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Abstract
We propose an end-to-end machine learning model that integrates multi-task (MT) learning, convolutional neural networks
(CNNs), and control algorithms to achieve efficient inference and stable driving for self-driving cars. The CNN-MT model
can simultaneously perform regression and classification tasks for estimating perception indicators and driving decisions,
respectively, based on the direct perception paradigm of autonomous driving. The model can also be used to evaluate the
inference efficiency and driving stability of different CNNs on the metrics of CNN’s size, complexity, accuracy, processing
speed, and collision number, respectively, in a dynamic traffic. We also propose new algorithms for controllers to drive a car
using the indicators and its short-range sensory data to avoid collisions in real-time testing. We collect a set of images from
a camera of The Open Racing Car Simulator in various driving scenarios, train the model using this dataset, test it in unseen
traffics, and find that it outperforms earlier models in highway traffic. The stability of end-to-end learning and self driving
depends crucially on the dynamic interplay between CNN and control algorithms. The source code and data of this work are
available on our website, which can be used as a simulation platform to evaluate different learning models on equal footing
and quantify collisions precisely for further studies on autonomous driving.

Keywords Self-driving cars · Autonomous driving · Deep learning · Image perception · Control algorithms

1 Introduction

The direct perception model proposed by Chen et al. [1]
maps an input image (high dimensional pixels) from a
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sensory device of a vehicle to fourteen affordance indicators
(a low dimensional representation) by a convolutional
neural network (CNN). Controllers then drive the vehicle
autonomously using these indicators in an end-to-end (E2E)
and real-time manner. This paradigm falls between and
displays the merits [1–3] of the mediated perception [4–
8] and behavior reflex [9–13] paradigms. We refer to these
papers, some recent review articles [14–18], and references
there for more thorough discussions about these three major
paradigms in the state-of-art machine learning algorithms of
autonomous driving.

We instead study the interplay between CNNs and
controllers and its effects on the overall performance of self-
driving cars in training and testing phases, which are not
addressed in earlier studies. CNN is a perception mapping
from sensory input to affordance output. Controllers
then map key affordances to driving actions, namely, to
accelerate, brake, or steer [1].

These two mapping algorithms are generally proposed
and verified separately since automotive control systems
are very complex varying with vehicle types and levels
of automation [14–19]. A great variety of simulators have
been developed for simulation testing of autonomous cars in
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various aspects such as mobility dynamics, path planning,
urban traffic, freeway traffic, traffic scene, and safety
assessment [17]. However, there are very few [20] open
source simulators like The Open Racing Car Simulator
(TORCS) [21, 22] and Car Learning to Act (CARLA) [20]
that can be used to develop an E2E simulation platform
with both machine learning and controller tools for research
investigation and verification.

Chen et al. have developed the open source platform
named DeepDriving [1] that integrates the CNN AlexNet
[23] to TORCS. This platform allows real-time simulation
of a CNN pre-trained ego agent (called Host here) driving
along with other TORCS agents (called Agents). The
main difference between Host and Agents is that they use
estimated and true affordance indicators, respectively, to
autonomously control their own driving dynamics. It is
even more importantly that DeepDriving allows researchers
to extend, improve, or verify machine learning as well as
control algorithms in a consistent and unambiguous way.

We propose here an E2E simulation architecture that
allows multi-task (MT) learning [3, 24], applies to different
CNNs predicting different indicators for performance
evaluation, and includes new control algorithms to quantify
and avoid collisions using sensory data and fewer indicators
than those in [1]. We show that the architecture can be
used to evaluate different CNNs on equal footing and the
algorithms can avoid collisions for Host and Agents in
testing phase.

Fig. 1 illustrates the simulation cycle of the architecture:
(i) a traffic scene presents to a camera and sensors of
self-driving car producing an image and other traffic data,
respectively, (ii) the image feeds into a CNN producing
driving indicators, (iii) the indicators and data put into a
controller moving the car, and (iv) a new traffic scene
displays to the car after movement.

