
  

 

Abstract— In this paper, we consider the Direct Perception 
approach for autonomous driving. Previous efforts in this field 
focused more on feature extraction of the road markings and 
other vehicles in the scene rather than on the autonomous 
driving algorithm and its performance under realistic 
assumptions. Our main contribution in this paper is introducing 
a new, more robust, and more realistic Direct Perception 
framework and corresponding algorithm for autonomous 
driving. First, we compare the top 3 Convolutional Neural 
Networks (CNN) models in the feature extraction competitions 
and test their performance for autonomous driving. The 
experimental results showed that GoogLeNet performs the best 
in this application. Subsequently, we propose a deep learning 
based algorithm for autonomous driving, and we refer to our 
algorithm as GoogLenet for Autonomous Driving (GLAD). 
Unlike previous efforts, GLAD makes no unrealistic 
assumptions about the autonomous vehicle or its surroundings, 
and it uses only five affordance parameters to control the vehicle 
as compared to the 14 parameters used by prior efforts. Our 
simulation results show that the proposed GLAD algorithm 
outperforms previous Direct Perception algorithms both on 
empty roads and while driving with other surrounding vehicles. 

I. INTRODUCTION 

Early efforts in autonomous driving research [1][2] and 
more recent studies [3]–[5] have targeted various facets of 
perception, control and decision challenges associated with 
this emerging area. In particular, the rapid development in 
deep learning methods using Convolutional Neural Networks 
(CNNs), which have demonstrated very promising capabilities 
for accurately extracting features from visual data, opens the 
door for tailoring these methods for self-driving vehicles. 

There are three main general approaches that have been 
proposed for autonomous driving based on the way the driving 
environment information is processed. First, the Mediated 
Perception approach in which the structure of the environment 
is assumed to be unknown and different techniques are used to 
detect the important features in the environment such as lanes, 
cars, signs and pedestrians. These methods usually assume that 
there is an Artificial Intelligent (AI) engine that takes this 
information and make driving decisions [3]–[6]. 

 

 
 

Figure 1: Comparison between state-of-the-art CNNs performance in 
ImageNet competitions. 

The other approach is Behavior Reflex in which a neural 
network model is trained to make driving decisions from 
monitoring the driving behavior of a human driver in reaction 
to different driving scenarios [1], [3], [7]. The third approach 
is called  Direct Perception, which was proposed in [3]. In this 
approach, the CNN learns to extract some preselected features 
from the scene that the authors believe are important to make 
driving decisions; and subsequently this information is 
processed by a simple controller to make the corresponding 
driving decisions.  

The Direct Perception approach assumes full knowledge of 
the road architecture  for training purposes, for which the 
authors employ The Open Racing Car Simulator (TORCS) [8] 
that has been used by many other efforts as a test driving 
platform [9], [10]. They also customized it to simulate 
highway driving conditions. Although the algorithm, which 
they referred to as ConvNet, is shown to provide superior 
results when compared to other approaches, the authors in [3] 
made several assumptions that are unrealistic and inapplicable 
for real driving scenarios. Firstly, all the affordance parameters 
in their model, including distances to proceeding cars, are 
forced to depend on one source of environment sensingwhich 
is obtained from a frontal view camera that is obtained from 
the first person driver view of the simulator. However, there 
are several devices that can be used to provide the controller 
with more accurate distance measures to other surrounding 
cars in the environment (e.g. additional cameras, lidar, radar 
and ultrasonic sensors) [4]. Several automotive companies are 
already using these sensors for blind spots monitoring and 
adaptive cruise control systems, and they are proved to be very 
accurate.  Secondly, because their algorithm does not sense 
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other objects next to the autonomous car or behind it, ConvNet 
assumes that the autonomous car is faster than any other car 
on the road and by setting a 60 second timer after passing a 
car, the lane should be clear for a lane change, which makes 
the algorithm inapplicable for real life driving scenarios. 
Furthermore, ConvNet is built based on AlexNet [11], which 
is one of the shallowest CNNs, and it produced the highest test 
prediction error (top-5) when compared to the other CNNs in 
the ImageNet competition, as shown in Figure 1 which is 
plotted using information from the ImageNet website [11].  

