
This tutorial is intended for readers who are new to both machine learning and TensorFlow. 

If you already know what MNIST is, and what softmax (multinomial logistic) regression is, 

you might prefer this faster paced tutorial (https://www.tensorflow.org/get_started/mnist/pros). 

Be sure to install TensorFlow (https://www.tensorflow.org/install/index) before starting either 

tutorial.

When one learns how to program, there's a tradition that the first thing you do is print "Hello 

World." Just like programming has Hello World, machine learning has MNIST.

MNIST is a simple computer vision dataset. It consists of images of handwritten digits like 

these:

It also includes labels for each image, telling us which digit it is. For example, the labels for 

the above images are 5, 0, 4, and 1.

In this tutorial, we're going to train a model to look at images and predict what digits they 

are. Our goal isn't to train a really elaborate model that achieves state-of-the-art 

performance -- although we'll give you code to do that later! -- but rather to dip a toe into 

using TensorFlow. As such, we're going to start with a very simple model, called a Softmax 

Regression.

The actual code for this tutorial is very short, and all the interesting stuff happens in just 

three lines. However, it is very important to understand the ideas behind it: both how 

TensorFlow works and the core machine learning concepts. Because of this, we are going 

to very carefully work through the code.

About this tutorial

This tutorial is an explanation, line by line, of what is happening in the mnist_softmax.py

 (https://www.github.com/tensorflow/tensorflow/blob/r1.1/tensorflow/examples/tutorials/mnist/mnist

_softmax.py)

code.

You can use this tutorial in a few different ways, including:
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• Copy and paste each code snippet, line by line, into a Python environment as you read 

through the explanations of each line.

• Run the entire mnist_softmax.py Python file either before or after reading through 

the explanations, and use this tutorial to understand the lines of code that aren't clear 

to you.

What we will accomplish in this tutorial:

• Learn about the MNIST data and softmax regressions

• Create a function that is a model for recognizing digits, based on looking at every 

pixel in the image

• Use TensorFlow to train the model to recognize digits by having it "look" at thousands 

of examples (and run our first TensorFlow session to do so)

• Check the model's accuracy with our test data

The MNIST Data

The MNIST data is hosted on Yann LeCun's website (http://yann.lecun.com/exdb/mnist/). If you 

are copying and pasting in the code from this tutorial, start here with these two lines of 

code which will download and read in the data automatically:

The MNIST data is split into three parts: 55,000 data points of training data (mnist.train), 

10,000 points of test data (mnist.test), and 5,000 points of validation data 

(mnist.validation). This split is very important: it's essential in machine learning that we 

have separate data which we don't learn from so that we can make sure that what we've 

learned actually generalizes!

As mentioned earlier, every MNIST data point has two parts: an image of a handwritten digit 

and a corresponding label. We'll call the images "x" and the labels "y". Both the training set 

and test set contain images and their corresponding labels; for example the training images 

are mnist.train.images and the training labels are mnist.train.labels.

Each image is 28 pixels by 28 pixels. We can interpret this as a big array of numbers:

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
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We can flatten this array into a vector of 28x28 = 784 numbers. It doesn't matter how we 

flatten the array, as long as we're consistent between images. From this perspective, the 

MNIST images are just a bunch of points in a 784-dimensional vector space, with a very rich 

structure (http://colah.github.io/posts/2014-10-Visualizing-MNIST/) (warning: computationally 

intensive visualizations).

Flattening the data throws away information about the 2D structure of the image. Isn't that 

bad? Well, the best computer vision methods do exploit this structure, and we will in later 

tutorials. But the simple method we will be using here, a softmax regression (defined 

below), won't.

The result is that mnist.train.images is a tensor (an n-dimensional array) with a shape of 

[55000, 784]. The first dimension is an index into the list of images and the second 

dimension is the index for each pixel in each image. Each entry in the tensor is a pixel 

intensity between 0 and 1, for a particular pixel in a particular image.

Each image in MNIST has a corresponding label, a number between 0 and 9 representing 

the digit drawn in the image.

For the purposes of this tutorial, we're going to want our labels as "one-hot vectors". A one-

hot vector is a vector which is 0 in most dimensions, and 1 in a single dimension. In this 

case, the  th digit will be represented as a vector which is 1 in the  th dimension. For 

example, 3 would be  . Consequently, mnist.train.labels is a 

[55000, 10] array of floats.
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We're now ready to actually make our model!

Softmax Regressions

We know that every image in MNIST is of a handwritten digit between zero and nine. So 

there are only ten possible things that a given image can be. We want to be able to look at 

an image and give the probabilities for it being each digit. For example, our model might 

look at a picture of a nine and be 80% sure it's a nine, but give a 5% chance to it being an 

eight (because of the top loop) and a bit of probability to all the others because it isn't 100% 

sure.

This is a classic case where a softmax regression is a natural, simple model. If you want to 

assign probabilities to an object being one of several different things, softmax is the thing 

to do, because softmax gives us a list of values between 0 and 1 that add up to 1. Even 

later on, when we train more sophisticated models, the final step will be a layer of softmax.