End-to-end learning was first introduced by Pomerleau
[9] in 1989 for road-following task using deep NN (DNN)
and camera and LiDAR on a vehicle. LeCun et al. [11]
proposed an E2E system in 2006 for obstacle avoidance
task using CNN and camera on a 50 cm off-road truck.
In the last five years, this methodology dramatically gains
its popularity in academic as well as industrial sectors
[19].

Table 1 displays a comprehensive list of E2E learning
models in chronological order surveyed by Grigorescu et al.
in 2019 [19] and added and compared by us from the aspects
of driving tasks in learning (LTask) and testing (TTask)
phases, neural networks (NN), sensory input (Sensor) to
NN, and real-time testing (TTime) environment, where Dist
is for distances from other cars and/or road/lane centerline,
Accl for acceleration, Drive for steering, changing lanes,
and overtaking, and R for recurrent. TTime is defined as
whether the trained model is driving dynamically in real
time (Yes) or not (No) using the controllers of a real (RYes),
robotic (BYes), or simulated (SYes) car. Table 1 excludes
reinforcement learning models in [19].

It is very dangerous and extremely costly to quantify
collisions of self-driving cars in real-world traffic in the
validation phase for a trained model. And yet, the collision
is one of the utmost important tasks of autonomous driving
that needs to be carefully analyzed and precisely quantified
at least in the testing phase for evaluating learning and
control algorithms. There is no earlier work in Table 1
addressing specifically this issue with quantitative analysis.
However, it is unfair to compare different models trained on
different hardware and software platforms that vary widely
[14–19]. For example, Table 1 has already included quite
different categories in LTask, TTask, Sensor, and TTime,
let alone a great deal of learning tasks missing in the table
but studied in a large volume of other publications such as

Fig. 1 End-to-end and real-time
architecture of direct perception
consisting of CNN and
front-facing camera, short-range
radars, and controllers of
self-driving car. The arrows
indicate the data flow of image
from camera to CNN and then
both driving indicators from
CNN and sensory data from
sensors to controllers
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Table 1 Comparison of
end-to-end learning models Author LTask TTask NN Sensor TTime

Pomerleau [9] Steer Steer DNN Camera, LiDAR RYes

LeCun et al. [11] Steer Steer CNN Camera BYes

Chen et al. [1] Steer, Dist Drive CNN Camera SYes

Bojarski et al. [12] Steer Steer CNN Camera RYes

Al-Qizwini et al. [2] Steer, Dist Drive CNN Camera, Radar SYes

Xu et al. [25] Motion Motion C+RNN Camera No

Eraqi et al. [26] Steer Steer RNN Camera No

Rausch et al. [27] Steer Steer CNN Camera No

Sauer et al. [3] Steer, Dist Steer CNN Camera, Planner SYes

Codevilla et al. [13] Steer, Accl Steer CNN Camera, Planner BYes

Hecker et al. [28] Steer Steer C+RNN Camera, Planner No

Bechtel et al. [29] Steer Steer CNN Camera BYes

This Work Steer, Dist Drive CNN Camera, Radar SYes

road, lane, 2D and 3D object, and sign detection, semantic
segmentation, localization, driving style recognition, etc. to
name a few [14–19]. We thus only select the work in [1–3]
for a suitable comparison with our model.

The CNN-MT model shown in Fig. 2 unifies and
generalizes earlier CNN models [1–3] of single-task
learning to include multiple related tasks such as a
regression task for estimating perception indicators and a
classification task for driving decisions. Please note the
difference between learning tasks in Fig. 2 and driving
tasks in Table 1. The generalized model is based on a
minimization of different loss functions for different tasks
(see below). It allows to use existing tasks or to add new
tasks and hence can be used to systematically investigate
different models in both training and testing phases for a
clear comparison. Our results show that the proposed model
performs better than earlier models in inference efficiency
and driving stability.

In summary, the contributions of the present work include
(i) a deep learning model for multiple learning and driving
tasks using various CNNs to predict affordance indicators
from camera images, (ii) control algorithms for achieving
zero collisions with few indicators from CNNs and radar
data from self-driving car, (iii) comprehensive comparisons

of different CNNs on the performance metrics of their
dynamic inference accuracy and computatinal complexity
and efficiency, and (iv) an optimal (novel) CNN-MT model
for autonomous driving based on the present and previous
studies of the direct perception paradigm.