Our main contribution in this paper is proposing a new, 
more robust, and more realistic algorithm for Direct 
Perception autonomous driving. First, we modified the 
affordance parameters collected for training such that the 
autonomous car is fully aware of all other vehicles around its 
surrounding environment. Second, we modified the controller 
process to provide more accurate decisions based on the new 
provided information. Third, we built our model based on 
GoogLeNet which provided the lowest error results when 
compared to the other CNNs. We refer to the proposed 
algorithm as GoogLenet for Autonomous Driving (GLAD). 

The rest of the paper is organized as follows: In Section 2, 
the modified affordance parameters and the controller process 
are explained, Section 3 presents details about the 
experimental set up including an experiment to choose the 
CNN that most fits our application. In Section 4, we present 
the design and architecture of GLAD. Section 5 presents the 
experimental results in comparison to the previous method 
with discussions. Finally, in Section 6 we conclude the paper 
and provide some directions for future work. 

II. AFFORDANCE PARAMETERS AND CONTROLLER PROCESS 

Similar to ConvNet and other efforts in this area [4], we 
focus on autonomous driving for highway road conditions. 
We divide the highway environment into two main objects 
types; the road markings, i.e. lanes and shoulders markings, 
and other vehicles on the road.  We assume that there is a 
distance-measuring device (e.g., a radar) that provides 
accurate distances to other cars within a 60-meter radius 
around our vehicle.  

It is worth highlighting that we made the necessary 
modifications to the TORCS simulation environment to 
provide us with such information. This information is 
provided to the controller process directly to make the 
appropriate driving decisions. The images obtained from the 
first person driver view of the TORCS simulator are used to 
collect the necessary parameters that are required to locate the 
position and angle of the car on the road by identifying the 
distances between the car and the road markings as shown in 
Figure 2. The affordance parameters used in this paper are: 
Angle: The angle between the heading of the car and the road. 
toMarking_LL: The distance between the center of the car 
and the left shoulder of the road. 
toMarking_ML: The distance between the center of the car 
and the left marking of the center lane. 
toMarking_MR: The distance between the center of the car 
and the right marking of the center lane. 
 

  
 
 
 
 
 
 

 

 
Figure 2: Affordance parameters used for GLAD model training. a- 
Angle of the car heading relative to the tangent of the road, b- Distances 
between the center of the car and road markings. 
 

Algorithm1: The controller process for GLAD. 
Input: output from GLAD model (angle, distances to road 
            markings and current lane) and distances to cars within 
            60 meters radius. 
Steps: If the proceeding car is less than 20 meters ahead then
               If car is not in left lane or on left edge of road and  
               left lane clear then  
               initiate left lane change procedure 
               Else if left lane is occupied and car is not on right 
               lane or right edge markings and right lane is clear  
               then 
               initiate a right lane change. 
               Else follow the proceeding car 
            If car is not on any road markings, then 
                center_lane= center of current lane 
            If car is on lane markings (lane change) then 
                center_lane= center of target lane 
            If car on right road edge, then re-center car in lane 
            If car on left road edge, then re-center car in lane 
Output: steering, brake and accelerate commands 

 
toMarking_RR: The distance between the center of the car 

and the right shoulder of the road. 
For the road marking labels, the authors in [3] used two 

different sets of variables; four main variables for in lane 
mode and three  other variables for on-road-marking mode. 
They used all these variables to keep track of the distances to 
lane markings, which are needed in [3] to maintain correct 
driving decisions. Instead of these redundant variables we 
used a combination of the four main variables to keep track of 
the lane and the lane marking the car is currently driving on. 
The new GLAD controller process is shown in Algorithm1. 