A softmax regression has two steps: first we add up the evidence of our input being in 

certain classes, and then we convert that evidence into probabilities.

To tally up the evidence that a given image is in a particular class, we do a weighted sum of 

the pixel intensities. The weight is negative if that pixel having a high intensity is evidence 

against the image being in that class, and positive if it is evidence in favor.

The following diagram shows the weights one model learned for each of these classes. Red 

represents negative weights, while blue represents positive weights.

We also add some extra evidence called a bias. Basically, we want to be able to say that 

some things are more likely independent of the input. The result is that the evidence for a 

class  given an input  is:
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where  is the weights and  is the bias for class  , and  is an index for summing over 

the pixels in our input image  . We then convert the evidence tallies into our predicted 

probabilities  using the "softmax" function:

Here softmax is serving as an "activation" or "link" function, shaping the output of our linear 

function into the form we want -- in this case, a probability distribution over 10 cases. You 

can think of it as converting tallies of evidence into probabilities of our input being in each 

class. It's defined as:

If you expand that equation out, you get:

But it's often more helpful to think of softmax the first way: exponentiating its inputs and 

then normalizing them. The exponentiation means that one more unit of evidence increases 

the weight given to any hypothesis multiplicatively. And conversely, having one less unit of 

evidence means that a hypothesis gets a fraction of its earlier weight. No hypothesis ever 

has zero or negative weight. Softmax then normalizes these weights, so that they add up to 

one, forming a valid probability distribution. (To get more intuition about the softmax 

function, check out the section (http://neuralnetworksanddeeplearning.com/chap3.html#softmax)

on it in Michael Nielsen's book, complete with an interactive visualization.)

You can picture our softmax regression as looking something like the following, although 

with a lot more  s. For each output, we compute a weighted sum of the  s, add a bias, 

and then apply softmax.

If we write that out as equations, we get:
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We can "vectorize" this procedure, turning it into a matrix multiplication and vector addition. 

This is helpful for computational efficiency. (It's also a useful way to think.)

More compactly, we can just write:

Now let's turn that into something that TensorFlow can use.

Implementing the Regression

To do efficient numerical computing in Python, we typically use libraries like NumPy

 (http://www.numpy.org/) that do expensive operations such as matrix multiplication outside 

Python, using highly efficient code implemented in another language. Unfortunately, there 

can still be a lot of overhead from switching back to Python every operation. This overhead 

is especially bad if you want to run computations on GPUs or in a distributed manner, where 

there can be a high cost to transferring data.

TensorFlow also does its heavy lifting outside Python, but it takes things a step further to 

avoid this overhead. Instead of running a single expensive operation independently from 

Python, TensorFlow lets us describe a graph of interacting operations that run entirely 

outside Python. (Approaches like this can be seen in a few machine learning libraries.)

To use TensorFlow, first we need to import it.

We describe these interacting operations by manipulating symbolic variables. Let's create 

one:

import tensorflow as tf

x = tf.placeholder(tf.float32, [None, 784])

2017/5/3

Jinn
文字方塊
3

Jinn
文字方塊
4

Jinn
文字方塊
p

Jinn
文字方塊
p

Jinn
文字方塊
p

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
螢光標示

Jinn
文字方塊
x in [0,1]784

Jinn
文字方塊
W in R10x784, b in R10

Jinn
文字方塊
y in (0,1)10



x isn't a specific value. It's a placeholder, a value that we'll input when we ask TensorFlow 

to run a computation. We want to be able to input any number of MNIST images, each 

flattened into a 784-dimensional vector. We represent this as a 2-D tensor of floating-point 

numbers, with a shape [None, 784]. (Here None means that a dimension can be of any 

length.)

We also need the weights and biases for our model. We could imagine treating these like 

additional inputs, but TensorFlow has an even better way to handle it: Variable. A 

Variable is a modifiable tensor that lives in TensorFlow's graph of interacting operations. 

It can be used and even modified by the computation. For machine learning applications, 

one generally has the model parameters be Variables.

We create these Variables by giving tf.Variable the initial value of the Variable: in this 

case, we initialize both W and b as tensors full of zeros. Since we are going to learn W and b, 

it doesn't matter very much what they initially are.

Notice that W has a shape of [784, 10] because we want to multiply the 784-dimensional 

image vectors by it to produce 10-dimensional vectors of evidence for the difference 

classes. b has a shape of [10] so we can add it to the output.

We can now implement our model. It only takes one line to define it!

First, we multiply x by W with the expression tf.matmul(x, W). This is flipped from when 

we multiplied them in our equation, where we had  , as a small trick to deal with x being 

a 2D tensor with multiple inputs. We then add b, and finally apply tf.nn.softmax.

That's it. It only took us one line to define our model, after a couple short lines of setup. 

That isn't because TensorFlow is designed to make a softmax regression particularly easy: 

it's just a very flexible way to describe many kinds of numerical computations, from 

machine learning models to physics simulations. And once defined, our model can be run 

on different devices: your computer's CPU, GPUs, and even phones!

