
Lecture 3: Planning by Dynamic Programming

Lecture 3: Planning by Dynamic Programming

David Silver

Lecture 3: Planning by Dynamic Programming

Outline

1 Introduction

2 Policy Evaluation

3 Policy Iteration

4 Value Iteration

5 Extensions to Dynamic Programming

6 Contraction Mapping

Lecture 3: Planning by Dynamic Programming

Introduction

What is Dynamic Programming?

Dynamic sequential or temporal component to the problem

Programming optimising a “program”, i.e. a policy

c.f. linear programming

A method for solving complex problems

By breaking them down into subproblems

Solve the subproblems
Combine solutions to subproblems

Lecture 3: Planning by Dynamic Programming

Introduction

Requirements for Dynamic Programming

Dynamic Programming is a very general solution method for
problems which have two properties:

Optimal substructure

Principle of optimality applies
Optimal solution can be decomposed into subproblems

Overlapping subproblems

Subproblems recur many times
Solutions can be cached and reused

Markov decision processes satisfy both properties

Bellman equation gives recursive decomposition
Value function stores and reuses solutions

Lecture 3: Planning by Dynamic Programming

Introduction

Planning by Dynamic Programming

Dynamic programming assumes full knowledge of the MDP

It is used for planning in an MDP

For prediction:

Input: MDP 〈S,A,P,R, γ〉 and policy π
or: MRP 〈S,Pπ,Rπ, γ〉

Output: value function vπ

Or for control:

Input: MDP 〈S,A,P,R, γ〉
Output: optimal value function v∗

and: optimal policy π∗

Lecture 3: Planning by Dynamic Programming

Introduction

Other Applications of Dynamic Programming

Dynamic programming is used to solve many other problems, e.g.

Scheduling algorithms

String algorithms (e.g. sequence alignment)

Graph algorithms (e.g. shortest path algorithms)

Graphical models (e.g. Viterbi algorithm)

Bioinformatics (e.g. lattice models)

Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Iterative Policy Evaluation

Iterative Policy Evaluation

Problem: evaluate a given policy π

Solution: iterative application of Bellman expectation backup

v1 → v2 → ...→ vπ
Using synchronous backups,

At each iteration k + 1
For all states s ∈ S
Update vk+1(s) from vk(s ′)
where s ′ is a successor state of s

We will discuss asynchronous backups later

Convergence to vπ will be proven at the end of the lecture

Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Iterative Policy Evaluation

Iterative Policy Evaluation (2)

a

r

vk+1(s) [s

vk(s0) [s0

vk+1(s) =
∑
a∈A

π(a|s)

(
Ra

s + γ
∑
s′∈S
Pa
ss′vk(s ′)

)
vk+1 =RπRπRπ + γPπPπPπvk

Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Example: Small Gridworld

Evaluating a Random Policy in the Small Gridworld

Undiscounted episodic MDP (γ = 1)

Nonterminal states 1, ..., 14

One terminal state (shown twice as shaded squares)

Actions leading out of the grid leave state unchanged

Reward is −1 until the terminal state is reached

Agent follows uniform random policy

π(n|·) = π(e|·) = π(s|·) = π(w |·) = 0.25

Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Example: Small Gridworld

Iterative Policy Evaluation in Small Gridworld

 0.0 0.0 0.0
 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0
 0.0 0.0 0.0

-1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0

-1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7

-2.4 -2.9 -3.0
-2.4 -2.9 -3.0 -2.9
-2.9 -3.0 -2.9 -2.4
-3.0 -2.9 -2.4

-6.1 -8.4 -9.0
-6.1 -7.7 -8.4 -8.4
-8.4 -8.4 -7.7 -6.1
-9.0 -8.4 -6.1

-14. -20. -22.
-14. -18. -20. -20.
-20. -20. -18. -14.
-22. -20. -14.

Vk for the
Random Policy

Greedy Policy
w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = °

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
vk

Jinn
印章

Jinn
印章

Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Example: Small Gridworld

Iterative Policy Evaluation in Small Gridworld (2)

 0.0 0.0 0.0
 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0
 0.0 0.0 0.0

-1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0 -1.0
-1.0 -1.0 -1.0

-1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7

-2.4 -2.9 -3.0
-2.4 -2.9 -3.0 -2.9
-2.9 -3.0 -2.9 -2.4
-3.0 -2.9 -2.4

-6.1 -8.4 -9.0
-6.1 -7.7 -8.4 -8.4
-8.4 -8.4 -7.7 -6.1
-9.0 -8.4 -6.1

-14. -20. -22.
-14. -18. -20. -20.
-20. -20. -18. -14.
-22. -20. -14.

