David Silver

Outline

1 Introduction

- 2 Policy Evaluation
- 3 Policy Iteration
- 4 Value Iteration
- 5 Extensions to Dynamic Programming
- 6 Contraction Mapping

- Introduction

What is Dynamic Programming?

Dynamic sequential or temporal component to the problem Programming optimising a "program", i.e. a policy

c.f. linear programming

- A method for solving complex problems
- By breaking them down into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems

Requirements for Dynamic Programming

Dynamic Programming is a very general solution method for problems which have two properties:

- Optimal substructure
 - Principle of optimality applies
 - Optimal solution can be decomposed into subproblems
- Overlapping subproblems
 - Subproblems recur many times
 - Solutions can be cached and reused
- Markov decision processes satisfy both properties
 - Bellman equation gives recursive decomposition
 - Value function stores and reuses solutions

- Introduction

Planning by Dynamic Programming

- Dynamic programming assumes full knowledge of the MDP
- It is used for *planning* in an MDP
- For prediction:
 - Input: MDP $\langle S, A, P, R, \gamma \rangle$ and policy π
 - or: MRP $\langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma
 angle$
 - Output: value function v_{π}
- Or for control:
 - Input: MDP $\langle S, A, P, R, \gamma \rangle$
 - Output: optimal value function v_{*}
 - and: optimal policy π_*

Other Applications of Dynamic Programming

Dynamic programming is used to solve many other problems, e.g.

- Scheduling algorithms
- String algorithms (e.g. sequence alignment)
- Graph algorithms (e.g. shortest path algorithms)
- Graphical models (e.g. Viterbi algorithm)
- Bioinformatics (e.g. lattice models)

Policy Evaluation

Lerative Policy Evaluation

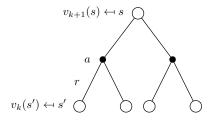
Iterative Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- $\bullet v_1 \to v_2 \to \dots \to v_{\pi}$
- Using synchronous backups,
 - At each iteration k+1
 - For all states $s \in \mathcal{S}$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - where s' is a successor state of s
- We will discuss asynchronous backups later
- Convergence to v_{π} will be proven at the end of the lecture

Policy Evaluation

LIterative Policy Evaluation

Iterative Policy Evaluation (2)

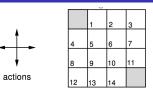


$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$
$$\mathbf{v}^{k+1} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k$$

Policy Evaluation

Example: Small Gridworld

Evaluating a Random Policy in the Small Gridworld



- \blacksquare Undiscounted episodic MDP ($\gamma=1)$
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Policy Evaluation

Example: Small Gridworld

Iterative Policy Evaluation in Small Gridworld

	v_k for the Random Policy	$\begin{array}{lll} & \text{Greedy Policy} & v_k(s) & = & \sum_{a \in A} \pi(a s) \left(R^a_s + \gamma \sum_{s' \in S} P^a_{ss'} v_{k-1}(s') \right) \\ & \text{w.r.t.} & \mathcal{V}_k \end{array}$
<i>k</i> = 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$ \begin{array}{c} \begin{array}{c} \hline \\ \hline $
<i>k</i> = 1	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0	$ \begin{array}{c} \overbrace{(1)}^{(1)} & = 4 \left(2 + 2 + 4 + 7 + 7 \right) \right) \\ \hline \\ $
<i>k</i> = 2	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0	$= -1 + \frac{1}{4} \cdot \frac{-23}{4} = -1 - 1.437 = -2.437$

Policy Evaluation

Example: Small Gridworld

Iterative Policy Evaluation in Small Gridworld (2)

<i>k</i> = 3	0.0 -2.4 -2.9 -3.0 -2.4 -2.9 -3.0 -2.9 -2.9 -3.0 -2.9 -2.4 -3.0 -2.9 -2.4 0.0	
<i>k</i> = 10	0.0 -6.1 -8.4 -9.0 -6.1 -7.7 -8.4 -8.4 -8.4 -8.4 -7.7 -6.1 -9.0 -8.4 -6.1 0.0	$\begin{array}{c c} \leftarrow \leftarrow \leftarrow \\ \uparrow \\ \uparrow \\ \downarrow \\ \uparrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow$
$k = \infty$	0.0 -14. -20. -22. -14. -18. -20. -20. -20. -20. -18. -14. -22. -20. -14. 0.0	$\begin{array}{c} \leftarrow \leftarrow \leftarrow \\ \uparrow \\ \uparrow \\ \downarrow \\ \uparrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow$

Policy Iteration

How to Improve a Policy

- Given a policy π
 - **Evaluate** the policy π

$$v_{\pi}(s) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + ... | S_t = s\right]$$