2 RelatedWork

Chen et al. [1] proposed 14 indicators (heading angle, 5
distances to preceding cars, 7 distances to lane markings
in a three-lane highway, and a Boolean “fast” that is
not optimized by the gradient descent method) in two
coordinate (in lane and on lane) systems. They only used
camera images as inputs to AlexNet [23] modified for
autonomous driving (denoted by AlexNet+14 herein). The
output estimated indicators from AlexNet+14 are then used
in a controller that drives Host in a TORCS traffic with (up
to 12) Agents that use true indicators. They also proposed
a controller logic for driving Host and Agents. They have
collected about 450,000 images from 12 hours of human
driving in TORCS on 7 different tracks. The maximum
speed of Host in their end-to-end simulation is 72 km/h
(62 mph).

Fig. 2 A CNN multi-task
learning model that combines a
regression task for learning
perception indicators and a
classification task for driving
decisions
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Based on DeepDriving, Al-Qizwini et al. [2] proposed 5
indicators (heading angle and 4 distances to lane markings),
where the 5 distance indicators to preceding cars in [1] are
removed and two coordinate systems are reduced to one.
In addition to cameras, they used other sensory devices in
Host (like lidar and long and short range radars in real
cars) to replace these 5 indicators and thus provide the
controller more accurate measures of surrounding Agents.
They have compared GoogLeNet [30], VGGNet [31], and
Clarifai [32] and shown that GoogLeNet performs the best
for the root mean squared error (RMSE) of their 5 indicators
in training phase. They have also compared GoogLeNet to
AlexNet+ with the original 14 and their 5 indicators and
shown that RMSEs of these three models are comparable
in between 0.01 and 0.02 with GoogLeNet slightly better.
The controller has been modified to detect Agents within 60
meters from Host using its sensors and to allow the speed
of three Agents larger than that of Host. They collected
510,112 images from 14 hours of a label-collecting agent
but did not publish the data and code.

Sauer et al. [3] generalized the direct perception approach
to include high-level driving commands such as “turn
left at the next intersection” provided by sensor devices
in advanced navigation systems [33]. They proposed 6
affordance indicators, namely, heading angle, distance to
the vehicle ahead, distance to lane centerline, red light,
speed sign, and hazard stop to deal with complex urban
environments. The loss function is defined as the sum of the
mean absolute error of the first three indicators and the cross
entropy of the last three. They have developed a controller
that decouples longitudinal control (throttle, brake) using
the car-following model in [1] with a proportional–integral–
derivative controller and lateral control (steering) using the
Stanley controller. The maximum speed of Host in their
simulation using CARLA [3] with a front facing camera is
20 km/h in single-lane traffic in driving direction.

3 Control and CNN Algorithms

We use a front-facing camera and a few short-range radars
to design CNN and control algorithms and show that radars
can improve driving stability defined by the damage model
in TORCS, where the damage number is a measure of an
agent colliding with other agents or road obstacles [22].

Depicted in Fig. 2, the CNN-MT learning model

min
ỹ,̃p

{

λR

2M

M
∑

m=1

‖y − ỹ‖2
2 − λC

M

M
∑

m=1

2
∑

k=1

pk log(p̃k)

}

(1)

combines a regression (R) task for learning I perception
indicators in the output vector ỹ = (ỹ1, · · · , ỹI ) and a
binary classification (C) task for learning the probability

p̃ = (p̃1, p̃2) of a one-hot (truth) vector p = (p1, p2) to
make a decision for overtaking p̃1 > 0.5 or not p̃2 > 0.5,
for example. The one-hot vector p can be defined by a safety
distance D of Host from Agents ahead determined by radars
for overtaking or by other factors for other decisions. As an
example, we define p1 = 1 and p2 = 0 for overtaking if
D > 10 m. The probability p̃ of D is learned solely from
the images of the front-facing camera. Therefore, these two
learning tasks are highly correlated. Here, λR and λC are
weighting factors of their corresponding loss functions, M

is a batch size of input images, y is the ground truth vector
of I perception indicators, p is dynamically determined by
TORCS, and p̃k are outputs of the softmax function.

