




εm∇φ · n− εs∇φ · n �= 0, for linear,

εm∇φ · n− εs∇φ · n = 0, for nonlinear,
(4.6)

where n is an outward normal unit vector on Γ (see Fig. 5).

The jump is denoted by

[φ] = φ+ − φ−, φ+ = lim
x→γ+

φ(x), φ− = lim
x→γ−

φ(x), γ− ∈ Ωs, γ+ ∈ Ωm. (4.7)

Therefore, if

xi−1 = ‘I’, ‘C’ or ‘E’ ∈ Ωs, xi− 1

2

= γ, xi = ‘W’ or ‘F’ ∈ Ωm, (4.8)
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Fig. 5. Interface position γ.

then
[ε] = ε+ − ε− = εm − εs. (4.9)

For (4.6) in 1D, we have

[εφ
n
] = εm∇φ·n−εs∇φ·n =





εmφx − εsφx, n = 〈1, 0, 0〉

−εmφx + εsφx, n = 〈−1, 0, 0〉 ,
= [εφx] (4.10)

The main ideas of the MIB (matched interface and boundary) method [21] for
handling the jump problems are

(1) considering (4.2) as two different subproblems with two disjoint subdo-
mains x < γ and x > γ,

(2) taking the jump conditions (4.5) and (4.6) as the boundary conditions
for each subproblem with respect to its subdomain,

(3) extending smoothly a function φ(x) defined on a subdomain to a ‘ficti-
tious’ function Ψ(x) defined on another subdomain, and

(4) applying Taylor’s theorem to the jump conditions for joining two sub-
problems back to one.

Define the extension functions

F (x) =




φ(x) if x < γ

Ψ(x) if x ≥ γ
or G(x) =




Ψ(x) if x ≤ γ

φ(x) if x > γ
. (4.11)

Applying Taylor’s theorem to F (x) at the interface, we have
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F (xi−1)=F (γ) + F
′(γ)(xi−1 − γ) +

F ′′(γ)

2!
(xi−1 − γ)

2 +O(h3) (4.12)

F (xi)=F (γ) + F
′(γ)(xi − γ) +

F ′′(γ)

2!
(xi − γ)

2 +O(h3) (4.13)

F (γ) =
F (xi−1) + F (xi)

2
+O(h2) (4.14)

Hence, for (4.5), we have

φ−=F (γ) =
φi−1 +Ψi

2
+O(h2) (4.15)

φ+=G(γ) =
Ψi−1 + φi

2
+O(h2) (4.16)

[φ] =
Ψi−1 + φi

2
−
φi−1 +Ψi

2
+O(h2) (4.17)

Similarly for (4.6), subtracting (4.12) from (4.13) gives

hF ′(γ)=F (xi)− F (xi−1) +O(h
3) (4.18)

φ−x =F
′(γ) =

Ψi − φi−1
h

+O(h2) (4.19)

φ+x =G
′(γ) =

φi −Ψi−1
h

+O(h2) (4.20)

[εφx] = εmε0
φi −Ψi−1

h
− εsε0

Ψi − φi−1
h

+O(h2) (4.21)

Therefore, by (4.17) and (4.21), the following equations

A1φi−1 +A2Ψi=A3Ψi−1 +A4φi − [φ] (4.22)

ε−
(
B1φi−1 +B2Ψi

)
= ε+ (B3Ψi−1 +B4φi)− [εφx] (4.23)

represent FD approximations of (4.5) and (4.6), respectively, with local trun-
cation errors of O(h2). Here, the weights are

A1=A2 = A3 = A4 =
1

2
, (4.24)

B1=
−1

h
, B2 =

1

h
, B3 =

−1

h
, B4 =

1

h
. (4.25)

Solving (4.22) and (4.23) for the fictitious values Ψi and Ψi+1, we obtain
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Ψi−1=
(ε−B2A1 − ε

−B1A2)φi−1 − (ε
−B2A4 − ε

+B4A2)φi
(ε−B2A3 − ε+B3A2)

