
PROJECT REPORT #5
SMART CAR WITH

WORLD MODELS
DAVID HA AND JURGEN SCHMIDHUBER

(GOOGLE BRAIN)
CODE TUTORIAL WITH DAVID FOSTER

劉美忻 (105061807)

June 3, 2018

GOALS

 Algorithms:
 (VAE) Variational Autoencoder

 (MDN-RNN) Mixture Density Network Recurrent Neural Network

 (CMA-ES) Covariance Matrix Adaptation Evolution Strategy.

 Big Data:
 Open AI Gym car-racing environment. Generate 600,000 images of 64x64

RGB track views, with car action, and what the next frame is.

 Examples of the VAE compressed and reconstructed images used for
training

 Code:
 Keras framework with Tensorflow, open source code accompanying the

paper

 Installation details and problems encountered with Linux commands and
running code on remote server (GoogleCloud). Hardware limitations for
‘free trial’ and time considerations.

 Results from two training attempts

 Ideas for further exploration

WORLD MODELS

 Interactive paper https://worldmodels.github.io/

 printable PDF of the paper https://arxiv.org/abs/1803.10122

 code repository
https://github.com/AppliedDataSciencePartners/WorldModels

 Code Tutorial by David Foster on Medium Daily Digest:
Hallucinogenic Deep Reinforcement Learning Using Python and
Keras

https://medium.com/applied-data-science/how-to-build-your-own-
world-model-using-python-and-keras-64fb388ba459

https://worldmodels.github.io/
https://arxiv.org/abs/1803.10122
https://github.com/AppliedDataSciencePartners/WorldModels
https://medium.com/applied-data-science/how-to-build-your-own-world-model-using-python-and-keras-64fb388ba459

 Goal: Drive the car around the track accurately and fast.

 Reward: gain points for gray tiles visited, lose points for
timesteps. >900 out of 1000 is considered passing.

 Based on pixel input, decide on the action: steer, accelerate,
brake.

WORLD MODELS PAPER

WORLD MODELS PAPER

 Complexity is in the
World Model (V and
M) ~ expressiveness

 Backpropagation
and gradient
descent

 The controller (C) is
has fewer
parameters so we
can explore with less
traditional Evolution
Strategy to replace
the more traditional
Reinforcement
Learning methods.

VAE (VARIATIONAL AUTOENCODER)

 64x64 RGB pixel image 32-dimensional ‘z’

 Compressed, faster

 Feature engineering

 Speech MFCC?

 Face features?

VAE

 Auto-encoder

 Variational

 the bottleneck represents a distribution from which the
compressed vector is sampled.

VAE

 The sampling is from a single diagonal Gaussian distribution.

 Enforcing a Gaussian prior makes the world model more
robust to unrealistic z vectors

 actually z here

VAE

 The goal is to maximize the likelihood L given by:

 First term: expected log likelihood that the decoder outputs the x of the
original using the trained theta and the bottleneck sampled z, but z itself
is stochastic with probability from the gaussian q~ N(mu, sigma) which
depends on how phi processes the input x.

 The second term is the Kullback-Liebler divergence between 2
distributions. A low number means that we keep the distribution q from
which z is sampled to be close to N(0,1)

VAE

 This project’s code replaces maximizing likelihood with
minimizing loss function

 loss = vae_r_loss + vae_kl_loss

 vae_r_loss = mean square error (L2 distance between
input image and reconstructed image)

 vae_kl_loss = log of the KL divergence

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Multivariate_normal_distributions

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

VAE

 Backpropagation calculate the gradient for descent, with
RmsProp algorithm (fancy gradient descent with
normalization by root mean square of a moving average of
gradients)

 How is the loss function differentiable if there is sampling of
the z-vector?

 Reparameterization trick

VAE: REPARAMETERIZATION TRICK

 The mean and sigma are learned
parameters to train, but the
stochastic part is put in the
epsilon, which is a fixed stochastic
node that does not need
backpropagation to run through.

 Thus, instead of a fully stochastic
node in the way that blocks the
back propagation, the
reparameterized form allows the
gradients to get back to the
parameters we are interested in
training.