Vk for the
Random Policy

Greedy Policy
w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = °

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

∞

Lecture 3: Planning by Dynamic Programming

Policy Iteration

How to Improve a Policy

Given a policy π

Evaluate the policy π

vπ(s) = E [Rt+1 + γRt+2 + ...|St = s]

Improve the policy by acting greedily with respect to vπ

π′ = greedy(vπ)

In Small Gridworld improved policy was optimal, π′ = π∗

In general, need more iterations of improvement / evaluation

But this process of policy iteration always converges to π∗

Lecture 3: Planning by Dynamic Programming

Policy Iteration

Policy Iteration

Policy evaluation Estimate vπ
Iterative policy evaluation

Policy improvement Generate π′ ≥ π
Greedy policy improvement

Lecture 3: Planning by Dynamic Programming

Policy Iteration

Example: Jack’s Car Rental

Jack’s Car Rental

States: Two locations, maximum of 20 cars at each

Actions: Move up to 5 cars between locations overnight

Reward: $10 for each car rented (must be available)

Transitions: Cars returned and requested randomly

Poisson distribution, n returns/requests with prob λn

n! e
−λ

1st location: average requests = 3, average returns = 3
2nd location: average requests = 4, average returns = 2

Lecture 3: Planning by Dynamic Programming

Policy Iteration

Example: Jack’s Car Rental

Policy Iteration in Jack’s Car Rental

Lecture 3: Planning by Dynamic Programming

Policy Iteration

Policy Improvement

Policy Improvement

Consider a deterministic policy, a = π(s)

We can improve the policy by acting greedily

π′(s) = argmax
a∈A

qπ(s, a)

This improves the value from any state s over one step,

qπ(s, π′(s)) = max
a∈A

qπ(s, a) ≥ qπ(s, π(s)) = vπ(s)

It therefore improves the value function, vπ′(s) ≥ vπ(s)

vπ(s) ≤ qπ(s, π′(s)) = Eπ′ [Rt+1 + γvπ(St+1) | St = s]

≤ Eπ′
[
Rt+1 + γqπ(St+1, π

′(St+1)) | St = s
]

≤ Eπ′
[
Rt+1 + γRt+2 + γ2qπ(St+2, π

′(St+2)) | St = s
]

≤ Eπ′ [Rt+1 + γRt+2 + ... | St = s] = vπ′(s)

Lecture 3: Planning by Dynamic Programming

Policy Iteration

Policy Improvement

Policy Improvement (2)

If improvements stop,

qπ(s, π′(s)) = max
a∈A

qπ(s, a) = qπ(s, π(s)) = vπ(s)

Then the Bellman optimality equation has been satisfied

vπ(s) = max
a∈A

qπ(s, a)

Therefore vπ(s) = v∗(s) for all s ∈ S
so π is an optimal policy

Lecture 3: Planning by Dynamic Programming

Policy Iteration

Extensions to Policy Iteration

Modified Policy Iteration

Does policy evaluation need to converge to vπ?

Or should we introduce a stopping condition

e.g. ε-convergence of value function

Or simply stop after k iterations of iterative policy evaluation?

For example, in the small gridworld k = 3 was sufficient to
achieve optimal policy

Why not update policy every iteration? i.e. stop after k = 1

This is equivalent to value iteration (next section)

Lecture 3: Planning by Dynamic Programming

Policy Iteration

Extensions to Policy Iteration

Generalised Policy Iteration

Policy evaluation Estimate vπ
Any policy evaluation algorithm

Policy improvement Generate π′ ≥ π
Any policy improvement algorithm

Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Principle of Optimality

Any optimal policy can be subdivided into two components:

An optimal first action A∗

Followed by an optimal policy from successor state S ′

Theorem (Principle of Optimality)

A policy π(a|s) achieves the optimal value from state s,
vπ(s) = v∗(s), if and only if