+
ε−B2 [φ]− A2 [εφx]

(ε−B2A3 − ε+B3A2)

=C1φi−1 + C2φi + C0 (4.26)

Ψi=
− (ε+B3A1 − ε

−B1A3)φi−1 + (ε
+B3A4 − ε

+B4A3)φi
(ε+B3A2 − ε−B2A3)

+
−ε+B3 [φ] +A3 [εφx]

(ε+B3A2 − ε−B2A3)

=D1φi−1 +D2φi +D0 (4.27)

Following (4.3) by differencing F (x) at the grid point xi−1 and differencing
G(x) at the grid point xi, we obtain

−εi− 3

2

φi−2 +
(
εi− 3

2

+ ε−
i− 1

2

)
φi−1 − ε

−

i−1

2

Ψi

∆x2
= fi−1 (4.28)

−ε+
i− 1

2

Ψi−1 +
(
ε+
i− 1

2

+ εi+ 1

2

)
φi − εi+1

2

φi+1

∆x2
= fi (4.29)

Although Ψi and Ψi−1 are called fictitious (ghost) values, they are real in
implementation and defined by (4.26) and (4.27) via φi−1 and φi. Consequently,
(4.28) and (4.29) become

−εi− 3

2

φi−2 +
(
εi− 3

2

+ (1−D1) ε
−

i− 1

2

)
φi−1 −D2ε

−

i− 1

2

φi

∆x2
= fi−1+

ε−
i− 1

2

D0

∆x2
(4.30)

−C1ε
+
i− 1

2

φi−1 +
(
(1− C2) ε

+
i− 1

2

+ εi+ 1

2

)
φi − εi+1

2

φi+1

∆x2
= fi +

ε+
i− 1

2

C0

∆x2
(4.31)

or (by γ = xi− 1

2

)

−εsφi−2 + (εs + (1−D1) εs)φi−1 −D2εsφi
∆x2

= fi−1 +
εsD0
∆x2

(4.32)

−C1εmφi−1 + ((1− C2) εm + εm)φi − εmφi+1
∆x2

= fi +
εmC0
∆x2

(4.33)

−C1εmφi−1,j + ((1− C2) εm + εm)φij − εmφi+1,j
∆x2

+
−C1εmφi,j−1 + ((1− C2) εm + εm)φij − εmφi,j+1

∆y2

= fij +
εmC0
∆x2

+
εmC0
∆y2

, (for 2 jumps in 2D), (4.34)

10



where

C1=
ε−B2A1 − ε

−B1A2
ε−B2A3 − ε+B3A2

=
εsB2 − εsB1
εsB2 − εmB3

=
2εs

εm + εs

C2=
− (ε−B2A4 − ε

+B4A2)

ε−B2A3 − ε+B3A2
=
−εsB2 + εmB4
εsB2 − εmB3

=
εm − εs
εm + εs

C0=
ε−B2 [φ]− A2 [εφx]

ε−B2A3 − ε+B3A2
=
2εsB2 [φ]− [εφx]

εsB2 − εmB3
=
2εs [φ]− h [εφx]

εm + εs
(4.35)

D1=
− (ε+B3A1 − ε

−B1A3)

ε+B3A2 − ε−B2A3
=
− (εmB3 − εsB1)

εmB3 − εsB2
=
− (εm − εs)

εm + εs

D2=
ε+B3A4 − ε

+B4A3
ε+B3A2 − ε−B2A3

=
εmB3 − εmB4
εmB3 − εsB2

=
2εm
εm + εs

D0=
−ε+B3 [φ] +A3 [εφx]

ε+B3A2 − ε−B2A3
=
−2εmB3 [φ] + [εφx]

εmB3 − εsB2

=
−2εm [φ]− h [εφx]

εm + εs
(4.36)

It can be easily seen that (4.32) and (4.33) reduce to the standard FD equation
(4.3) when εm = εs (no jump). For εm = 1, εs = 80, and [φ] = 0, we have

C1=
2 · 80

81
, C2 =

−79

81
, C0 =

−h [εφx]

81
, 1− C2 =

2 · 80

81
, (4.37)

D1=
79

81
, D2 =

2

81
, D0 =

−h [εφx]

81
, 1−D1 =

2

81
, (4.38)

which lead to a diagonally dominant matrix from (4.32) and (4.33).