One of the major flaws of the ConvNet algorithm is the 
assumption that the autonomous car is faster than other cars 
on the road and within 60 seconds the autonomous car will 
pass any other car on the road. The assumption is made 
because the whole model is built on the observed image only, 
which made the autonomous car incapable of observing the 
environment next to it and behind it. 

As shown in Algorithm1, our controller process has two 
sources of inputs, the output from the CNN model which is 
the predicted angle between the car heading and the road and 
the predicted distances between the car and all the lane 
markings in addition to the current lane or marking the car is 
driving on. Hence, if there is a car next or close to the 
autonomous car on the lane we are trying to move to, the 
control process will note that and it will not initiate the lane 
change to prevent a collision, which makes the GLAD 
algorithm more realistic and more robust for real life 
implementation. 

a- Angle b- Distances to road markings 

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示



  

III. EXPERIMENTAL SETUP AND SELECTING THE CNN 

MODEL 

One important aspect of using deep learning techniques is 
selecting the neural network architecture that provides the 
best accuracy that can run in real time. Before selecting the 
CNN model for our algorithm, we first ran an experiment to 
test which of the top three CNNs in Figure 1 performs the best 
in extracting the road markings. These top three CNNs are 
GoogLeNet [12], VGGNet [13] and Clarifai [14].  For 
training, we used 10 out of the 18 tracks in [3], the rest are 
used for testing the ability of the models to adapt to new 
environments. We also employ the same 22 cars that were 
used in [3] after updating the speed of three cars to be faster 
than our autonomous vehicle. We collected a total of 510,112 
images of size 280x210 from driving the label-collecting car 
for six hours on different empty tracks and eight hours with 
other cars. The collected data has five labels for the 
affordance parameters we used, as explained in Section 2. We 
trained each CNN for 300,000 iterations and selected the 
model with minimum error. During the test phase, we present 
25,000 random “unseen” images from the TORCS simulator 
and have each model predict the affordance parameters. Since 
we do nott have discrete labels, we cannot make top-5 guesses 
similar to the ImageNet competition; instead we used the Root 
Mean Squared Error (RMSE) to evaluate the performance of 
the CNNs. This comparison is shown in Figure 3. In Figure 3, 
one notice that GoogLeNet provided the most accurate 
predictions for the angle and distances, which is promising for 
achieving significant performance improvements in the 
context of autonomous driving. In this paper we focus only on 
highways with two and three lanes road models similar to 
most of highway roads. 

IV. GLAD DESIGN AND PERFORMANCE RESULTS 

As mentioned earlier, the proposed framework is based on 
the standard GoogLeNet CNN [12]. In particular, we 
modified the model by adding a sigmoid and Euclidian loss 
layers instead of each softmax layer in the original model 
since we are interested in the marginal distribution of each 
predicted parameter rather than the joint distribution of all the 
variables. The architecture of the model is shown in Appendix 
A. We used the Caffe framework to run our deep learning 
algorithm. As shown in Appendix A, GoogLeNet has 22 
convolutional layers, so generally we would expect it to 
require more training than AlexNet, which has only 8 layers. 

However, the experimental results showed that it converges 
fast. We chose a maximum number of 500,000 iterations. In 
each training iteration, we used 64 images per training batch. 
We noticed that the model converges at around 290,000 
iterations, so we used that model for testing. During the test 
phase, we programmed the controller process to drive the 
autonomous car based on the objects extracted from the 
frontal view camera and the distances to cars provided by the 
distance measuring devices. 

 
 

 

Figure 3: Comparison between state-of-the-art CNNs performance for 
car heading angle and road marking features extraction. 

 
The frontal view image obtained from TORCS is passed to 

the model to predict the affordance parameters. The output 
parameters are passed to the control process in addition to the 
distances to other cars within 60 meters radius. Subsequently, 
the control process outputs the three main car control 
parameters which are: acceleration command or percentage of 
throttle to be pressed, brake which is also percentage of brake 
to be pressed and steering which is represented by the angle 
of tires to minimize the angle between the car and the road 
( ). We used the standard steering command from TORCS 
[8]: 

 
(1) 

where  is a constant that varies with different cars and 
it is used to normalize the steering command to the range [-
1,1].  is the distance between the car and the center line of 
the current lane, or the target lane in case the car changes 
lanes.  is the lane width. 

