

Abstract— In this paper, we consider the Direct Perception
approach for autonomous driving. Previous efforts in this field
focused more on feature extraction of the road markings and
other vehicles in the scene rather than on the autonomous
driving algorithm and its performance under realistic
assumptions. Our main contribution in this paper is introducing
a new, more robust, and more realistic Direct Perception
framework and corresponding algorithm for autonomous
driving. First, we compare the top 3 Convolutional Neural
Networks (CNN) models in the feature extraction competitions
and test their performance for autonomous driving. The
experimental results showed that GoogLeNet performs the best
in this application. Subsequently, we propose a deep learning
based algorithm for autonomous driving, and we refer to our
algorithm as GoogLenet for Autonomous Driving (GLAD).
Unlike previous efforts, GLAD makes no unrealistic
assumptions about the autonomous vehicle or its surroundings,
and it uses only five affordance parameters to control the vehicle
as compared to the 14 parameters used by prior efforts. Our
simulation results show that the proposed GLAD algorithm
outperforms previous Direct Perception algorithms both on
empty roads and while driving with other surrounding vehicles.

I. INTRODUCTION

Early efforts in autonomous driving research [1][2] and
more recent studies [3]–[5] have targeted various facets of
perception, control and decision challenges associated with
this emerging area. In particular, the rapid development in
deep learning methods using Convolutional Neural Networks
(CNNs), which have demonstrated very promising capabilities
for accurately extracting features from visual data, opens the
door for tailoring these methods for self-driving vehicles.

There are three main general approaches that have been
proposed for autonomous driving based on the way the driving
environment information is processed. First, the Mediated
Perception approach in which the structure of the environment
is assumed to be unknown and different techniques are used to
detect the important features in the environment such as lanes,
cars, signs and pedestrians. These methods usually assume that
there is an Artificial Intelligent (AI) engine that takes this
information and make driving decisions [3]–[6].

Figure 1: Comparison between state-of-the-art CNNs performance in
ImageNet competitions.

The other approach is Behavior Reflex in which a neural
network model is trained to make driving decisions from
monitoring the driving behavior of a human driver in reaction
to different driving scenarios [1], [3], [7]. The third approach
is called Direct Perception, which was proposed in [3]. In this
approach, the CNN learns to extract some preselected features
from the scene that the authors believe are important to make
driving decisions; and subsequently this information is
processed by a simple controller to make the corresponding
driving decisions.

The Direct Perception approach assumes full knowledge of
the road architecture for training purposes, for which the
authors employ The Open Racing Car Simulator (TORCS) [8]
that has been used by many other efforts as a test driving
platform [9], [10]. They also customized it to simulate
highway driving conditions. Although the algorithm, which
they referred to as ConvNet, is shown to provide superior
results when compared to other approaches, the authors in [3]
made several assumptions that are unrealistic and inapplicable
for real driving scenarios. Firstly, all the affordance parameters
in their model, including distances to proceeding cars, are
forced to depend on one source of environment sensingwhich
is obtained from a frontal view camera that is obtained from
the first person driver view of the simulator. However, there
are several devices that can be used to provide the controller
with more accurate distance measures to other surrounding
cars in the environment (e.g. additional cameras, lidar, radar
and ultrasonic sensors) [4]. Several automotive companies are
already using these sensors for blind spots monitoring and
adaptive cruise control systems, and they are proved to be very
accurate. Secondly, because their algorithm does not sense

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

To
p
‐5
 T
es
t
Er
ro
r

Deep Learning Algorithm for Autonomous Driving using
GoogLeNet

Mohammed Al-Qizwini, Iman Barjasteh, Hothaifa Al-Qassab and Hayder Radha, Fellow, IEEE

M. Al-Qizwini, I. Barjasteh, H. Al-Qassab and H. Radha are with the
department of Electrical and Computer Engineering, Michigan State
University, East Lansing MI 48824 USA (e-mail: {alqizwin, barjaste,
alqassab, radha}@msu.edu).

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

other objects next to the autonomous car or behind it, ConvNet
assumes that the autonomous car is faster than any other car
on the road and by setting a 60 second timer after passing a
car, the lane should be clear for a lane change, which makes
the algorithm inapplicable for real life driving scenarios.
Furthermore, ConvNet is built based on AlexNet [11], which
is one of the shallowest CNNs, and it produced the highest test
prediction error (top-5) when compared to the other CNNs in
the ImageNet competition, as shown in Figure 1 which is
plotted using information from the ImageNet website [11].