By (4.22) and (4.23), we introduce two unknowns Ψi−1 and Ψi in order to
treat the two jump conditions [φ] and [εφx]. If [φ] = 0, we actually have only
one jump condition [εφx] to take care of. Hence, we should let either Ψi = φi
or Ψi−1 = φi−1 in (4.23). If we let Ψi = φi, then (4.22) becomes

A1φi−1 = A3Ψi−1 − [φ] (4.39)

which means that the fictitious value Ψi−1 will cause an O(h2) error to ap-
proximate [φ] if (4.29) is in use. The next question is from which of (4.32)
and (4.33) we should choose. Numerical results show that (4.33) is better.
Nevertheless, if both [φ] �= 0 and [εφx] �= 0, we should use both.

Example 4.1. εm = εs = 1 (no jump), φ(r) is given as (2.1). m_XPts =
21, 41, 81, 161 =⇒ h = 2Å, 1Å, 0.5Å, 0.25Å. The naming convention of
Table 4.1A-P represents the P equation of Project A. The conjugate-gradient
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method (CG) is used for solving matrix systems. The standard FD (4.3) for
the box case without jumps yields O(h2) in the infinity error norm, i.e., E∞ =
maxijk

∣∣∣φ(xi, yj , zk)− φijk
∣∣∣, as shown in 4.1A-P.

Example 4.2. Cylinder, εm = 1, εs = 80, [φ] = 0, [εφ
n
] �= 0, φ(r) is given

as (2.1). Due to the interface condition (4.6), the resulting matrix systems
are not symmetric, an SOR linear solver is used for this example. Numerical
results in Table4.2B-P obtained by the MIB method (4.33) for the cylinder
case with jumps also show an O(h2) convergence.

Table 4.1A-P. (4.3) & CG Table 4.2B-P. (4.33) & SOR

h in Å E∞ Order Time E∞ Order Time

2 0.4122 0.4442

1 0.0877 2.23 0.0926 2.26

0.5 0.0211 2.06 0.0227 2.03

0.25 0.0052 2.02 1m44s 0.0057 1.99 5m41s

5 FDM for Linear NP in Primitive and Slotboom Forms

We first consider the NP equation in the primitive form, i.e. (1.2) or (1.3),
and simplify it in 1D as

−
∂J

∂x
=
∂

∂x

([
D

(
∂C

∂x
+ βC

∂φ

∂x

)])
= f . (5.1)

Differencing (5.1) at xi gives

−
∂J(xi, y, z)

∂x
≈−

Ji+ 1

2

− Ji−1

2

∆x
(5.2)

−Ji+ 1

2

≈

[
D

(
∂C

∂x
+ βC

∂φ

∂x

)]

i+ 1

2

(5.3)

≈

[
Di+1

2

Ci+1 − Ci
∆x

+Di+ 1

2

βi+ 1

2

Ci+1 + Ci
2

φi+1 − φi
∆x

]
(5.4)

−Ji− 1

2

≈

[
Di−1

2

Ci − Ci−1
∆x

+Di− 1

2

βi− 1

2

Ci + Ci−1
2

φi − φi−1
∆x

]
(5.5)

−
∂J(xi, y, z)

∂x
≈

1

∆x2
[ai−1Ci−1 + aiCi + ai+1Ci+1] (5.6)
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ai−1=Di− 1