VAE
 64x64 RGB

pixels

compressed

into 32 dims

z that follows a
Gaussian
distribution

VAE

 Further Reading
 https://www.youtube.com/watch?v=9zKuYvjFFS8 (15 minute

introduction to Variational Autoencoders)

 Kingma and Welling’s May 2014 paper Auto-Encoding Variational
Bayes https://arxiv.org/abs/1312.6114

 KL divergence of gaussians

http://www.allisons.org/ll/MML/KL/Normal/

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
#Multivariate_normal_distributions

 Deconvolution

https://datascience.stackexchange.com/questions/6107/what-are-
deconvolutional-layers

https://www.youtube.com/watch?v=9zKuYvjFFS8
https://arxiv.org/abs/1312.6114
http://www.allisons.org/ll/MML/KL/Normal/
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://datascience.stackexchange.com/questions/6107/what-are-deconvolutional-layers

MDN-RNN
 RNN (Recursive Neural Network)

 Sequence

 Without the prediction of what to expect in next frame after an
action, we have erratic wobbly driving

 256 hidden neurons

 carracing_z_only.mp4

 No memory (input z only, no h) vs. with memory (z and h) input to
controller

MDN-RNN

 MDN (Mixture-Density Network)

 Not just predicting the next frame, we allow the next frame’s
‘image’ to be from one of 5 gaussian distributions.

 Dotting the i in handwriting generation.

 Doom game, switching mode to fireball start-up.

MDN-RNN

MDN-RNN

MDN-RNN

 More information

 http://blog.otoro.net/2015/12/28/recurrent-net-dreams-up-fake-
chinese-characters-in-vector-format-with-tensorflow/

 http://blog.otoro.net/2015/12/12/handwriting-generation-demo-
in-tensorflow/

 http://blog.otoro.net/2015/11/24/mixture-density-networks-with-
tensorflow/ *

 * Alex Graves 2013 paper on Generating Sequences with Recurrent
Neural Networks https://arxiv.org/abs/1308.0850

 * Bishop’s 1994 paper

http://blog.otoro.net/2015/12/28/recurrent-net-dreams-up-fake-chinese-characters-in-vector-format-with-tensorflow/
http://blog.otoro.net/2015/12/12/handwriting-generation-demo-in-tensorflow/
http://blog.otoro.net/2015/11/24/mixture-density-networks-with-tensorflow/
https://arxiv.org/abs/1308.0850

CONTROLLER

 Vanilla neural network

 Input: 32 (z) + 256 (h)

 Output: values for the 3 actions (steer -1~1, accelerate 0~1,
brake 0~1)

 (32+256) *3 = 867 parameters in C-Model

CONTROLLER: CMA-ES
COVARIANCE MATRIX ADAPTATION - EVOLUTION STRATEGY

 Credit Assignment problem: The final reward is at the end of
many time-steps.

 What part of the sequence of actions resulted in the final reward?
It is very unclear.

 Traditional RL assigns a reward (decaying backward in time) for
every time’s action. Then it backpropagates the gradient through
all the actions.

 The Evolution Strategy does away with the gradient. It uses ‘natural
selection’ to find the controller (car/agent) parameters so that the
best car emerges that gives a high final reward.

 ES is only useful for < 1000 parameters. Here, the C-model is 867
parameters. Computation expensive.

CONTROLLER: CMA-ES
COVARIANCE MATRIX ADAPTATION - EVOLUTION STRATEGY

 2D parameter space (here, it is 867
parameters = 1 car)

 Each dot is a car. There are 64 cars
(population size) in each generation.

 Each car is run through 16 races. Its total
reward is evaluated.

 For the best 25% of cars (purple dots), we
calculate their average 867-dim vector (red
dot).

 However, the diagonal covariance matrix is
how much the best cars are spread away
from the average of the total population. A
wider net is cast when the best solutions
are far way (red best average is far from
green total average), and a smaller net is
cast when the close.