Our main contribution in this paper is proposing a new,
more robust, and more realistic algorithm for Direct
Perception autonomous driving. First, we modified the
affordance parameters collected for training such that the
autonomous car is fully aware of all other vehicles around its
surrounding environment. Second, we modified the controller
process to provide more accurate decisions based on the new
provided information. Third, we built our model based on
GoogLeNet which provided the lowest error results when
compared to the other CNNs. We refer to the proposed
algorithm as GoogLenet for Autonomous Driving (GLAD).

The rest of the paper is organized as follows: In Section 2,
the modified affordance parameters and the controller process
are explained, Section 3 presents details about the
experimental set up including an experiment to choose the
CNN that most fits our application. In Section 4, we present
the design and architecture of GLAD. Section 5 presents the
experimental results in comparison to the previous method
with discussions. Finally, in Section 6 we conclude the paper
and provide some directions for future work.

II. AFFORDANCE PARAMETERS AND CONTROLLER PROCESS

Similar to ConvNet and other efforts in this area [4], we
focus on autonomous driving for highway road conditions.
We divide the highway environment into two main objects
types; the road markings, i.e. lanes and shoulders markings,
and other vehicles on the road. We assume that there is a
distance-measuring device (e.g., a radar) that provides
accurate distances to other cars within a 60-meter radius
around our vehicle.

It is worth highlighting that we made the necessary
modifications to the TORCS simulation environment to
provide us with such information. This information is
provided to the controller process directly to make the
appropriate driving decisions. The images obtained from the
first person driver view of the TORCS simulator are used to
collect the necessary parameters that are required to locate the
position and angle of the car on the road by identifying the
distances between the car and the road markings as shown in
Figure 2. The affordance parameters used in this paper are:
Angle: The angle between the heading of the car and the road.
toMarking_LL: The distance between the center of the car
and the left shoulder of the road.
toMarking_ML: The distance between the center of the car
and the left marking of the center lane.
toMarking_MR: The distance between the center of the car
and the right marking of the center lane.

Figure 2: Affordance parameters used for GLAD model training. a-
Angle of the car heading relative to the tangent of the road, b- Distances
between the center of the car and road markings.

Algorithm1: The controller process for GLAD.
Input: output from GLAD model (angle, distances to road
 markings and current lane) and distances to cars within
 60 meters radius.
Steps: If the proceeding car is less than 20 meters ahead then
 If car is not in left lane or on left edge of road and
 left lane clear then
 initiate left lane change procedure
 Else if left lane is occupied and car is not on right
 lane or right edge markings and right lane is clear
 then
 initiate a right lane change.
 Else follow the proceeding car
 If car is not on any road markings, then
 center_lane= center of current lane
 If car is on lane markings (lane change) then
 center_lane= center of target lane
 If car on right road edge, then re-center car in lane
 If car on left road edge, then re-center car in lane
Output: steering, brake and accelerate commands

toMarking_RR: The distance between the center of the car

and the right shoulder of the road.
For the road marking labels, the authors in [3] used two

different sets of variables; four main variables for in lane
mode and three other variables for on-road-marking mode.
They used all these variables to keep track of the distances to
lane markings, which are needed in [3] to maintain correct
driving decisions. Instead of these redundant variables we
used a combination of the four main variables to keep track of
the lane and the lane marking the car is currently driving on.
The new GLAD controller process is shown in Algorithm1.

One of the major flaws of the ConvNet algorithm is the
assumption that the autonomous car is faster than other cars
on the road and within 60 seconds the autonomous car will
pass any other car on the road. The assumption is made
because the whole model is built on the observed image only,
which made the autonomous car incapable of observing the
environment next to it and behind it.

As shown in Algorithm1, our controller process has two
sources of inputs, the output from the CNN model which is
the predicted angle between the car heading and the road and
the predicted distances between the car and all the lane
markings in addition to the current lane or marking the car is
driving on. Hence, if there is a car next or close to the
autonomous car on the lane we are trying to move to, the
control process will note that and it will not initiate the lane
change to prevent a collision, which makes the GLAD
algorithm more realistic and more robust for real life
implementation.