2

−Di− 1

2

βi− 1

2

(
φi − φi−1

)
/2

ai=−
(
Di− 1

2

+Di+ 1

2

)
−Di− 1

2

βi− 1

2

(
φi − φi−1

)
/2

+Di+ 1

2

βi+ 1

2

(
φi+1 − φi

)
/2

ai+1=Di+ 1

2

+Di+ 1

2

βi+ 1

2

(
φi+1 − φi

)
/2 (5.7)

ai−1Ci−1 + aiCi + ai+1Ci+1
∆x2

= fi (5.8)

The flux condition for the NP problems is

J · n = g




= 0 real PNP,

�= 0 with exact solutions,
on Γ (5.9)

where the interface Γ is actually a part of the boundary ∂Ωs (see Fig. 5). For
this, we write in 1D as

J · n=J · 〈1, 0, 0〉 = Jx

Jx=−D

(
∂C

∂x
+ βC

∂φ

∂x

)
= g at γ. (5.10)

Note that (5.10) is a BC for the NP problems not an interface condition.
Moreover, it is usually called the Robin BC since it involves the data of both
the unknown function C itself and its derivative ∂C

∂x
. If a BC is in terms of C

only, it is then called a Dirichlet BC and is called a Neumann BC if in terms
of ∂C

∂x
only. We discuss the FD approximation of (5.10) in two cases.

Case 1. n = 〈1, 0, 0〉, xi−1 = ‘C’, xi = ‘W’, and γ = xi− 1

2

.

Let

Jx
i− 1

2

= −

[
D

(
∂C

∂x
+ βC

∂φ

∂x

)]

i− 1

2

(5.11)

FD approximation of (5.10) at γ = xi−1

2

is

−Di− 1

2

Ψi − Ci−1
∆x

−Di− 1

2

βi− 1

2

Ψi + Ci−1
2

φi − φi−1
∆x

= gi− 1

2

= Jxi− 1

2

(5.12)

where Ψi is a fictitious value. We can extend the function C(x) continuously
from xi−1 = ‘C’ to xi = ‘W’ by considering Ψi as an extra unknown that
approximates the ghost value C(xi). This ith FD equation and the i − 1th

equation (5.8) across the interface can be written respectively as

diΨi + di−1Ci−1=∆x gi− 1

2

(5.13a)

ai−2Ci−2 + ai−1Ci−1 + aiΨi
∆x2

= fi−1 (5.13b)
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di=−Di− 1

2

−Di− 1

2

βi− 1

2

(
φi − φi−1

)
/2 (5.13c)

di−1=Di− 1

2

−Di− 1

2

βi− 1

2

(
φi − φi−1

)
/2.

Case 2. n = 〈−1, 0, 0〉 , xi = ‘W’, xi+1 = ‘C’, and γ = xi+ 1

2

. Similarly, we
have

diΨi + di+1Ci+1=∆x gi+ 1

2

(5.14a)

aiΨi + ai+1Ci+1 + ai+2Ci+2
∆x2

= fi+1 (5.14b)

di=−Di+ 1

2

+Di+ 1

2

βi+ 1

2

(
φi+1 − φi

)
/2 (5.14c)

di+1=Di+ 1

2

+Di+ 1

2

βi+ 1

2

(
φi+1 − φi

)
/2.

We next consider the Slotboom form of NP (1.14) with (1.11) and (1.12). In
1D, it reads as

−
∂J

∂x
=
∂

∂x

(
α
∂Ĉ

∂x

)
= f (5.15)

and the FD equation at x = xi is

αi− 1

2

Ĉi−1 −
(
αi+1

2

+ αi− 1

2

)
Ĉi + αi+ 1

2

Ĉi+1

∆x2
= fi. (5.16)

Corresponding to (5.10) and (5.12), we have respectively

Jx = −α
∂Ĉ

∂x
= g at γ (5.17)

−αi− 1

2

Ψ̂i − Ĉi−1
∆x

= gi− 1

2

, (5.18)

Eq. (5.17) is a Neumann BC. If a Dirichlet BC is considered, we then have

Ĉ = ĝD at γ =⇒ Ψ̂i = ĝDi or (5.19)
C = gD, Ψi = gDi (primitive).