 The next generation of 64 cars is sampled
from N(mu, sigma)

CONTROLLER: CMA-ES
COVARIANCE MATRIX ADAPTATION - EVOLUTION STRATEGY

CMA-ES

CMA-ES

 Further Reading

 http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

 http://blog.otoro.net/2017/11/12/evolving-stable-strategies/

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/
http://blog.otoro.net/2017/11/12/evolving-stable-strategies/

ATTEMPT TO IMPLEMENT THE PROJECT

 Big Data

 Code

 Use Google Cloud

 Main focus:

 Learning about the algorithms

 Gathering idea of the logic flow in the 30 pages of code

 Implementing the project on remote server

 How to download the files?

 How to use Linux Ubuntu commands

 Hardware and time limitations, especially for CMA-ES (how to tune
hyperparameters?)

 Results are preliminary but show some promise

1) SET UP THE ENVIRONMENT

 http://cs231n.github.io/gce-tutorial/

 Google Cloud homepage

 Remember to turn off the instance

 David Ha’s specs:
 Ubuntu 16.04, 64 vCPU, ? GB RAM

 David Foster’s specs:
 Ubuntu 16.04, 16 vCPU, 67.5 GB RAM

 My specs:
 Ubuntu 16.04, 8 vCPU, 40 GB disk

 make sure to use Ubuntu (not Debian Linux)

http://cs231n.github.io/gce-tutorial/
https://cloud.google.com/?utm_source=google&utm_medium=cpc&utm_campaign=2015-q2-cloud-na-gcp-skws-freetrial-en&gclid=CP2e4PPpiNMCFU9bfgodGHsA1A

1) SET UP THE ENVIRONMENT

1) SET UP THE ENVIRONMENT

 Limitations of ‘free trial’

 1 year, US$300 credits

 My instance ~US$195/month if turned on all day

 Need credit card to sign up but not charged until upgrade

 maximum 8 vCPUs

 no GPU (David Ha’s paper says a GPU makes the 2D images
process faster)

 no TPU

 no SSD persistent disk

 no Cloud Storage (like transferring instance files into Google Drive)

 only HDD

2) HOW TO SHELL INTO REMOTE SERVER

 Install Google Cloud SDK Google Cloud SDK
https://cloud.google.com/sdk/docs/

https://cloud.google.com/sdk/docs/

2) HOW TO SHELL INTO REMOTE SERVER

Paste it in the SDK terminal

Another (PuTTy) window will appear

2) HOW TO SHELL INTO REMOTE SERVER

 Permissions problems? sudo -i

 Other useful commands

 cd /home this will change directory to the home working
directory

 ls -l --block-size=M lists the files and folders of current
directory, and details of megabytes

 ../ go up one directory

 mkdir hw I created a hw folder in my home directory

3. CLONE THE WORLDMODELS GITHUB CODE

 First cd into the directory where you want to install the
WorldModels code. Then:

 git clone

https://github.com/AppliedDataSciencePart

ners/WorldModels.git

4. CREATE A PYTHON VIRTUAL ENVIRONMENT

 To reactivate,

export WORKON_HOME=~/.virtualenvs

source /usr/local/bin/virtualenvwrapper.sh

workon worldmodels

7. GENERATE THE 600,000 FRAMES OF DATA

7. GENERATE THE 600,000 FRAMES OF DATA

 Not attached because:

 > 20 GB

 Had trouble with methods for downloading files

8. TRAIN THE VAE

 TIMING

It took around 7 minutes per batch * 10 batches = 70 minutes to
run train the VAE.

 python 02_train_vae.py --start_batch 0 --

max_batch 9 --new_model

Building batch 0...