3.1 Affordance indicators and control algorithms

We use three types of indicators, namely, Host’s heading
angle (Angle), its distance to the road centerline (toMiddle),
and its distance to the direct preceding car in a certain
lane i (Di). For example, there are I = 5 indicators, i.e.,
Angle, toMiddle, D1, D2, and D3 on a three-lane road as
shown in Fig. 3, for the regression learning task defined in
(1). The probability indicator p̃ of the safety distance D in
(1) replaces three distance indicators D1, 2, and 3 for the
classification learning task.

Fig. 3 Affordance indicators for a regression learning task of
autonomous driving: Angle (Host’s heading angle), toMiddle (Host’s
distance to the road central line), D1 (Host’s distance to the direct
preceding Agent in Lane 1 (L1)), D2, and D3 on a three-lane highway.
A probability indicator p̃ replaces three distance indicators D1, 2, and
3 for a classification learning task (see text)
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The indicator toMiddle is a critical value for all cars in
TORCS to steer and drive on the track [21]. It is used in [3]
but not in [1, 2]. The indicators D1, D2, and D3 are different
from the five indicators in Figs. 3c and 3e in [1], since we
use only one coordinate system as in [2] instead of two.

Controllers are crucial in normal and race autonomous
driving [1–3, 21, 22, 34–36]. We change TORCS con-
trollers, which imitate human drivers in racing with sensor
information [34–36], for highway driving based on these
indicators. Our controllers result from a series of simulation
tests targeting at zero damages in TORCS. We investigate
the controllers in [1] and find collisions taking place due to a
lack of using the sensor information of neighboring Agents
in Host.

In particular, we find that the following state information
of Agents in Host provided by the sensors of TORCS [21]
is essential for our learning algorithms to achieve zero
damages in our simulation test.

Agent State0: There are no Agents in a range of 60
meters.

Agent State1: A slower Agent is directly in front of Host
within the range and with overtaking distance for Host.

Agent State2: A slower Agent is directly in front of
Host without overtaking room for Host. This state concerns
front-rear collisions.

Agent State3: An Agent is very close to Host in the lateral
direction. This state concerns lateral collisions.

TORCS provides not only sophisticated physical and
3D graphical engines but also many sensors (angle, speed,
opponents, damage etc.) and effectors (steer, accel, brake
etc.) [34] for model developers to design a variety of
normal driving and racing controllers in simulated self-
driving traffic [1, 34–36]. These sensors and effectors
are customized to simulate corresponding electronic or
mechanical devices in state-of-the-art vehicles [37].

We integrate the indicators Angle, toMiddle, D1, D2,
and D3 (whose estimated and true values are used by
Host and Agents, respectively), the effectors steer, accel,
and brake (whose values are determined by our and
TORCS algorithms for Host and Agents, respectively), and
the sensor opponents (for calculating the Agent State0 to
Agent State3 of Agents) in Algorithms A1-A8 in Appendix
to design controllers that yield zero damage for Host as well
as all 20 Agents in testing phase.

For example, we change the original STEER algorithm
of TORCS to Algorithm A1 that returns a value of the
effector steer using the input values of the five indicators
by calling the procedure GETOFFSET in Algorithm A2.
Algorithm A2 in turn calls Algorithm A8 for the values of
Agent State0 to Agent State3 and determines whether Host
should overtake or stay in the current lane and slow down.
Algorithm A1 changes the input Angle according to the
values of toMiddle, offset, lane width (4 m used here), and

road width (13 m). Namely, Host steers left first to overtake
if toMiddle > lane width or right secondly if toMiddle <

−lane width.
The lateral and longitudinal control Algorithms A1-3 and

A4-7, respectively, are constantly calling the Angent state
Algorithm A8 to avoid collisions in a dynamic traffic. Fig. 4
shows that the controllers in [1] incur both longitudinal
(top row) and lateral (bottom) collisions without integrating
Host’s perception indicators and sensory information of
surrounding Agents.