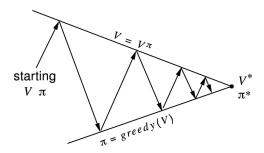
Improve the policy by acting greedily with respect to v_{π}

$$\pi' = \mathsf{greedy}(v_\pi)$$

- \blacksquare In Small Gridworld improved policy was optimal, $\pi'=\pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to π*

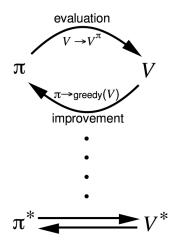
Policy Iteration

Policy Iteration



Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \ge \pi$ Greedy policy improvement



Policy Iteration

Example: Jack's Car Rental

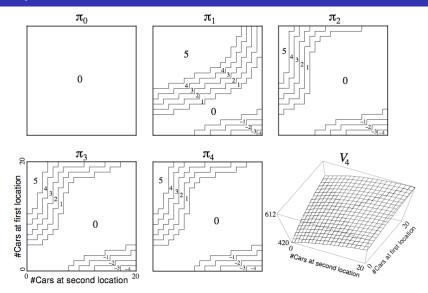
Jack's Car Rental

- States: Two locations, maximum of 20 cars at each
- Actions: Move up to 5 cars between locations overnight
- Reward: \$10 for each car rented (must be available)
- Transitions: Cars returned and requested randomly
 - Poisson distribution, *n* returns/requests with prob $\frac{\lambda^n}{n!}e^{-\lambda}$
 - 1st location: average requests = 3, average returns = 3
 - 2nd location: average requests = 4, average returns = 2

Policy Iteration

Example: Jack's Car Rental

Policy Iteration in Jack's Car Rental



Policy Iteration

Policy Improvement

Policy Improvement

- Consider a deterministic policy, $a = \pi(s)$
- We can *improve* the policy by acting greedily

$$\pi'(s) = rgmax_{a \in \mathcal{A}} q_{\pi}(s, a)$$

This improves the value from any state s over one step,

$$q_\pi(s,\pi'(s)) = \max_{a\in\mathcal{A}} \, q_\pi(s,a) \geq q_\pi(s,\pi(s)) = \mathsf{v}_\pi(s)$$

It therefore improves the value function, $v_{\pi'}(s) \geq v_{\pi}(s)$

$$egin{aligned} & \mathsf{v}_{\pi}(s) \leq q_{\pi}(s,\pi'(s)) = \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma \mathsf{v}_{\pi}(S_{t+1}) \mid S_t = s
ight] \ & \leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma q_{\pi}(S_{t+1},\pi'(S_{t+1})) \mid S_t = s
ight] \ & \leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma R_{t+2} + \gamma^2 q_{\pi}(S_{t+2},\pi'(S_{t+2})) \mid S_t = s
ight] \ & \leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma R_{t+2} + ... \mid S_t = s
ight] = \mathsf{v}_{\pi'}(s) \end{aligned}$$

Policy Iteration

Policy Improvement

Policy Improvement (2)

If improvements stop,

$$q_\pi(s,\pi'(s))=\max_{a\in\mathcal{A}}q_\pi(s,a)=q_\pi(s,\pi(s))=v_\pi(s)$$

Then the Bellman optimality equation has been satisfied

$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

- Therefore $v_\pi(s) = v_*(s)$ for all $s \in \mathcal{S}$
- so π is an optimal policy

Policy Iteration

Extensions to Policy Iteration

Modified Policy Iteration

- Does policy evaluation need to converge to v_{π} ?
- Or should we introduce a stopping condition

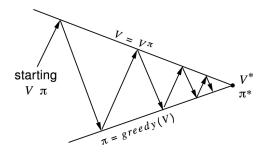
• e.g. ϵ -convergence of value function

- Or simply stop after k iterations of iterative policy evaluation?
- For example, in the small gridworld k = 3 was sufficient to achieve optimal policy
- Why not update policy every iteration? i.e. stop after k = 1
 - This is equivalent to *value iteration* (next section)

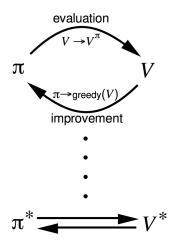
Policy Iteration

Extensions to Policy Iteration

Generalised Policy Iteration



Policy evaluation Estimate v_{π} Any policy evaluation algorithm Policy improvement Generate $\pi' \ge \pi$ Any policy improvement algorithm



└─Value Iteration in MDPs

Principle of Optimality

Any optimal policy can be subdivided into two components:

- An optimal first action A_{*}
- Followed by an optimal policy from successor state S'

Theorem (Principle of Optimality)

A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, if and only if

- For any state s' reachable from s
- π achieves the optimal value from state s', $v_{\pi}(s') = v_{*}(s')$

└─Value Iteration

└─Value Iteration in MDPs

Deterministic Value Iteration

- If we know the solution to subproblems $v_*(s')$
- Then solution $v_*(s)$ can be found by one-step lookahead