Found car_racing...current data size = 200 episodes

Train on 48000 samples, validate on 12000 samples

Epoch 1/1

 48000/48000 [==============================] -

455s 9ms/step - loss: 0.1604 - vae_r_loss: 0.1413

- vae_kl_loss: 0.0191 - val_loss: 0.1241 -

val_vae_r_loss: 0.0994 - val_vae_kl_loss: 0.0246

8. TRAIN THE VAE

batch loss vae_r_loss vae_kl_loss val_loss
val_vae_r_l
oss

val_vae_kl
_loss

0 0.1604 0.1413 0.0191 0.1241 0.0994 0.0246

1 0.1186 0.0975 0.0211 0.1469 0.0949 0.052

2 0.116 0.0931 0.0229 0.0983 0.0834 0.0149

3 0.1113 0.091 0.0203 0.1121 0.088 0.0241

4 0.1234 0.0957 277 0.1103 0.093 0.0173

5 0.1205 0.0946 0.026 0.1287 0.1012 0.0275

6 0.1188 0.0926 0.0263 0.1204 0.1034 0.017

7 0.1168 0.0915 0.0253 0.1141 0.0939 0.0202

8 0.1168 0.0914 0.0254 0.1212 0.0947 0.0265

9
62039490.

9 0.0881
62039490.

81 0.0995 0.0821 0.0174

 Within a batch, the loss decreases as the samples iterate toward 48000.

 total loss = vae_r_loss (reconstruction) + vae_kl_loss

 As it trains over sets of 60000 images, the loss tends to decrease.

 Strangely, batch 9 had an anomaly. NaN?

9. FORMAT DATA FOR RNN TRAINING

 TIMING

This step took 17 minutes.

 Each of 599,999 frames’ [z, a] (input) and next z (correct output)

python 03_generate_rnn_data.py --start_batch 0 --max_batch 9

10. TRAIN THE MDN-RNN

 python 04_train_rnn.py --start_batch 0 --

max_batch 9 --new_model

 Input [z,a]

 Predict output for next z

 Minimize loss (negative log likelihood of predicting the true next z
using the distribution created from the current [z, a, h]) using
RmsProp gradient descent

 Train on 1600 races, validate on 400 races. Training batches of 32
for the gradient descent.

 In the Command-line Output, we see that the training stops in 15
epochs. The loss is based on the rnn_r_loss (reconstruction loss),
but the KL loss is also shown. The loss continually decreases over
epochs, and as expected, the validation loss is slightly worse than
training. The training stops early at 15 epochs.

10. TRAIN THE MDN-RNN

 TIMING

This step took about 12 minutes for epochs 1 through 15.

(worldmodels) root@eliu-vm:/home/hw/WorldModels#

python 04_train_rnn.py --start_batch 0 --max_batch

9 --new_model

10. TRAIN THE MDN-RNN

 The loss decreases over the epochs and early stopping at 15
epochs when the delta for loss is only 0.0001

Epoch loss rnn_r_loss rnn_kl_loss val_loss
val_rnn_r_los
s

val_rnn_kl_lo
ss

1 1.4033 same as left 0.0205 1.3997 same as left 0.0189

2 1.3986 0.0206 1.3979 0.0189

3 1.3972 0.0211 1.397 0.0209

4 1.3967 0.0215 1.396 0.0218

5 1.3962 0.0221 1.3961 0.0214

6 1.3958 0.0224 1.396 0.0226

7 1.3957 0.0227 1.3962 0.0215

8 1.3953 0.0234 1.3972 0.0221

9 1.395 0.024 1.3959 0.0243

10 1.395 0.0248 1.3956 0.025

11 1.3947 0.0257 1.3968 0.0242

12 1.3946 0.0266 1.3961 0.0254

13 1.3943 0.0276 1.3963 0.0278

14 1.3942 0.0287 1.3957 0.0284

15 1.3941 0.0298 1.3972 0.0291

11. TRAIN THE CONTROLLER

xvfb-run -s "-screen 0 1400x900x24" python
05_train_controller.py car_racing --num_worker 64? --
num_worker_trial 1? --num_episode 16 --max_length
1000 --eval_steps 25 # David Ha’s settings

xvfb-run -s "-screen 0 1400x900x24" python
05_train_controller.py car_racing --num_worker 16 --
num_worker_trial 2 --num_episode 4 --max_length 1000
--eval_steps 25 # David Foster’s settings

xvfb-run -s "-screen 0 1400x900x24" python
05_train_controller.py car_racing --num_worker 8 --
num_worker_trial 4 --num_episode 4 --max_length 1000
--eval_steps 25 # my settings, first try

xvfb-run -s "-screen 0 1400x900x24" python
05_train_controller.py car_racing --num_worker 8 --
num_worker_trial 2 --num_episode 2 --max_length 1000
--eval_steps 25 # my settings, second try

11. TRAIN THE CONTROLLER

 Note: go into the code to change it to only 200 generations
instead of 2000 generations. Use vim, i to go into insert
mode, escape to get out of insert mode, :wq to save and
quit the editor.