3.2 CNN algorithms

AlexNet+14 in [1] modifies the original AlexNet [23] by
switching pooling and local response normalization layers
and adding one more fully-connected (FC) layer so that the
last four FC layers have 4096, 4096, 256, and 14 units.
AlexNet+14 yields estimated values (real numbers) of 14
affordance indicators from an input image. The estimated
values are then measured in the mean absolute error (MAE)
with the ground truth values provided by TORCS. MAEs
are reduced by the stochastic gradient descent optimizer in
training phase.

We retain 14 output neurons for 5 indicators in order to
compare our CNNs and controllers with those in [1], where
the absolute error of the indicator toMiddle is weighted 9
times that of the other four. In our experience, toMiddle
is more important to learn than the others as its better
values yield better Host dynamics in the driving stability
of following, curving, and overtaking. The errors of the
indicators can be corrected by short-range TORCS sensors
to achieve zero damages. The maximum speeds of Agents
and Host are 72 and 74 km/h, respectively.

The authors in [30] proposed nine inception modules for
GoogLeNet. Each module consists of 1x1, 3x3, and 5x5
convolution kernels and one 1x1 projection layer, which
can capture map features at different scales and reduce
dimensions and thus remove computational bottlenecks
effectively. Moreover, GoogLeNet has a global average
pooling after the last convolution layer, which averages out
the channel values across the convolutional feature map and
hence reduces the total number of parameters drastically.
In general, the parameters and memory of a pre-trained
GoogLeNet are ∼6 million and ∼20 MB, respectively,
compared to ∼60 million and ∼200 MB for AlexNet [23].
The authors in [2] used the original GoogLeNet.

We modify GoogLeNet (called GoogLeNet+) by adding
one FC layer (having 128 units) before each of three
sigmoid layers that yield two auxiliary (Loss0, Loss1) and
one main (Loss2) Euclidean loss layers (see, e.g., Appendix
A in [2] for GoogLeNet architecture). These three FC-
Sigmoid-Loss structures of GoogLeNet+ are thus (i) FC
(4096) → FC (4096) → FC (128) → Sigmoid (5) → Loss0,
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Fig. 4 Two sequences of images
showing frontal (top row) and
lateral (bottom) collisions
between Host and Agent using
the controllers in [1]

(ii) FC (4096) → FC (4096) → FC (128) → Sigmoid (5)
→ Loss1, and (iii) FC (4096) → FC (128) → Sigmoid
(5) → Loss2. The added FC (with 128 units) layers reflect
the regression task of GoogLeNet+MT to learn 5 (or less)
perception indicators in Fig. 2 instead of the classification
task of the original GoogLeNet.

Table 2 summarizes the differences between our and
earlier models. The learning task RC (regression and
classification) between ours and that in [3] is different since
the driving tasks in Table 1 and the driving environment
are different. The perception indicators are also different,
where 3R refers to go straight, turn left, and turn right and
3C to Host’s two distances to the vehicle ahead and the
road centerline in a single lane and Host’s angle to the road
tangent [3].

To avoid collisions, the original control algorithms in
a simulator need to be changed according to learning
tasks, speed, and indicators as denoted by CARLA+ and
TORCS+ with the + sign in Table 2. The main differ-
ences between ours and those in [1, 2] are RC- vs R-task
learning, TORCS+ vs TORCS (unchanged), and differ-
ent indicators as discussed above. Since our model in (1)
is more general than those in [1, 2], we can implement

Table 2 Comparison between related models in learning task (R for
regression, C for classification), speed (in km/h), CNN, simulator, and
perception indicators, where the + sign denotes modifications of the
respective CNN and controller

Ref. Task Speed CNN Simulator Indicators

[1] R 72 AlexNet+ TORCS 14R

[2] R 72 AlexNet+ TORCS 5R

GoogLeNet

[3] RC 20 VGG16 CARLA+ 3R3C

Ours R 74 AlexNet+5 TORCS+ 5R

GoogLeNet5

GoogLeNet+5

RC 74 AlexNet+MT 2R1C

GoogLeNet+MT

different CNNs (AlexNet+14 in [1] and our AlexNet+5,
GoogLeNet5, AlexNet+MT, and GoogLeNet+MT), quan-
tify their performance, and fairly compare them in the same
driving scenario and conditions.