To prevent the car from oversteering, we also added a 
function to reduce the speed based on the turning angle of the 
tires that only applies on high speeds, which is represented as: 

1 | |  
 
(2) 

  is the throttle percentage when the steering angle is 
zero. 

V. RESULTS AND DISCUSSION 

As we mentioned earlier, in this paper we focus on the 
autonomous driving performance rather than feature 
extraction as in [3]–[5]. For the sake of fair experimental 
comparison, we ran all algorithms outlined in this section on 
a desktop computer with GeForce GTX980 Ti. graphics card 
running Ubuntu 14.04 LTS. Most research papers that target 
autonomous driving judge the performance of their 
algorithms based on how accurately the algorithm is capable 
of predicting obstacles and lane markings only. In addition to 
road features extractions and obstacles detection performance 
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comparisons which are very crucial to the safety of 
autonomous driving, we also add another set of evaluation 
parameters that are related to the autonomous driving 
experience. The next subsections explain both parameters 
evaluations and show the related experimental results.  

A. Convolutional Neural Networks Performance 
Evaluation 

Since our algorithm uses 5 affordance parameters only 
compared to the 14* parameters of ConvNet, we found it 
interesting to study the performance difference between 
ConvNet5, ConveNet14 and GLAD as training progresses. In 
this experiment we trained ConvNet5 on the same data set we 
collected.  

For ConvNet14, we used the same model produced in [3]. 
We trained each model for 300,000 maximum iterations and 
tested the models generated every 10,000 iterations on a 
validation set of 30,000 images; half of the validation set was 
provided to the algorithms during training and the other half 
was not seen by the algorithms. We recorded the average 
RMSE of all validation parameters as the prediction error of 
the CNN. The comparison result is shown in Figure 4. 

Since the weights of CNNs are initialized from a random 
Gaussian distribution, we notice in Figure 4 that the 
prediction error starts at higher levels and it keeps fluctuating  
at the beginning of training. However, as the training 
progresses these fluctuations are reduced and the prediction 
error is reduced. From the same figure, we notice that using 
the same CNN model, ConvNet5 produces less training 
prediction error than ConvNet14. It also shows that GLAD 
outperforms both ConvNet14 and ConvNet5. To show the 
performance comparison between GLAD against ConvNet 
with 14 and 5 parameters, we let the autonomous car drive in 
four tracks (two 2-lane tracks and two 3-lane tracks) that are 
not shown to the model during training. We calculated the 
average error and recorded the results in Figure 5.  

Since there is no reason to show the remaining nine 
parameters of ConvNet14, we will omit them from this 
comparison and display only the error of the affordance 
parameters we will be using. The reason for the poor 
performance of ConvNet relative to GLAD, is due to the small 
number of convolutional layers in AlexNet model, which are 
the core of the feature extraction capability of the CNN.  

Hence, ConvNet5 is not able to extract the road features as 
accurately as GLAD. Since ConvNet5 did not provide 
sufficient accuracy improvement over ConvNet14, we will 
continue the experiments with ConvNet14 only and we will 
refer to it as ConvNet. 

B. Autonomous Driving Performance Evaluation 

For the experiments in this section, we first define some 
measures for the autonomous driving performance.  

 
*In [3] the authors mentioned that they used 13 affordance parameters. 

However, their CNN architecture consists of another parameter called “fast” 
to indicate whether the car is exceeding the desired speed or not. 

Figure 4: Training error comparison between ConvNet14 and ConvNet5 
parameters estimations and GLAD. 

Figure 5: ConvNet14 vs ConvNet5 vs GLAD test phase performance 
comparison. 
 