The method (5.12) (or (5.18)) alone to treat the Robin (or Neumann) BC is
usually unstable due to many undefined normal vectors n at corner points.
To stabilize the method, we make connections between the adjacent points of
‘W’s and ‘F’s. For this, in addition to (5.12), we impose
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−
Ψi +Ψi−1

2
=−Ci− 1

2

(5.20a)

−Ψi +Ψi−1=0, if Ci− 1

2

is not given. (5.20b)

All Robin (with stabilization for the primitive form), Neumann (with stabi-
lization for the Slotboom form), and Dirichlet BCs are implemented for both
GA and cylinder. On the interface Γ, we should use either Robin or Neumann
BCs. Dirichlet BCs are used only for testing the code. All numerical results
are good as shown in the following tables.

Example 5.1. Primitive, GA, εm = 1, εs = 80, [φ] = 0, [εφn] �= 0. Numerical
results for the Poisson problem are shown in Table 5.1C-P with good O(h2)
convergence where numerical results of the same exact solution (2.1) used in
[21] for the GA channel are also presented for comparison. Note that the MIB
method of Wei et al. [21] requires more than 27 FD grid points whereas ours
requires only 7 under the assumption (4.4). The method with (5.8), (5.12),
and (5.19) in the primitive form gave perfect results as shown in Table 5.1 for
all PNP problems.

Table 5.1C-P. Ours vs Wei’s MIB

Ours (7-pt) Wei’s (> 27-pt)

h in Å E∞ Order E∞ Order

2 0.4466

1 0.0922 2.28 0.1400

0.5 0.0228 2.02 0.0271 2.36

0.25 0.0057 2.00 0.0152 0.84

Table 5.1. Primitive, GA, Linear

Dirichlet Robin

h in Å P NP1 NP2 Time P NP1 NP2 Time

2 0.4466 1.0203 1.1903 0.4466 1.0302 1.4471

1 0.0922 0.0457 0.0360 0.0922 0.0451 0.0434

0.5 0.0228 0.0103 0.0072 1m14s 0.0228 0.0103 0.0081 1m14s

0.25 0.0057 0.0025 0.0017 10m28s 0.0057 0.0025 0.0018 10m31s

Example 5.2. Slotboom, GA, εm = 1, εs = 80, [φ] = 0, [εφ
n
] �= 0. The

method with (5.16), (5.18), and (5.19) in the Slotboom form also gave good
results as shown in Table 5.2 for all PNP problems. Note that the CPU time
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is 10m24s with the SOR relaxation parameter ω = 1.9 whereas it took 30m42s
(not shown) with ω = 1.2 in the subroutine SOR_3DCA().

Table 5.2. Slotboom, GA, Linear

Dirichlet Neumann

h in Å P NP1 NP2 Time P NP1 NP2 Time

2 0.4466 0.8265 0.2276 0.4466 0.7420 0.2715

1 0.0922 0.0841 0.0364 0.0922 0.0812 0.0387

0.5 0.0228 0.0187 0.0077 1m14s 0.0228 0.0195 0.0095 1m14s

0.25 0.0057 0.0045 0.0018 10m24s 0.0057 0.0047 0.0024 10m34s

Example 5.3. Slotboom, Cylinder, εm = 1, εs = 80, [φ] = 0, [εφn] �= 0.

Table 5.3. Slotboom, Cylinder, Linear

Dirichlet Neumann

h in Å P NP1 P NP1 NP2 Time

2 0.4442 0.6488 0.4442 0.7414 0.2545

1 0.0925 0.0847 0.0925 0.0831 0.0382

0.5 0.0229 0.0188 0.0229 0.0189 0.0086

0.25 0.0057 0.0046 0.0057 0.0046 0.0020 6m25s

As mentioned in [21], there is another way to implement the flux on Γ, namely,
the Boundary Condition II in [21],

J = g




= 0 real PNP,

�= 0 with exact solutions,
on Γ. (5.21)
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