The difference between CNN5 (with 5R in Table 2) and
CNNMT (2R1C) in our model is that CNN5 learns all 5
indicators in Fig. 3 using the regression loss function only
(λR = 1 and λC = 0 in (1)) whereas CNNMT learns two
regression indicators Angle and toMiddle (2R) and a binary
classification (1C) probability vector p̃ in (1) with λR = 10
and λC = 1. Since CNNMT does not learn the distance
indicators D1, D2, and D3, the number of output neurons
is three (2R+1C), which is the smallest number in Table 2,
i.e., CNNMT is most efficient. Since D1, D2, and D3 are
not learned, we replace them by the ground-truth distances
from the sensors in the control Algorithm A2.

4 Experimental setup

A key issue in supervised machine learning is data
collection and labeling. For simulation-based autonomous
driving research, data comes from a host car by a human
driver or a robotic (AI) agent. An AI agent can be thought as
a perfect human-like driver [33-35]. We used an AI agent to
collect ∼500,000 labeled images on seven different tracks
for training as shown in Fig. 6 in [1].

There are three driving scenarios for collecting our data.
First, a host agent drives on seven empty tracks in a zigzag
manner for training the principal indicators Angle and
toMiddle. Second, the host follows closely another very
slow and zigzagging AI car in front. Third, the host drives
normally on tracks with other AI cars (up to 20). The host
drives on each track multiple times to collect data. To obtain
different traffic images, AI agents are programmed with
various driving behaviors.

We use a different track in testing phase to assess
the pre-trained CNN agent with the ground truth data
collected by itself. The test data contains about 3000
images. For the assessment, we use MAE of the indicators
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predicted by CNN algorithms on this static data (sMAE).
MAE can also be computed dynamically during driving
(dMAE). However, dMAE is larger than sMAE due
to asynchronous frequencies between CNN computing
(complexity, computer, and speed dependent) and TORCS
image generation (computer and speed dependent). CNN
and TORCS frequencies are >15 and >30 Hz, respectively,
on our computer.

Effectiveness is a critical issue for machine learning
models in their deployments to real-time applications such
as self-driving cars. Our goal here is to study and compare
various integrated models of CNNs, perception indicators,
learning and driving tasks, and control algorithms, from
which we can select an optimal model. In addition to the
accuracy metrics dMAE, we further perform experiments
to compare these models based on the performance metrics
of model’s size (the total number of weights and biases),
computational complexity (the total number of multiply-
and-accumulate operations per image), and inference speed
(frames per second) [39].

5 Results

We train GoogLeNet5 and GoogLeNet+5 using a fine-
tuning technique [38] to adapt the self-driving problem. We
first train the scratch network by stochastic gradient descent
with the batch size bs = 32, the momentum m = 0.9, and
the learning rate starting from lr = 0.01 and decreasing by a
factor of 0.96 every 32000 iterations. The training process
stops after 50k iterations as shown in the inset in Fig. 5.
Since the pre-trained network captures general features in its
early layers [38], we only fine tune the last FC layers in the
re-training process, i.e., all previously trained weights are
used as initial guesses except that of the last FC layers set to

Fig. 5 Mean absolute errors of the five indicators determined by
GoogLeNet5 in two-step training first from scratch (in the inset) with
50k and then from fine-tuning with 20k iterations

Fig. 6 Mean absolute errors of the five indicators determined by
GoogLeNet+5 in two-step training first from scratch (in the inset) with
100k and then from fine-tuning with 20k iterations

zero. The loss curve in Fig. 5 shows that error fluctuations
(i.e., spiky peaks in the inset) are effectively reduced by fine
tuning and errors decrease sharply within 1k iterations. The
total number of iterations for GoogLeNet by this two-step
training is only 70k to reach sMAE ≈ 0.01 compared to
300k in [2] with comparable errors. Each point in all loss
curves is an average of 11 consecutive errors.