a- Angle b- Distances to road markings

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

III. EXPERIMENTAL SETUP AND SELECTING THE CNN

MODEL

One important aspect of using deep learning techniques is
selecting the neural network architecture that provides the
best accuracy that can run in real time. Before selecting the
CNN model for our algorithm, we first ran an experiment to
test which of the top three CNNs in Figure 1 performs the best
in extracting the road markings. These top three CNNs are
GoogLeNet [12], VGGNet [13] and Clarifai [14]. For
training, we used 10 out of the 18 tracks in [3], the rest are
used for testing the ability of the models to adapt to new
environments. We also employ the same 22 cars that were
used in [3] after updating the speed of three cars to be faster
than our autonomous vehicle. We collected a total of 510,112
images of size 280x210 from driving the label-collecting car
for six hours on different empty tracks and eight hours with
other cars. The collected data has five labels for the
affordance parameters we used, as explained in Section 2. We
trained each CNN for 300,000 iterations and selected the
model with minimum error. During the test phase, we present
25,000 random “unseen” images from the TORCS simulator
and have each model predict the affordance parameters. Since
we do nott have discrete labels, we cannot make top-5 guesses
similar to the ImageNet competition; instead we used the Root
Mean Squared Error (RMSE) to evaluate the performance of
the CNNs. This comparison is shown in Figure 3. In Figure 3,
one notice that GoogLeNet provided the most accurate
predictions for the angle and distances, which is promising for
achieving significant performance improvements in the
context of autonomous driving. In this paper we focus only on
highways with two and three lanes road models similar to
most of highway roads.

IV. GLAD DESIGN AND PERFORMANCE RESULTS

As mentioned earlier, the proposed framework is based on
the standard GoogLeNet CNN [12]. In particular, we
modified the model by adding a sigmoid and Euclidian loss
layers instead of each softmax layer in the original model
since we are interested in the marginal distribution of each
predicted parameter rather than the joint distribution of all the
variables. The architecture of the model is shown in Appendix
A. We used the Caffe framework to run our deep learning
algorithm. As shown in Appendix A, GoogLeNet has 22
convolutional layers, so generally we would expect it to
require more training than AlexNet, which has only 8 layers.

However, the experimental results showed that it converges
fast. We chose a maximum number of 500,000 iterations. In
each training iteration, we used 64 images per training batch.
We noticed that the model converges at around 290,000
iterations, so we used that model for testing. During the test
phase, we programmed the controller process to drive the
autonomous car based on the objects extracted from the
frontal view camera and the distances to cars provided by the
distance measuring devices.

Figure 3: Comparison between state-of-the-art CNNs performance for
car heading angle and road marking features extraction.

The frontal view image obtained from TORCS is passed to

the model to predict the affordance parameters. The output
parameters are passed to the control process in addition to the
distances to other cars within 60 meters radius. Subsequently,
the control process outputs the three main car control
parameters which are: acceleration command or percentage of
throttle to be pressed, brake which is also percentage of brake
to be pressed and steering which is represented by the angle
of tires to minimize the angle between the car and the road
(). We used the standard steering command from TORCS
[8]:

(1)

where is a constant that varies with different cars and
it is used to normalize the steering command to the range [-
1,1]. is the distance between the car and the center line of
the current lane, or the target lane in case the car changes
lanes. is the lane width.

To prevent the car from oversteering, we also added a
function to reduce the speed based on the turning angle of the
tires that only applies on high speeds, which is represented as:

1 | |

(2)

 is the throttle percentage when the steering angle is
zero.

V. RESULTS AND DISCUSSION

As we mentioned earlier, in this paper we focus on the
autonomous driving performance rather than feature
extraction as in [3]–[5]. For the sake of fair experimental
comparison, we ran all algorithms outlined in this section on
a desktop computer with GeForce GTX980 Ti. graphics card
running Ubuntu 14.04 LTS. Most research papers that target
autonomous driving judge the performance of their
algorithms based on how accurately the algorithm is capable
of predicting obstacles and lane markings only. In addition to
road features extractions and obstacles detection performance

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Clarifai VGGNet GoogLeNet

R
oo

t M
ea

n
S

qu
ar

ed
 E

rr
or

Convolutional Neural Network

Angle
toMarking_LL
toMarking_ML
toMarking_MR
toMarking_RR

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

comparisons which are very crucial to the safety of
autonomous driving, we also add another set of evaluation
parameters that are related to the autonomous driving
experience. The next subsections explain both parameters
evaluations and show the related experimental results.

A. Convolutional Neural Networks Performance
Evaluation

Since our algorithm uses 5 affordance parameters only
compared to the 14* parameters of ConvNet, we found it
interesting to study the performance difference between
ConvNet5, ConveNet14 and GLAD as training progresses. In
this experiment we trained ConvNet5 on the same data set we
collected.