For any state s ′ reachable from s

π achieves the optimal value from state s ′, vπ(s ′) = v∗(s
′)

Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Deterministic Value Iteration

If we know the solution to subproblems v∗(s
′)

Then solution v∗(s) can be found by one-step lookahead

v∗(s)← max
a∈A
Ra

s + γ
∑
s′∈S
Pa
ss′v∗(s

′)

The idea of value iteration is to apply these updates iteratively

Intuition: start with final rewards and work backwards

Still works with loopy, stochastic MDPs

Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Example: Shortest Path

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0

-1

-2

-2

-1

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

0

-1

-2

-3

-1

-2

-3

-3

-2

-3

-3

-3

-3

-3

-3

-3

0

-1

-2

-3

-1

-2

-3

-4

-2

-3

-4

-4

-3

-4

-4

-4

0

-1

-2

-3

-1

-2

-3

-4

-2

-3

-4

-5

-3

-4

-5

-5

0

-1

-2

-3

-1

-2

-3

-4

-2

-3

-4

-5

-3

-4

-5

-6

g

Problem V1 V2 V3

V4 V5 V6 V7

Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Value Iteration

Problem: find optimal policy π

Solution: iterative application of Bellman optimality backup

v1 → v2 → ...→ v∗
Using synchronous backups

At each iteration k + 1
For all states s ∈ S
Update vk+1(s) from vk(s ′)

Convergence to v∗ will be proven later

Unlike policy iteration, there is no explicit policy

Intermediate value functions may not correspond to any policy

Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Value Iteration (2)

vk+1(s) [s

vk(s0) [s0
r

a

vk+1(s) = max
a∈A

(
Ra

s + γ
∑
s′∈S
Pa
ss′vk(s ′)

)
vk+1 = max

a∈A
RaRaRa + γPaPaPavk

Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Example of Value Iteration in Practice

http://www.cs.ubc.ca/∼poole/demos/mdp/vi.html

Lecture 3: Planning by Dynamic Programming

Value Iteration

Summary of DP Algorithms

Synchronous Dynamic Programming Algorithms

Problem Bellman Equation Algorithm

Prediction Bellman Expectation Equation
Iterative

Policy Evaluation

Control
Bellman Expectation Equation

Policy Iteration
+ Greedy Policy Improvement

Control Bellman Optimality Equation Value Iteration

Algorithms are based on state-value function vπ(s) or v∗(s)

Complexity O(mn2) per iteration, for m actions and n states

Could also apply to action-value function qπ(s, a) or q∗(s, a)

Complexity O(m2n2) per iteration

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Asynchronous Dynamic Programming

Asynchronous Dynamic Programming

DP methods described so far used synchronous backups

i.e. all states are backed up in parallel

Asynchronous DP backs up states individually, in any order

For each selected state, apply the appropriate backup

Can significantly reduce computation

Guaranteed to converge if all states continue to be selected

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Asynchronous Dynamic Programming

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

In-place dynamic programming

Prioritised sweeping

Real-time dynamic programming

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Asynchronous Dynamic Programming

In-Place Dynamic Programming

Synchronous value iteration stores two copies of value function

for all s in S

vnew (s)← max
a∈A

(
Ra

s + γ
∑
s′∈S
Pa
ss′vold(s ′)

)
vold ← vnew

In-place value iteration only stores one copy of value function

for all s in S

v(s)← max
a∈A

(
Ra

s + γ
∑
s′∈S
Pa
ss′v(s ′)

)

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Asynchronous Dynamic Programming

Prioritised Sweeping

Use magnitude of Bellman error to guide state selection, e.g.∣∣∣∣∣max
a∈A

(
Ra

s + γ
∑
s′∈S
Pa
ss′v(s ′)

)
− v(s)

∣∣∣∣∣
Backup the state with the largest remaining Bellman error

Update Bellman error of affected states after each backup

Requires knowledge of reverse dynamics (predecessor states)

Can be implemented efficiently by maintaining a priority queue

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Asynchronous Dynamic Programming

Real-Time Dynamic Programming

Idea: only states that are relevant to agent

Use agent’s experience to guide the selection of states

After each time-step St ,At ,Rt+1

Backup the state St

v(St)← max
a∈A

(
Ra

St + γ
∑
s′∈S
Pa
Sts′v(s ′)