In the fine-tuning process, the values of bs and m are
the same as those of the pre-trained network except lr. The
starting learning rate for fine-tuning FC layers is lr = 0.01,
while lr = 0.001 for other layers. In this way, the new added
FC layer learns ten times faster than that of the pre-trained
network.

The training losses of GoogLeNet+5 and AlexNet+5 are
shown in Figs. 6 and 7 having sMAE ≈ 0.02 with 120k
and 200k iterations, respectively. The hyperparameters of
AlexNet+5 are the same as those in [1] except m = 0.5.

Fig. 7 Mean absolute errors of the five indicators determined by
AlexNet+5 in one-step training with 200k iterations
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Table 3 Static mean absolute
errors in testing phase Indicator AlexNet+5 GoogLeNet5 GoogLeNet+5 Alex/GoogLeNet+MT

Angle 0.034 0.041 0.029 0.038/0.025

toMiddle 0.539 0.389 0.347 0.310/0.315

D1 (̃p) 6.864 5.190 6.055 (0.007/0.008)

D2 7.048 3.227 3.155

D3 8.388 5.905 5.450

GoogLeNet5 is the best among these three CNNs in
training loss. However, GoogLeNet+5 yields better Angle
and toMiddle in testing phase as shown in Table 3, where
Angle is in radians and others are in meters. Angle and
toMiddle are principal indicators for Host driving stably
around curves, in overtaking, to avoid collissions, and in
following as shown in Algorithms A1, A2, A3, and A4,
respectively. Larger errors in D1, D2, and D3 are corrected
by the sensor information of Agents in Host as shown in
Algorithms A1, A2, and A8.

Table 3 also shows that two multi-task CNNs, namely
AlexNet+MT and GoogLeNet+MT, perform better than
three single-task CNNs in terms of the common two indi-
cators Angle and toMiddle, where the errors 0.007/0.008
of the predicted probability vector p̃ are absolute errors,
i.e., ‖̃p − p‖∞. The profiles of training loss (not shown) for
Alex/GoogLeNet+MT are similar to those in Figs. 6 and 7.
GoogLeNet+MT is overall the best among five CNNs in this
table.

Table 4 presents the dMAEs of AlexNet+14, AlexNet+5,
GoogLeNet+5, AlexNet+MT, and GoogLeNet+MT, where
distLL = D1, distMM = D2, distRR = D3, and toMiddle
is a combined indicator for the two road marking (distL

Table 4 Dynamic mean absolute errors in testing phase

AlexNet+14 Alex/GoogLeNet+5 Alex/GoogLeNet+MT

Indicator dMAE Indicator dMAE Indicator dMAE

Angle 0.035 Angle 0.043/0.045 Angle 0.041/0.032

distLL 7.970 D1 8.315/7.566 toMiddle 0.340/0.336

distMM 6.188 D2 9.233/6.758 p̃ 0.012/0.012

distRR 8.540 D3 10.198/8.374

distL 2.870 toMiddle 0.397/0.464

distR 2.822

toMarkL 0.319

toMarkM 0.374

toMarkR 0.314

toMarkLL 0.291

toMarkRR 0.252

toMarkML 0.257

toMarkMR 0.261

and distR) and seven lane marking (denoted by toMarkX)
indicators in [1]. AlexNet+14 is better than AlexNet+5
since AlexNet+14 uses two coordinate systems that are
however more complicated in designing robust and stable
control algorithms to avoid collisions, especially without
using sensory information. GoogLeNet+5 is better than
AlexNet+5 in D1, D2, and D3, i.e., in depth perception but
worse in lateral perception (toMiddle).

The errors of depth perception indicators predicted by
these CNNs are in general quite large as shown in the table.
By contrast, AlexNet+MT and GoogLeNet+MT are better
than previous three CNNs using only the lateral perception
(regression) indicators (Angle, toMiddle) and the overtaking
(classification) indicator p̃. The indicators D1, D2, and D3
are not explicitly but implicitly (via the safety distance
D > 10 m) learned by AlexNet+MT and GoogLeNet+MT.
Again, GoogLeNet+MT is overall the best in Table 4.