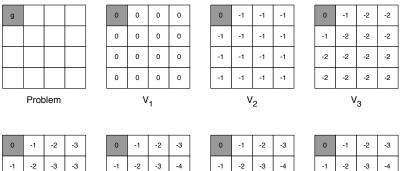
$$v_*(s) \leftarrow \max_{a \in \mathcal{A}} \mathcal{R}^a_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} v_*(s')$$

- The idea of value iteration is to apply these updates iteratively
- Intuition: start with final rewards and work backwards
- Still works with loopy, stochastic MDPs

-Value Iteration

└─Value Iteration in MDPs

Example: Shortest Path



-	-		-
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-4
-3	-4	-4	-4

-2 -3 -5 -4 -3 -4 -5 -5

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6

V4

V₅

V₆

 V_7

└─Value Iteration

└─Value Iteration in MDPs

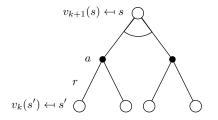
Value Iteration

- Problem: find optimal policy π
- Solution: iterative application of Bellman optimality backup
- $\bullet v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_*$
- Using synchronous backups
 - At each iteration k+1
 - For all states $s \in \mathcal{S}$
 - Update $v_{k+1}(s)$ from $v_k(s')$
- Convergence to v_* will be proven later
- Unlike policy iteration, there is no explicit policy
- Intermediate value functions may not correspond to any policy

└─Value Iteration

└─Value Iteration in MDPs

Value Iteration (2)



$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$
$$\mathbf{v}_{k+1} = \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k$$

└─Value Iteration

└─Value Iteration in MDPs

Example of Value Iteration in Practice

http://www.cs.ubc.ca/~poole/demos/mdp/vi.html

└─Value Iteration

└─Summary of DP Algorithms

Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm	
Prediction	Bellman Expectation Equation	Iterative	
Frediction	Definial Expectation Equation	Policy Evaluation	
Control	Bellman Expectation Equation	Policy Iteration	
	+ Greedy Policy Improvement		
Control	Bellman Optimality Equation	Value Iteration	

- Algorithms are based on state-value function $v_{\pi}(s)$ or $v_{*}(s)$
- Complexity $O(mn^2)$ per iteration, for m actions and n states
- Could also apply to action-value function $q_{\pi}(s, a)$ or $q_{*}(s, a)$
- Complexity $O(m^2n^2)$ per iteration

Extensions to Dynamic Programming

Asynchronous Dynamic Programming

Asynchronous Dynamic Programming

- DP methods described so far used synchronous backups
- i.e. all states are backed up in parallel
- Asynchronous DP backs up states individually, in any order
- For each selected state, apply the appropriate backup
- Can significantly reduce computation
- Guaranteed to converge if all states continue to be selected

Extensions to Dynamic Programming

Asynchronous Dynamic Programming

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

- In-place dynamic programming
- Prioritised sweeping
- Real-time dynamic programming

Extensions to Dynamic Programming

Asynchronous Dynamic Programming

In-Place Dynamic Programming

Synchronous value iteration stores two copies of value function

for all s in \mathcal{S}

$$\mathbf{v}_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \mathbf{v}_{old}(s') \right)$$

 $V_{old} \leftarrow V_{new}$

In-place value iteration only stores one copy of value function

for all s in ${\cal S}$

$$\boldsymbol{v(s)} \leftarrow \max_{\boldsymbol{a} \in \mathcal{A}} \left(\mathcal{R}^{\boldsymbol{a}}_{\boldsymbol{s}} + \gamma \sum_{\boldsymbol{s}' \in \mathcal{S}} \mathcal{P}^{\boldsymbol{a}}_{\boldsymbol{ss}'} \boldsymbol{v(s')} \right)$$

Extensions to Dynamic Programming

Asynchronous Dynamic Programming

Prioritised Sweeping

Use magnitude of Bellman error to guide state selection, e.g.

$$\left| \max_{\boldsymbol{a} \in \mathcal{A}} \left(\mathcal{R}_{\boldsymbol{s}}^{\boldsymbol{a}} + \gamma \sum_{\boldsymbol{s}' \in \mathcal{S}} \mathcal{P}_{\boldsymbol{s}\boldsymbol{s}'}^{\boldsymbol{a}} \boldsymbol{v}(\boldsymbol{s}') \right) - \boldsymbol{v}(\boldsymbol{s}) \right|$$

- Backup the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

Extensions to Dynamic Programming

Asynchronous Dynamic Programming

Real-Time Dynamic Programming

- Idea: only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step S_t, A_t, R_{t+1}
- Backup the state S_t

