Schrödinger's Equation

Jinn-Liang Liu

$$
\begin{aligned}
& \text { Department of Applied Mathematics, } \\
& \text { National Hsinchu University of Education, Taiwan. } \\
& 2 / 21 / 2001,10 / 15 / 2006,1 / 10 / 2010
\end{aligned}
$$

Max Planck Formula (1900) : A natural fact.

$$
\begin{array}{ll}
E=h v=\hbar \omega \\
& \\
E: \text { energy } & \\
v: \text { frequency } & \\
\omega: 2 \pi v & \\
h: \text { Planck's constant } & \left(6.63 \times 10^{-34} \mathrm{Js}\right) \\
\hbar=h / 2 \pi & \left(1.05 \times 10^{-34} \mathrm{Js}\right)
\end{array}
$$

Particle-Wave Duality Relation:

$$
p \lambda=h, \quad p=\hbar k
$$

p : momentum
λ : wavelength
k : wave number

Collapse of Determinism (Probability)

Polarized Wave : Electric or magnetic wave.

Fig. 1

Fig.1: A plane-polarized light encounters an obliquely oriented polarizer only a fraction $\cos ^{2} \theta$ of the intensity is transmitted.
$\theta=0^{\circ}$: All the light is transmitted
$\theta=45^{\circ}$: Half gets through
$\theta=90^{\circ}$: No transmission

Weird Feature: Suppose the intensity of the light is reduced so that only one photon at a time arrives at the polarizer.
Transmission Probability $=\cos ^{2} \theta$

Fig. 2: Wave double-slit experiment. Amplitudes add.

$$
\psi=\psi(\vec{r}, t): \text { wave function }
$$

$$
\psi=\psi(\vec{r}, t)=|\psi| \mathrm{e}^{i \alpha} \quad \alpha: \text { phase }
$$

$$
I=|\psi|^{2}
$$

Superposition:

$$
\begin{aligned}
& \psi=\psi_{1}+\psi_{2} \\
& I=|\psi|^{2}=\left|\psi_{1}+\psi_{2}\right|^{2}=\overline{\left(\psi_{1}+\psi_{2}\right)}\left(\psi_{1}+\psi_{2}\right) \\
&=\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}+\left|\psi_{1}\right|\left|\psi_{2}\right|\left[e^{i\left(\alpha_{1}-\alpha_{2}\right)}+e^{-i\left(\alpha_{1}-\alpha_{2}\right)}\right] \\
&=I_{1}+I_{2}+\frac{2 \sqrt{I_{1}+I_{2}} \operatorname{Cos}\left(\alpha_{1}-\alpha_{2}\right)}{\square} \\
& \text { Interference }
\end{aligned}
$$

The wave of each individual particle passes through both slits but the particle passes through only one.
Louis de Broglie (1924): Matter waves.
Matter : protons, neutrons, mesons, atoms, molecules

Peter Debye (1926): If matter is a wave, there should be a wave equation to describe a matter wave.

A Traveling Sine Wave: $\quad \psi(x, t)=A \sin \frac{2 \pi}{\lambda}(x-v t)$
A Matter Wave:

$$
\begin{aligned}
& \psi(x, t)=A \exp \left(\frac{2 \pi i}{\lambda}(x-c t)\right)=A \exp \left(\frac{2 \pi i}{\lambda}(x-\lambda v t)\right) \\
& =A \exp \left(2 \pi i\left(\frac{p}{h} x-\frac{E}{h} t\right)\right)=A \exp \left(\frac{i}{\hbar}(p x-E t)\right) \\
& \frac{\partial \psi}{\partial x}=\frac{i p}{\hbar} \psi \quad \Rightarrow \quad p \psi=-i \hbar \frac{\partial \psi}{\partial x} \\
& \frac{\partial^{2} \psi}{\partial x^{2}}=-\frac{p^{2}}{\hbar^{2}} \psi \quad \Rightarrow \quad p^{2} \psi=-\hbar \frac{\partial^{2} \psi}{\partial x^{2}} \\
& \frac{\partial \psi}{\partial t}=-\frac{i E}{\hbar} \psi \quad \Rightarrow \quad E \psi=-i \hbar \frac{\partial \psi}{\partial t} \\
& E=\frac{1}{2} m v^{2}+V=\frac{p^{2}}{2 m}+V=K+V \\
& =\text { Kinetic Energy }+ \text { Potential Energy }
\end{aligned}
$$

Erwin Schrödinger (1926): Schrödinger's Equation

1D: $\quad i \hbar \frac{\partial \psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}+V(x, t) \psi(x, t)$
2D, 3D: $\quad i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi$

- Key equation of the quantum theory.
- Must be accepted as a fundamental postulate.
$|\psi(\vec{r}, t)|^{2}=\bar{\psi} \psi \quad$ is the probability density for a particle to be located at point \vec{r} at time t. $|\psi|^{2} d \vec{r}$ is the probability it will be in the infinitesimal volume $d \vec{r}$ at time t.
ψ is not an observable quantity \Rightarrow the phase of ψ is arbitrary (changing) without changing the observable quantity $|\psi|^{2}$.
Normalization Condition: $\quad \int_{\mathfrak{R}^{3}}|\psi(\vec{r}, t)|^{2} d \vec{r}=1$