For ConvNet14, we used the same model produced in [3].
We trained each model for 300,000 maximum iterations and
tested the models generated every 10,000 iterations on a
validation set of 30,000 images; half of the validation set was
provided to the algorithms during training and the other half
was not seen by the algorithms. We recorded the average
RMSE of all validation parameters as the prediction error of
the CNN. The comparison result is shown in Figure 4.

Since the weights of CNNs are initialized from a random
Gaussian distribution, we notice in Figure 4 that the
prediction error starts at higher levels and it keeps fluctuating
at the beginning of training. However, as the training
progresses these fluctuations are reduced and the prediction
error is reduced. From the same figure, we notice that using
the same CNN model, ConvNet5 produces less training
prediction error than ConvNet14. It also shows that GLAD
outperforms both ConvNet14 and ConvNet5. To show the
performance comparison between GLAD against ConvNet
with 14 and 5 parameters, we let the autonomous car drive in
four tracks (two 2-lane tracks and two 3-lane tracks) that are
not shown to the model during training. We calculated the
average error and recorded the results in Figure 5.

Since there is no reason to show the remaining nine
parameters of ConvNet14, we will omit them from this
comparison and display only the error of the affordance
parameters we will be using. The reason for the poor
performance of ConvNet relative to GLAD, is due to the small
number of convolutional layers in AlexNet model, which are
the core of the feature extraction capability of the CNN.

Hence, ConvNet5 is not able to extract the road features as
accurately as GLAD. Since ConvNet5 did not provide
sufficient accuracy improvement over ConvNet14, we will
continue the experiments with ConvNet14 only and we will
refer to it as ConvNet.

B. Autonomous Driving Performance Evaluation

For the experiments in this section, we first define some
measures for the autonomous driving performance.

*In [3] the authors mentioned that they used 13 affordance parameters.

However, their CNN architecture consists of another parameter called “fast”
to indicate whether the car is exceeding the desired speed or not.

Figure 4: Training error comparison between ConvNet14 and ConvNet5
parameters estimations and GLAD.

Figure 5: ConvNet14 vs ConvNet5 vs GLAD test phase performance
comparison.

In particular, we are interested in characterizing how much
the vehicle deviates from the ideal position of driving exactly
on the center of the lane that the vehicle is supposed to be
following. Thus, the first parameter that we quantify is the
sample mean of the deviation from the middle lane (); this
parameter indicates how close to any lane marking the car is
driving. Here, we use the parameter , which in the TORCS
simulator it could take both negative and positive values to
indicate whether the car is deviated towards the right
(positive) or towards the left (negative) of the middle of the
lane. Hence, we evaluate the sample mean of the absolute

value of :
∑| |

, where is the number of collected

samples calculated from the number of frames in one lap of
each track. This parameter represents the CNN’s ability to
keep the car centered in the current lane. Larger mean
indicates that the car is leaning towards either ends of the lane.

The second parameter is the variance of the distance from

the middle of the lane .
∑

. This measure gives

an indication on how stable the steering wheel is when driving
on a specific lane. In another words, it represents the CNN’s
ability to keep the car driving in a straight line rather than
wondering inside the lane. Here it is important to mention that
both and are measured from the distance between the car
and the middle of the lane and not the error in prediction of
that distance.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
oo

t M
ea

n
S

qu
ar

ed
 E

rr
or

Iterations (10K)

ConvNet14
ConvNet5
GLAD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ConvNet14 ConvNet5 GLAD

R
oo

t M
ea

n
S

qu
ar

ed
 E

rr
or

Convolutional Neural Network

Angle
toMarking_LL
toMarking_ML
toMarking_MR
toMarking_RR

Table 1 shows the mean and variance measures for the 2-
lane and 3-lane tracks that are shown in Appendix B. The first
six tracks are 2-lane roads and the rest are 3-lane roads. The
first three tracks of each set are seen during training and the
other three are new to the autonomous car.

From Table 1, we notice that in general GLAD is capable
of keeping the autonomous car centered in the lane and
without any steering wheel oscillations more accurately than
ConvNet. However, for Alpine 2, we noticed that both
algorithms showed performance degradation due to the fact
that the track simulates a snowy weather as shown in the
appendix, so the side roads are white and since both
algorithms were not subject to a similar environment during
training, the CNNs were not able to control the car as
accurately as the rest of the tracks. Also for Aalborg, both
algorithms did not perform as good as other tracks due to the
wall that surrounds the track, which caused both CNNs to
make false road markings predictions. On the other hand,
even though CG-Track 2 has different road markings
structure with larger gaps between consecutive lanes
markings, as shown in the appendix, and such lane markings
where never seen during training, GLAD was able to
successfully keep the car in the center of the lane as shown by
the variance while ConvNet struggled to even keep the car in
the center lane. Furthermore, note that although ConvNet has
a smaller sample mean for the Wheel 2 track, the variance for
ConvNet is significantly larger (close to an order of
magnitude) than the variance for GLAD.