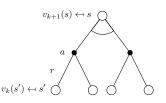
$$\boldsymbol{v}(\boldsymbol{S}_t) \leftarrow \max_{\boldsymbol{a} \in \mathcal{A}} \left(\mathcal{R}^{\boldsymbol{a}}_{\boldsymbol{S}_t} + \gamma \sum_{\boldsymbol{s}' \in \mathcal{S}} \mathcal{P}^{\boldsymbol{a}}_{\boldsymbol{S}_t \boldsymbol{s}'} \boldsymbol{v}(\boldsymbol{s}') \right)$$

Extensions to Dynamic Programming

Full-width and sample backups

Full-Width Backups

- DP uses full-width backups
- For each backup (sync or async)
 - Every successor state and action is considered
 - Using knowledge of the MDP transitions and reward function
- DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers Bellman's curse of dimensionality
 - Number of states n = |S| grows exponentially with number of state variables
- Even one backup can be too expensive

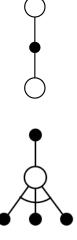


Lecture 3: Planning by Dynamic Programming Lextensions to Dynamic Programming

Full-width and sample backups

Sample Backups

- In subsequent lectures we will consider *sample backups*
- \blacksquare Using sample rewards and sample transitions $\langle S, A, R, S' \rangle$
- Instead of reward function \mathcal{R} and transition dynamics \mathcal{P}
- Advantages:
 - Model-free: no advance knowledge of MDP required
 - Breaks the curse of dimensionality through sampling
 - Cost of backup is constant, independent of n = |S|



Extensions to Dynamic Programming

Approximate Dynamic Programming

Approximate Dynamic Programming

- Approximate the value function
- Using a function approximator $\hat{v}(s, \mathbf{w})$
- Apply dynamic programming to $\hat{v}(\cdot, \mathbf{w})$
- e.g. Fitted Value Iteration repeats at each iteration k,
 - Sample states $\tilde{\mathcal{S}} \subseteq \mathcal{S}$
 - For each state $s \in \tilde{S}$, estimate target value using Bellman optimality equation,

$$\tilde{v}_k(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \hat{v}(s', \mathbf{w}_k) \right)$$

Train next value function $\hat{v}(\cdot, \mathbf{w}_{k+1})$ using targets $\{\langle s, \tilde{v}_k(s) \rangle\}$

Some Technical Questions

- How do we know that value iteration converges to v_{*}?
- Or that iterative policy evaluation converges to v_{π} ?
- And therefore that policy iteration converges to v_{*}?
- Is the solution unique?
- How fast do these algorithms converge?
- These questions are resolved by contraction mapping theorem

Value Function Space

- \blacksquare Consider the vector space $\mathcal V$ over value functions
- There are $|\mathcal{S}|$ dimensions
- Each point in this space fully specifies a value function v(s)
- What does a Bellman backup do to points in this space?
- We will show that it brings value functions closer
- And therefore the backups must converge on a unique solution

Value Function ∞ -Norm

- We will measure distance between state-value functions u and v by the ∞ -norm
- i.e. the largest difference between state values,

$$||u-v||_{\infty} = \max_{s\in\mathcal{S}} |u(s)-v(s)|$$

Bellman Expectation Backup is a Contraction

• Define the Bellman expectation backup operator T^{π} ,

$$T^{\pi}(\mathbf{v}) = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}$$

 This operator is a γ-contraction, i.e. it makes value functions closer by at least γ,

$$||T^{\pi}(u) - T^{\pi}(v)||_{\infty} = ||(\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi}u) - (\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi}v)||_{\infty}$$
$$= ||\gamma \mathcal{P}^{\pi}(u - v)||_{\infty}$$
$$\leq ||\gamma \mathcal{P}^{\pi}||u - v||_{\infty}||_{\infty}$$
$$\leq \gamma ||u - v||_{\infty}$$

Contraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an operator T(v), where T is a γ -contraction,

- T converges to a unique fixed point
- At a linear convergence rate of γ

Convergence of Iter. Policy Evaluation and Policy Iteration

- The Bellman expectation operator \mathcal{T}^{π} has a unique fixed point
- v_{π} is a fixed point of T^{π} (by Bellman expectation equation)
- By contraction mapping theorem
- Iterative policy evaluation converges on v_{π}
- Policy iteration converges on v_{*}

Bellman Optimality Backup is a Contraction

Define the Bellman optimality backup operator T*,

$$T^*(v) = \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a v$$

 This operator is a γ-contraction, i.e. it makes value functions closer by at least γ (similar to previous proof)

$$||T^*(u) - T^*(v)||_{\infty} \leq \gamma ||u - v||_{\infty}$$

Convergence of Value Iteration

- The Bellman optimality operator T^* has a unique fixed point
- v_* is a fixed point of T^* (by Bellman optimality equation)
- By contraction mapping theorem
- Value iteration converges on v_{*}