In particular, we are interested in characterizing how much 
the vehicle deviates from the ideal position of driving exactly 
on the center of the lane that the vehicle is supposed to be 
following. Thus, the first parameter that we quantify is the 
sample mean of the deviation from the middle lane ( ); this 
parameter indicates how close to any lane marking the car is 
driving. Here, we use the parameter , which in the TORCS 
simulator it could take both negative and positive values to 
indicate whether the car is deviated towards the right 
(positive) or towards the left (negative) of the middle of the 
lane. Hence, we evaluate the sample mean of the absolute 

value of   : 
∑| |

, where  is the number of collected 

samples calculated from the number of frames in one lap of 
each track. This parameter represents the CNN’s ability to 
keep the car centered in the current lane. Larger mean 
indicates that the car is leaning towards either ends of the lane. 

The second parameter is the variance of the distance from 

the middle of the lane . 
∑

. This measure gives 

an indication on how stable the steering wheel is when driving 
on a specific lane. In another words, it represents the CNN’s 
ability to keep the car driving in a straight line rather than 
wondering inside the lane. Here it is important to mention that 
both  and  are measured from the distance between the car 
and the middle of the lane and not the error in prediction of 
that distance. 
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Table 1 shows the mean and variance measures for the 2-
lane and 3-lane tracks that are shown in Appendix B. The first 
six tracks are 2-lane roads and the rest are 3-lane roads. The 
first three tracks of each set are seen during training and the 
other three are new to the autonomous car. 

From Table 1, we notice that in general GLAD is capable 
of keeping the autonomous car centered in the lane and 
without any steering wheel oscillations more accurately than 
ConvNet. However, for Alpine 2, we noticed that both 
algorithms showed performance degradation due to the fact 
that the track simulates a snowy weather as shown in the 
appendix, so the side roads are white and since both 
algorithms were not subject to a similar environment during 
training, the CNNs were not able to control the car as 
accurately as the rest of the tracks. Also for Aalborg, both 
algorithms did not perform as good as other tracks due to the 
wall that surrounds the track, which caused both CNNs to 
make false road markings predictions. On the other hand, 
even though CG-Track 2 has different road markings 
structure with larger gaps between consecutive lanes 
markings, as shown in the appendix, and such lane markings 
where never seen during training, GLAD was able to 
successfully keep the car in the center of the lane as shown by 
the variance while ConvNet struggled to even keep the car in 
the center lane. Furthermore, note that although ConvNet has 
a smaller sample mean for the Wheel 2 track, the variance for 
ConvNet is significantly larger (close to an order of 
magnitude) than the variance for GLAD. 

Another parameter that we define to judge the autonomous 
driving performance is the total time that the autonomous car 
spends driving out of lane and/or crashing measured over two 
laps of each track. The time of error ( ) in seconds is 
computed in relative to the number of frames until the car 
goes back on the road ( ) and the Frame Rate (FR), as 
shown in (3). The comparison results of evaluating this 
parameter are shown in Table 2. 

 (3) 

 Since GLAD algorithm runs at 10 Frame Per Second 
(FPS), we simply divide the number of frames when an error 
or accident happen by 10. 

Figure 6, shows some of the prediction errors caused by 
depending solely on the frontal view camera in ConvNet. It 
also shows how using other technologically advanced 
distance measuring sensors such as radar, lidar or ultrasonic 
sensors can help improving the experience of autonomous 
driving. 

VI. CONCLUSIONS 

In this paper we introduced a new Direct Perception deep 
learning algorithm for autonomous driving. Unlike previous 
efforts that focused on the feature extraction capabilities of a 
given CNN, we first studied autonomous driving performance 
for different deep learning architectures.   

 

TABLE 1: CONVNET VS GLAD, THE MEAN AND VARIANCE OF THE 

DISTANCES OF THE CAR FROM THE CENTER OF THE LANE ON DIFFERENT 

TRACKS. 

