Schrödinger's Equation

Jinn-Liang Liu

Department of Applied Mathematics, National Hsinchu University of Education, Taiwan. 2/21/2001, 10/15/2006, 1/10/2010

Max Planck Formula (1900) : A natural fact.

 $E = hv = \hbar\omega$ E : energy v : frequency $\omega : 2\pi v$ $h : Planck's constant \quad (6.63 \times 10^{-34} \text{ Js})$ $\hbar = h/2\pi \qquad (1.05 \times 10^{-34} \text{ Js})$

Particle-Wave Duality Relation:

$$p\lambda = h$$
, $p = \hbar k$

p: momentumλ: wavelength*k*: wave number

Collapse of Determinism (Probability)

Polarized Wave : Electric or magnetic wave.

Fig. 1

Fig.1: A plane-polarized light encounters an obliquely oriented polarizer only a fraction $\cos^2 \theta$ of the intensity is transmitted.

 $\theta = 0^{\circ}$: All the light is transmitted $\theta = 45^{\circ}$: Half gets through $\theta = 90^{\circ}$: No transmission

Weird Feature: Suppose the intensity of the light is reduced so that only one photon at a time arrives at the polarizer. Transmission Probability = $\cos^2 \theta$

Fig. 2: Wave double-slit experiment. Amplitudes add.

 $\psi = \psi(\vec{r}, t)$: wave function

 $\psi = \psi(\vec{r}, t) = |\psi| e^{i\alpha}$ α : phase

 $I = |\psi|^2$ Superposition:

$$\psi = \psi_{1} + \psi_{2}$$

$$I = |\psi|^{2} = |\psi_{1} + \psi_{2}|^{2} = \overline{(\psi_{1} + \psi_{2})}(\psi_{1} + \psi_{2})$$

$$= |\psi_{1}|^{2} + |\psi_{2}|^{2} + |\psi_{1}||\psi_{2}|[e^{i(\alpha_{1} - \alpha_{2})} + e^{-i(\alpha_{1} - \alpha_{2})}]$$

$$= I_{1} + I_{2} + 2\sqrt{I_{1} + I_{2}}Cos(\alpha_{1} - \alpha_{2})$$

$$\prod_{i=1}^{n} Interference$$

The wave of each individual particle passes through both slits but the particle passes through only one. Louis de Broglie (1924): Matter waves.

Matter : protons, neutrons, mesons, atoms, molecules

<u>Peter Debye</u> (1926): If matter is a wave, there should be a wave equation to describe a matter wave.

A Traveling Sine Wave: $\psi(x,t) = A \sin \frac{2\pi}{\lambda} (x - vt)$

A Matter Wave:

$$\psi(x,t) = A \exp\left(\frac{2\pi i}{\lambda}(x-ct)\right) = A \exp\left(\frac{2\pi i}{\lambda}(x-\lambda vt)\right)$$
$$= A \exp\left(2\pi i \left(\frac{p}{h}x - \frac{E}{h}t\right)\right) = A \exp\left(\frac{i}{\hbar}(px-Et)\right)$$

$$\frac{\partial \psi}{\partial x} = \frac{ip}{\hbar} \psi \qquad \Rightarrow \qquad p \psi = -i\hbar \frac{\partial \psi}{\partial x}$$

$$\frac{\partial^2 \psi}{\partial x^2} = -\frac{p^2}{\hbar^2} \psi \quad \Rightarrow \quad p^2 \psi = -\hbar \frac{\partial^2 \psi}{\partial x^2}$$

$$\frac{\partial \psi}{\partial t} = -\frac{iE}{\hbar}\psi \qquad \Rightarrow \qquad E\psi = -i\hbar\frac{\partial \psi}{\partial t}$$

$$E = \frac{1}{2}mv^{2} + V = \frac{p^{2}}{2m} + V = K + V$$

Erwin Schrödinger (1926): Schrödinger's Equation

1D:
$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2} + V(x,t)\psi(x,t)$$

2D, 3D: $i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + V \psi$

- Key equation of the quantum theory.
- Must be accepted as a fundamental postulate.

 $|\psi(\vec{r},t)|^2 = \overline{\psi}\psi$ is the <u>probability density</u> for a particle to be located at point \vec{r} at time *t*. $|\psi|^2 d\vec{r}$ is the probability it will be in the infinitesimal volume $d\vec{r}$ at time *t*.

 ψ is not an observable quantity \Rightarrow the phase of ψ is arbitrary (changing) without changing the observable quantity $|\psi|^2$.

Normalization Condition: $\int_{\Re^3} |\psi(\vec{r},t)|^2 d\vec{r} = 1$