)

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Full-width and sample backups

Full-Width Backups

DP uses full-width backups

For each backup (sync or async)

Every successor state and action is
considered
Using knowledge of the MDP transitions
and reward function

DP is effective for medium-sized problems
(millions of states)

For large problems DP suffers Bellman’s
curse of dimensionality

Number of states n = |S| grows
exponentially with number of state
variables

Even one backup can be too expensive

vk+1(s) [s

vk(s0) [s0
r

a

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Full-width and sample backups

Sample Backups

In subsequent lectures we will consider sample backups

Using sample rewards and sample transitions
〈S ,A,R, S ′〉
Instead of reward function R and transition dynamics P
Advantages:

Model-free: no advance knowledge of MDP required
Breaks the curse of dimensionality through sampling
Cost of backup is constant, independent of n = |S|

Lecture 3: Planning by Dynamic Programming

Extensions to Dynamic Programming

Approximate Dynamic Programming

Approximate Dynamic Programming

Approximate the value function

Using a function approximator v̂(s,w)

Apply dynamic programming to v̂(·,w)

e.g. Fitted Value Iteration repeats at each iteration k,

Sample states S̃ ⊆ S
For each state s ∈ S̃, estimate target value using Bellman
optimality equation,

ṽk(s) = max
a∈A

(
Ra

s + γ
∑
s′∈S
Pa
ss′ v̂(s ′,wk)

)

Train next value function v̂(·,wk+1) using targets {〈s, ṽk(s)〉}

Lecture 3: Planning by Dynamic Programming

Contraction Mapping

Some Technical Questions

How do we know that value iteration converges to v∗?

Or that iterative policy evaluation converges to vπ?

And therefore that policy iteration converges to v∗?

Is the solution unique?

How fast do these algorithms converge?

These questions are resolved by contraction mapping theorem

Lecture 3: Planning by Dynamic Programming

Contraction Mapping

Value Function Space

Consider the vector space V over value functions

There are |S| dimensions

Each point in this space fully specifies a value function v(s)

What does a Bellman backup do to points in this space?

We will show that it brings value functions closer

And therefore the backups must converge on a unique solution

Lecture 3: Planning by Dynamic Programming

Contraction Mapping

Value Function ∞-Norm

We will measure distance between state-value functions u and
v by the ∞-norm

i.e. the largest difference between state values,

||u − v ||∞ = max
s∈S
|u(s)− v(s)|

Lecture 3: Planning by Dynamic Programming

Contraction Mapping

Bellman Expectation Backup is a Contraction

Define the Bellman expectation backup operator Tπ,

Tπ(v) = Rπ + γPπv

This operator is a γ-contraction, i.e. it makes value functions
closer by at least γ,

||Tπ(u)− Tπ(v)||∞ = || (Rπ + γPπu)− (Rπ + γPπv) ||∞
= ||γPπ(u − v)||∞
≤ ||γPπ||u − v ||∞||∞
≤ γ||u − v ||∞

Lecture 3: Planning by Dynamic Programming

Contraction Mapping

Contraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an
operator T (v), where T is a γ-contraction,

T converges to a unique fixed point

At a linear convergence rate of γ

Lecture 3: Planning by Dynamic Programming

Contraction Mapping

Convergence of Iter. Policy Evaluation and Policy Iteration

The Bellman expectation operator Tπ has a unique fixed point

vπ is a fixed point of Tπ (by Bellman expectation equation)

By contraction mapping theorem

Iterative policy evaluation converges on vπ

Policy iteration converges on v∗

Lecture 3: Planning by Dynamic Programming

Contraction Mapping

Bellman Optimality Backup is a Contraction

Define the Bellman optimality backup operator T ∗,

T ∗(v) = max
a∈A
Ra + γPav

This operator is a γ-contraction, i.e. it makes value functions
closer by at least γ (similar to previous proof)

||T ∗(u)− T ∗(v)||∞ ≤ γ||u − v ||∞

Lecture 3: Planning by Dynamic Programming

Contraction Mapping

Convergence of Value Iteration

The Bellman optimality operator T ∗ has a unique fixed point

v∗ is a fixed point of T ∗ (by Bellman optimality equation)

By contraction mapping theorem

Value iteration converges on v∗