Track 
ConvNet GLAD 

Mean Variance Mean Variance 
Alpine 1 0.21687 0.03519 0.16500 0.03705 

E-Track 2 0.16836 0.06036 0.02028 0.01471 
E-Track 3 0.14689 0.04391 0.01172 0.03831 
Alpine 2 0.25425 0.23766 0.27180 0.24555 
Aalborg 0.59234 0.84689 0.59292 0.67478 
Dirt 3 0.23766 0.20532 0.04146 0.01078 

E-Track 6 0.30655 0.27723 0.08570 0.09244 
E-Road 0.33208 0.49586 0.10651 0.22325 
Street 1 0.13214 0.08061 0.02834 0.07860 
Wheel 2 0.02568 0.36832 0.07356 0.05267 

E-Track 1 0.31971 0.57070 0.14789 0.51295 
CG-Track 2 0.50426 0.99828 0.24885 0.10354 

 
TABLE 2: CONVNET VS GLAD ERROR TIME COMPARISON APPROXIMATED 

TO THE NEAREST TENTH OF THE SECOND. 

Track 
ConvNet GLAD 

Error Time (Sec.) Error Time (Sec.) 
Alpine 1 1.9 2.7 

E-Track 2 17.1 5.4 
E-Track 3 5.7 2.1 
Alpine 2 18.5 7.0 
Aalborg 80.7 24.4 
Dirt 3 58.7 7.0 

E-Track 6 10.4 8.3 
E-Road 5.2 7.1 
Street 1 6.8 3.7 
Wheel 2 11.2 2.3 

E-Track 1 75.2 10.1 
CG-Track 2 16.7 16.4 

 
Furthermore, our proposed framework is not constrained by 

unrealistic assumptions about other vehicles surrounding the 
autonomous car. For example, our algorithm works without 
making assumptions about the speed of the car; instead our 
algorithm uses a more realistic model by assuming the 
availability of additional sensors that provides distances to the 
cars around the autonomous vehicle. We compared the 
performance of the top three CNNs in road feature extraction; 
the results showed that GoogLeNet is the most accurate CNN 
for that task. In addition to the feature extraction performance, 
we also suggested using additional parameters to evaluate the 
autonomous driving experience and performance.  Finally, we 
used the suggested parameters to compare our algorithm 
against the previous Direct Perception algorithm and we 
showed that the performance of our model is significantly 
improved relative to the previous effort, which struggles to 
navigate the whole track. The reason for this improvement is 
due to removing the overlapped and redundant affordance 
parameters that are used in [3] in addition to choosing a CNN 
model that is capable of extracting road features more 
accurately than the model they used. 

For future directions, we are planning to include other 
parameters to the driving equations, such as human driver 
fault tolerance for accident avoidance. We are also looking 



  

into adapting the TORCS environment to represent city 
environment driving and also modifying our algorithm to 

work with pedestrians, bikes, motorcycles and animals 
detection. 

 

 TORCS real car location. 

 Predicted car location. 

 TORCS real Autonomous car location and angle. 

 Predicted Autonomous car location and angle. 

ConvNet GLAD 

Car distance and lane error. 
Accurate distance is provided by distance measuring 

sensors. 

No sense of the environment next or behind the car. Complete sense of all surroundings. 

Car goes to following mode after passing another car 
waiting for the timer to reset 

No timer, car goes back to lane after passing another car. 

Figure 6:  ConvNet vs GLAD predictions error and surroundings sensing. 
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APPENDIX A: GOOGLENET ARCHITECTURE FOR GLAD 

MODEL. 
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APPENDIX B: TORCS TRACKS THAT ARE USED DURING THE TEST PHASE FOR THE CNNS’ PERFORMANCE COMPARISON. 

 
(a) Alpine 1            (b) E-Track 2   

 
(c) E-Track 3 (d) Alpine 2 

 
(e) Aalborg (f) Dirt 3 

 
(g) E-Track 6 (h) E-Road 

 
(i) Street 1 (j) Wheel 2 

 
(k) E-Track 1 (l) CG-Track 2 

 