Another parameter that we define to judge the autonomous
driving performance is the total time that the autonomous car
spends driving out of lane and/or crashing measured over two
laps of each track. The time of error () in seconds is
computed in relative to the number of frames until the car
goes back on the road () and the Frame Rate (FR), as
shown in (3). The comparison results of evaluating this
parameter are shown in Table 2.

 (3)

 Since GLAD algorithm runs at 10 Frame Per Second
(FPS), we simply divide the number of frames when an error
or accident happen by 10.

Figure 6, shows some of the prediction errors caused by
depending solely on the frontal view camera in ConvNet. It
also shows how using other technologically advanced
distance measuring sensors such as radar, lidar or ultrasonic
sensors can help improving the experience of autonomous
driving.

VI. CONCLUSIONS

In this paper we introduced a new Direct Perception deep
learning algorithm for autonomous driving. Unlike previous
efforts that focused on the feature extraction capabilities of a
given CNN, we first studied autonomous driving performance
for different deep learning architectures.

TABLE 1: CONVNET VS GLAD, THE MEAN AND VARIANCE OF THE

DISTANCES OF THE CAR FROM THE CENTER OF THE LANE ON DIFFERENT

TRACKS.

Track
ConvNet GLAD

Mean Variance Mean Variance
Alpine 1 0.21687 0.03519 0.16500 0.03705

E-Track 2 0.16836 0.06036 0.02028 0.01471
E-Track 3 0.14689 0.04391 0.01172 0.03831
Alpine 2 0.25425 0.23766 0.27180 0.24555
Aalborg 0.59234 0.84689 0.59292 0.67478
Dirt 3 0.23766 0.20532 0.04146 0.01078

E-Track 6 0.30655 0.27723 0.08570 0.09244
E-Road 0.33208 0.49586 0.10651 0.22325
Street 1 0.13214 0.08061 0.02834 0.07860
Wheel 2 0.02568 0.36832 0.07356 0.05267

E-Track 1 0.31971 0.57070 0.14789 0.51295
CG-Track 2 0.50426 0.99828 0.24885 0.10354

TABLE 2: CONVNET VS GLAD ERROR TIME COMPARISON APPROXIMATED

TO THE NEAREST TENTH OF THE SECOND.

Track
ConvNet GLAD

Error Time (Sec.) Error Time (Sec.)
Alpine 1 1.9 2.7

E-Track 2 17.1 5.4
E-Track 3 5.7 2.1
Alpine 2 18.5 7.0
Aalborg 80.7 24.4
Dirt 3 58.7 7.0

E-Track 6 10.4 8.3
E-Road 5.2 7.1
Street 1 6.8 3.7
Wheel 2 11.2 2.3

E-Track 1 75.2 10.1
CG-Track 2 16.7 16.4

Furthermore, our proposed framework is not constrained by

unrealistic assumptions about other vehicles surrounding the
autonomous car. For example, our algorithm works without
making assumptions about the speed of the car; instead our
algorithm uses a more realistic model by assuming the
availability of additional sensors that provides distances to the
cars around the autonomous vehicle. We compared the
performance of the top three CNNs in road feature extraction;
the results showed that GoogLeNet is the most accurate CNN
for that task. In addition to the feature extraction performance,
we also suggested using additional parameters to evaluate the
autonomous driving experience and performance. Finally, we
used the suggested parameters to compare our algorithm
against the previous Direct Perception algorithm and we
showed that the performance of our model is significantly
improved relative to the previous effort, which struggles to
navigate the whole track. The reason for this improvement is
due to removing the overlapped and redundant affordance
parameters that are used in [3] in addition to choosing a CNN
model that is capable of extracting road features more
accurately than the model they used.

For future directions, we are planning to include other
parameters to the driving equations, such as human driver
fault tolerance for accident avoidance. We are also looking

into adapting the TORCS environment to represent city
environment driving and also modifying our algorithm to

work with pedestrians, bikes, motorcycles and animals
detection.

 TORCS real car location.