Table 5 shows that the control Algorithms A1 to A8 can
yield zero collisions for all 5 CNNs using either 5 indicators
(5R in Table 2) or 2-regression and 1-classification indica-
tors (2R1C) after one loop on the test track, whereas the
original controller in [1] incurs 413 damage points.

Finally, we summarize in Table 6 the performance of four
CNNs used in our model framework of (1). The metrics for
the comparison between different CNNs consists of the total
number of weights and biases (Weights) that determines
the memory requirement of a CNN, the total number of
multiply-and-accumulate operations per image (MACs) that
determines the computational complexity of the CNN, the
dynamic mean absolute error of the indicator Angle (Error)
predicted by the CNN, and the total number of frames per
second (FPS) processed by the CNN in testing phase. Here,
MACs are obtained from the benchmark of MACs for the
original AlexNet and GoogLeNet in Table II in [39], i.e.,
0.85 = 0.724 × (71.55/61)G (giga) for AlexNet+5, for
example.

Table 5 Damage points in testing phase

CNN Damage

AlexNet+14 413

Alex/GoogLeNet+5, GoogLeNet5, Alex/GoogLeNet+MT 0
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Table 6 Performance of proposed CNNs in the metrics of Weights (the
total number of weights and biases in million (M)), MACs (multiply-
and-accumulate operations in giga (G) per image), Error (dMAE of
Angle), and FPS (frames per second)

Metrics AlexNet+5 GoogLeNet+5 AlexNet+MT GoogLeNet+MT

Weights 71.55M 6.11M 73.65M 6.36M

MACs 0.85G 1.25G 0.87G 1.3G

Error 0.043 0.045 0.041 0.032

FPS 20 15 20 18

The prediction accuracy (Error) and speed (FPS) of driv-
ing tasks by a CNN are vital factors for its deployment into
self-driving cars. Based on our intensive studies shown in
this section, we conclude that GoogLeNet+MT performs the
best among 8 CNNs in Table 2.

6 Conclusion

We have proposed an end-to-end deep learning model
for self-driving cars by integrating multi-task (MT) learn-
ing, convolutional neural networks (CNNs), and control
algorithms based on the direct perception approach to
autonomous driving. The CNN-MT model can be used to
evaluate the inference performance of different CNNs using
different sets of perception indicators for different learning
tasks (regression or classification) to avoid collisions and
make driving decisions in real-time highway traffic. The
control algorithms use the perception indicators inferred
by a CNN from images of the front-facing camera of a
car with its sensory information of surrounding cars. The
performance metrics consists of the parameter size and com-
putational complexity of the CNN, the dynamic errors of the
indicators predicted by the CNN, and the total number of
frames per second processed by the CNN.

We have modified two well-established CNNs, namely
AlexNet+ and GoogLeNet+, proposed a multi-task (regres-
sion (R) and classification (C)) learning formula and two
sets (5R and 2R1C) of few indicators (5 or 2 indica-
tors for perception and 1 indicator for driving decision),
and compared our CNNs, control algorithms, and indica-
tors with those in earlier work. We have comprehensively
studied AlexNet+14R, AlextNet+5R, AlextNet+2R1C,
GoogLeNet5R, GoogLeNet+5R, and GoogLeNet+2R1C
in terms of the accuracy in both training and testing
phases and the inference performance in testing phase.
GoogLeNet+2R1C performs the best among these CNNs on
the performance metrics. Here, 2R denotes two lateral indi-
cators Angle and toMiddle for the regression task and 1C
denotes one longitudinal indicator for the classification task

to make a probable decision for overtaking using implicitly
the other three longitudinal indicators (distances to preced-
ing cars in three lanes). The CNN does not explicitly learn
these three indicators in training phase but learns 1C with a
preset safe distance to the preceding cars.

Compared with earlier work, our model is novel
as it provides a general framework to systematically,
comprehensively, and quantitatively compare and select
an optimal CNN among different CNNs using different
indicators for different learning and driving tasks in
different types of traffics.
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