 It took an extraordinary amount of time to run with limited
hardware. I found that any time we need to use xvfb-run (that
is, using graphics), that part of the code runs very slowly. This
may be because the Google Cloud Platform free trial does not
have GPU.

 First try: >10 minutes/generation. 6 hours for 31 generations.

 2nd try: > 2 minutes/generation. Over 10 hours for 208 generations.

 The parameters (how many races per car? How many cars to
populate one generation? How many generations?) require
hand-tuning, as I found out from my first and second tries.

11. TRAIN THE CONTROLLER (CMA-ES)
 Try 1: 8 cores, 4 cars per core = 32 cars per generation. Each car is

tested for 4 races.
 (generation, seconds elapsed, avg_reward of 32 cars increases in yellow box, worst performance, best

performance,)

standard deviation
of population

standard deviation
used for CMA-ES
aka casting the net
wide or narrow

none of the cars
finished the races
before the allotted
time

11. TRAIN THE CONTROLLER

 Try 2: 8 cores, 2 cars per core (population = 16 cars per generation),
each car runs 2 races.

 I stopped the training after 208 generations

 Every 25 steps, there is an evaluation (see next page)

 It checks if the best car in the current generation is better or worse
(how much improvement) than the best car in history. If the current
generation’s best car is better, then it is set as the new best car in
history.

CMA-ES TRY #2
"improvement", t, improvement, "curr", reward_eval, "prev", prev_best_reward_eval, "best", best_reward_eval)

12. TEST THE BEST CAR
xvfb-run -s "-screen 0 1400x900x24" python model.py

car_racing --filename

./controller/car_racing.cma.4.32.best.json --

render_mode --record_video

Use car_racing.cma.2.16.best.json for try #2

TRY #1
•The demo shows that the car can
turn left, but needs to deal with sharp
corners better.
•It went off the track, but managed to
find its way back.

TRY #2 was almost random
This indicates lack of diversity in the
evolution (need bigger population size
and more test races per car)

FUTURE EXTENSIONS

 Dreamed-up Environment used to train the car

 Temperature of the RNN and effect on policy

 Evolutionary strategy

FUTURE EXTENSIONS

 Apply AI steering to autonomous Lego EV3

 First step: Run through an open-source example to figure out
how to modify it so that the hardware interface is set up

FUTURE EXTENSIONS

 The nice example online is open-source

 Steering control (up, down, left, right arrow keys for steering left,
right, forward, reverse) – uses a simple multi-layer perceptron
model, the project trains the neural network from scratch

 Object detection and monocular camera distance measurement to
stop at sign and traffic light (Computer Vision object classifier)

 Ultrasonic sensor to prevent front collision

FUTURE EXTENSIONS

It is possible to use neural networks to control the Lego EV3

 Object classification for sorting

 Q-Learning to learn to crawl

CONCLUSION

 The World Models paper introduces the flow of a large project

 Integrates 3 algorithms (VAE, MDN-RNN, CMS-ES)

 CMA-ES takes a lot of time to compute

 Hardware limitations

 How to fine-tune population size, races to run per car, how many
generations?

 Can the controller training be replaced by faster methods?
(backpropagation? RL?)

 Extensions:

 Upgrade hardware specs.

 Check the VAE by reconstructing images (figure out how to download
large data from the Cloud)

 Plot loss convergence neatly

 Run the car in its hallucinated environment

 Figure out how to assign rewards and train the controller with the
dreamed race.

THANK YOU FOR LISTENING!