 Predicted car location.

 TORCS real Autonomous car location and angle.

 Predicted Autonomous car location and angle.

ConvNet GLAD

Car distance and lane error.
Accurate distance is provided by distance measuring

sensors.

No sense of the environment next or behind the car. Complete sense of all surroundings.

Car goes to following mode after passing another car
waiting for the timer to reset

No timer, car goes back to lane after passing another car.

Figure 6: ConvNet vs GLAD predictions error and surroundings sensing.

REFERENCES
[1] D. a Pomerleau, “Alvinn: An autonomous land vehicle in a neural

network,” Adv. Neural Inf. Process. Syst. 1, pp. 305–313, 1989.
[2] S. Oh, E. Kim, and J. Lee, “Autonomous Intelligent Cruise

Control using Scanning Laser Sensor,” pp. 1–7.
[3] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving:

Learning Affordance for Direct Perception in Autonomous
Driving,” 2015 IEEE Int. Conf. Comput. Vis., pp. 2722–2730,
2015.

[4] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J.
Pazhayampallil, M. Andriluka, P. Rajpurkar, T. Migimatsu, R.
Cheng-Yue, F. Mujica, A. Coates, and A. Y. Ng, “An Empirical
Evaluation of Deep Learning on Highway Driving,” arXiv, pp. 1–
7, 2015.

[5] M. Aly, “Real Time Lane Detection in Urban Streets,” Intell. Veh.
Symp., pp. 1–3, 2008.

[6] A. Jazayeri, H. Cai, J. Y. Zheng, and M. Tuceryan, “Vehicle
Detection and Tracking in Car Video Based on Motion Model,”
Intell. Transp. Syst. IEEE Trans., vol. 12, no. 99, pp. 1–13, 2011.

[7] M. Felsberg, A. Robinson, and K. Ofj, “Visual Autonomous Road
Following by Symbiotic Online Learning,” no. Iv, 2016.

[8] B. Wymann, G. Antonio, and A. Corral, “T.O.R.C.S. Manual
installation and Robot tutorial.”

[9] Z. Xu, J. Jiang, and Y. Liu, “Experimental Research of Vehicle-
Platoon Coordination Control Based on TORCS Platform,” pp.
7404–7409, 2016.

[10] J. Huang, I. Tanev, and K. Shimohara, “Evolving a General
Electronic Stability Program for Car Simulated in TORCS,” pp.
446–453, 2015.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” Adv.
Neural Inf. Process. Syst., pp. 1–9, 2012.

[12] C. Szegedy, W. Liu, Y. Jia, and P. Sermanet, “Going deeper with
convolutions,” arXiv Prepr. arXiv 1409.4842, 2014.

[13] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” Int. Conf. Learn.
Represent., pp. 1–14, 2015.

[14] M. Zeiler and Ro. Fergus, ““Visualizing and Understanding
Convolutional Networks,” pp. 1–11, 2015.

APPENDIX A: GOOGLENET ARCHITECTURE FOR GLAD

MODEL.

Sigmoid

FC

Euclidean
Loss2

AveragePool

DepthConcat

ConvConv ConvConv

Conv MaxpoolConv

DepthConcat

ConvConv ConvConv

Conv MaxPoolConv

MaxPool

DepthConcat

ConvConv ConvConv

Conv MaxpoolConv

DepthConcat

ConvConv ConvConv

Conv MaxPoolConv

DepthConcat

ConvConv ConvConv

Conv MaxpoolConv

DepthConcat

ConvConv ConvConv

Conv MaxpoolConv

DepthConcat

ConvConv ConvConv

Conv MaxPoolConv

MaxPool

DepthConcat

ConvConv ConvConv

Conv MaxpoolConv

DepthConcat

ConvConv ConvConv

Conv MaxPoolConv

MaxPool

DepthConcat

Conv

Conv

LocalRespNorm

MaxPool

Conv

Input

Sigmoid

FC

Euclidean
Loss1

AveragePool

FC

Sigmoid

FC

Euclidean
Loss0

AveragePool

FC

APPENDIX B: TORCS TRACKS THAT ARE USED DURING THE TEST PHASE FOR THE CNNS’ PERFORMANCE COMPARISON.

(a) Alpine 1 (b) E-Track 2

(c) E-Track 3 (d) Alpine 2

(e) Aalborg (f) Dirt 3

(g) E-Track 6 (h) E-Road

(i) Street 1 (j) Wheel 2

(k) E-Track 1 (l) CG-Track 2

