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In mathematical modeling, statistical modeling and experimental
sciences, the values of dependent variables depend on the values

of independent variables. The dependent variables represent the
output or outcome whose variation is being studied. The independent
variables, also known in a statistical context as regressors, represent
inputs or causes, that is, potential reasons for variation. Depending on
the context, an independent variable is sometimes called a "predictor
variable", regressor, covariate, "controlled variable", "manipulated
variable", "explanatory variable", exposure variable (see reliability
theory), "risk factor" (see medical statistics), "feature" (in machine
learning and pattern recognition) or "input variable."

---- Wikipedia



https://en.wikipedia.org/wiki/Mathematical_modeling
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Experimental_science
https://en.wikipedia.org/wiki/Experimental_science

Feature Scaling
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Feature Scaling

For each
dimension i:

mean: m;

: : : | standard
| deviation: g;

— MmM; The means of all dimensions are 0,
and the variances are all 1

In general, gradient descent converges much faster
with feature scaling than without it.
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How about Hidden Layer?

Feature Scaling Feature Scaling ? Feature Scaling ?
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Difficulty: their statistics
’ change during the training ...
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m) Batch normalization

Smaller learning rate can be
helpful, but the training would
be slower.
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Internal Covariate Shift
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Batch normalization

Note: Batch normalization
cannot be applied on
small batch.

U and o
depends on z!
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How to do
backpropogation?

iand o
depends on z!
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» At testing stage: Updates
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We do not have batch at testing stage.

W, o are Yy, [ are network
from batch parameters

Ideal solution:
Computing 1 and o using the whole training dataset.

Practical solution:

Computing the moving average of i and o of the
batches during training.



Batch normalization - Benefit

* BN reduces training times, and make very deep net
trainable.

* Because of less Covariate Shift, we can use larger
learning rates.

* Less exploding/vanishing gradients
» Especially effective for sigmoid, tanh, etc.

* Learning is less affected by initialization.
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* BN reduces the demand for regularization.
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Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
lraining steps.



Dataset Shift in Classification:
Approaches and Problems

Francisco Herrera
University of Granada, Spain

Definition 1. Dataset shift appears when training and test joint
distributions are different. That 1s, when P, (y, x) # P (y, X)

Definition 2. Covariate shift appears only in X—Y problems,
and 1s defmed as the case where P, (y|x) = P, (y|x) and P, (x)

# P (X).



Characterizing the change. Types of Dataset Shift

Covariate Shift

— Target Function [flx)
—— Learned Function f(x)

Training and test input follow
different distributions, but functional

relation remains unchanged. ® Training Sample (x;. ;]
M Test Sample (t..u;)

Input Density

a 1 2 3

Goal: Estimate test output from {(@=.. 0 )1, l

2 Masashi Sugivama.,
http://sugivama-www_cs_titech_ac_jp/--sugi/figs/covanate-shaft png