Training

In order to train our model, we need to define what it means for the model to be good. Well, 

actually, in machine learning we typically define what it means for a model to be bad. We 

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x, W) + b)
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call this the cost, or the loss, and it represents how far off our model is from our desired 

outcome. We try to minimize that error, and the smaller the error margin, the better our 

model is.

One very common, very nice function to determine the loss of a model is called "cross-

entropy." Cross-entropy arises from thinking about information compressing codes in 

information theory but it winds up being an important idea in lots of areas, from gambling 

to machine learning. It's defined as:

Where  is our predicted probability distribution, and  is the true distribution (the one-hot 

vector with the digit labels). In some rough sense, the cross-entropy is measuring how 

inefficient our predictions are for describing the truth. Going into more detail about cross-

entropy is beyond the scope of this tutorial, but it's well worth understanding

 (http://colah.github.io/posts/2015-09-Visual-Information/).

To implement cross-entropy we need to first add a new placeholder to input the correct 

answers:

Then we can implement the cross-entropy function,  :

First, tf.log computes the logarithm of each element of y. Next, we multiply each element 

of y_ with the corresponding element of tf.log(y). Then tf.reduce_sum adds the 

elements in the second dimension of y, due to the reduction_indices=[1] parameter. 

Finally, tf.reduce_mean computes the mean over all the examples in the batch.

Note that in the source code, we don't use this formulation, because it is numerically 

unstable. Instead, we apply tf.nn.softmax_cross_entropy_with_logits on the 

unnormalized logits (e.g., we call softmax_cross_entropy_with_logits on tf.matmul

(x, W) + b), because this more numerically stable function internally computes the 

softmax activation. In your code, consider using 

tf.nn.softmax_cross_entropy_with_logits instead.

Now that we know what we want our model to do, it's very easy to have TensorFlow train it 

to do so. Because TensorFlow knows the entire graph of your computations, it can 

automatically use the backpropagation algorithm

y_ = tf.placeholder(tf.float32, [None, 10])

 

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
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 (http://colah.github.io/posts/2015-08-Backprop/) to efficiently determine how your variables 

affect the loss you ask it to minimize. Then it can apply your choice of optimization 

algorithm to modify the variables and reduce the loss.

In this case, we ask TensorFlow to minimize cross_entropy using the gradient descent 

algorithm (https://en.wikipedia.org/wiki/Gradient_descent) with a learning rate of 0.5. Gradient 

descent is a simple procedure, where TensorFlow simply shifts each variable a little bit in 

the direction that reduces the cost. But TensorFlow also provides many other optimization 

algorithms (https://www.tensorflow.org/api_guides/python/train#Optimizers): using one is as 

simple as tweaking one line.

What TensorFlow actually does here, behind the scenes, is to add new operations to your 

graph which implement backpropagation and gradient descent. Then it gives you back a 

single operation which, when run, does a step of gradient descent training, slightly tweaking 

your variables to reduce the loss.

We can now launch the model in an InteractiveSession:

We first have to create an operation to initialize the variables we created:

Let's train -- we'll run the training step 1000 times!

Each step of the loop, we get a "batch" of one hundred random data points from our training 

set. We run train_step feeding in the batches data to replace the placeholders.

Using small batches of random data is called stochastic training -- in this case, stochastic 

gradient descent. Ideally, we'd like to use all our data for every step of training because that 

would give us a better sense of what we should be doing, but that's expensive. So, instead, 

we use a different subset every time. Doing this is cheap and has much of the same 

benefit.

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

sess = tf.InteractiveSession()

tf.global_variables_initializer().run()

for _ in range(1000):

  batch_xs, batch_ys = mnist.train.next_batch(100)

  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
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Evaluating Our Model

How well does our model do?

Well, first let's figure out where we predicted the correct label. tf.argmax is an extremely 

useful function which gives you the index of the highest entry in a tensor along some axis. 

For example, tf.argmax(y,1) is the label our model thinks is most likely for each input, 

while tf.argmax(y_,1) is the correct label. We can use tf.equal to check if our prediction 

matches the truth.

That gives us a list of booleans. To determine what fraction are correct, we cast to floating 

point numbers and then take the mean. For example, [True, False, True, True] would 

become [1,0,1,1] which would become 0.75.

Finally, we ask for our accuracy on our test data.

This should be about 92%.

Is that good? Well, not really. In fact, it's pretty bad. This is because we're using a very 

simple model. With some small changes, we can get to 97%. The best models can get to 

over 99.7% accuracy! (For more information, have a look at this list of results

 (http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html).)

What matters is that we learned from this model. Still, if you're feeling a bit down about 

these results, check out the next tutorial (https://www.tensorflow.org/get_started/mnist/pros)

where we do a lot better, and learn how to build more sophisticated models using 

TensorFlow!

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0 

License (http://creativecommons.org/licenses/by/3.0/), and code samples are licensed under the Apache 

2.0 License (http://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies

 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its 

affiliates.
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correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

 

print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
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x = [2, 7, 3], argmax(x, 0) = 1
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x = [[2, 7, 3], [8.2, 5.5, 6.1]] argmax(x, 1) = [1, 0]

Jinn
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tf.argmax(input, axis=None, name=None, dimension=None) returns the index with the largest value across axis of an input tensor.




