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Abstract

OpenAI Gym1 is a toolkit for reinforcement learning research. It includes a growing collection of
benchmark problems that expose a common interface, and a website where people can share their results
and compare the performance of algorithms. This whitepaper discusses the components of OpenAI Gym
and the design decisions that went into the software.

1 Introduction

Reinforcement learning (RL) is the branch of machine learning that is concerned with making sequences of
decisions. RL has a rich mathematical theory and has found a variety of practical applications [1]. Recent
advances that combine deep learning with reinforcement learning have led to a great deal of excitement
in the field, as it has become evident that general algorithms such as policy gradients and Q-learning can
achieve good performance on difficult problems, without problem-specific engineering [2, 3, 4].

To build on recent progress in reinforcement learning, the research community needs good benchmarks
on which to compare algorithms. A variety of benchmarks have been released, such as the Arcade Learn-
ing Environment (ALE) [5], which exposed a collection of Atari 2600 games as reinforcement learning
problems, and recently the RLLab benchmark for continuous control [6], to which we refer the reader for
a survey on other RL benchmarks, including [7, 8, 9, 10, 11]. OpenAI Gym aims to combine the best el-
ements of these previous benchmark collections, in a software package that is maximally convenient and
accessible. It includes a diverse collection of tasks (called environments) with a common interface, and this
collection will grow over time. The environments are versioned in a way that will ensure that results remain
meaningful and reproducible as the software is updated.

Alongside the software library, OpenAI Gym has a website (gym.openai.com) where one can find score-
boards for all of the environments, showcasing results submitted by users. Users are encouraged to provide
links to source code and detailed instructions on how to reproduce their results.

2 Background

Reinforcement learning assumes that there is an agent that is situated in an environment. Each step, the agent
takes an action, and it receives an observation and reward from the environment. An RL algorithm seeks to
maximize some measure of the agent’s total reward, as the agent interacts with the environment. In the RL
literature, the environment is formalized as a partially observable Markov decision process (POMDP) [12].

OpenAI Gym focuses on the episodic setting of reinforcement learning, where the agent’s experience
is broken down into a series of episodes. In each episode, the agent’s initial state is randomly sampled
from a distribution, and the interaction proceeds until the environment reaches a terminal state. The goal in
episodic reinforcement learning is to maximize the expectation of total reward per episode, and to achieve a
high level of performance in as few episodes as possible.

The following code snippet shows a single episode with 100 timesteps. It assumes that there is an object
called agent, which takes in the observation at each timestep, and an object called env, which is the
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environment. OpenAI Gym does not include an agent class or specify what interface the agent should use;
we just include an agent here for demonstration purposes.

ob0 = env.reset() # sample environment state, return first observation
a0 = agent.act(ob0) # agent chooses first action
ob1, rew0, done0, info0 = env.step(a0) # environment returns observation,
# reward, and boolean flag indicating if the episode is complete.
a1 = agent.act(ob1)
ob2, rew1, done1, info1 = env.step(a1)
...
a99 = agent.act(o99)
ob100, rew99, done99, info2 = env.step(a99)
# done99 == True => terminal

3 Design Decisions
The design of OpenAI Gym is based on the authors’ experience developing and comparing reinforcement learning
algorithms, and our experience using previous benchmark collections. Below, we will summarize some of our design
decisions.

Environments, not agents. Two core concepts are the agent and the environment. We have chosen to only provide
an abstraction for the environment, not for the agent. This choice was to maximize convenience for users and allow
them to implement different styles of agent interface. First, one could imagine an “online learning” style, where
the agent takes (observation, reward, done) as an input at each timestep and performs learning updates
incrementally. In an alternative “batch update” style, a agent is called with observation as input, and the reward
information is collected separately by the RL algorithm, and later it is used to compute an update. By only specifying
the agent interface, we allow users to write their agents with either of these styles.

Emphasize sample complexity, not just final performance. The performance of an RL algorithm on an
environment can be measured along two axes: first, the final performance; second, the amount of time it takes to
learn—the sample complexity. To be more specific, final performance refers to the average reward per episode, after
learning is complete. Learning time can be measured in multiple ways, one simple scheme is to count the number of
episodes before a threshold level of average performance is exceeded. This threshold is chosen per-environment in an
ad-hoc way, for example, as 90% of the maximum performance achievable by a very heavily trained agent.
Both final performance and sample complexity are very interesting, however, arbitrary amounts of computation can
be used to boost final performance, making it a comparison of computational resources rather than algorithm quality.

Encourage peer review, not competition. The OpenAI Gym website allows users to compare the performance of
their algorithms. One of its inspiration is Kaggle, which hosts a set of machine learning contests with leaderboards.
However, the aim of the OpenAI Gym scoreboards is not to create a competition, but rather to stimulate the sharing
of code and ideas, and to be a meaningful benchmark for assessing different methods.
RL presents new challenges for benchmarking. In the supervised learning setting, performance is measured by
prediction accuracy on a test set, where the correct outputs are hidden from contestants. In RL, it’s less
straightforward to measure generalization performance, except by running the users’ code on a collection of unseen
environments, which would be computationally expensive. Without a hidden test set, one must check that an
algorithm did not “overfit” on the problems it was tested on (for example, through parameter tuning).
We would like to encourage a peer review process for interpreting results submitted by users. Thus, OpenAI Gym
asks users to create a Writeup describing their algorithm, parameters used, and linking to code. Writeups should
allow other users to reproduce the results. With the source code available, it is possible to make a nuanced judgement
about whether the algorithm “overfit” to the task at hand.

Strict versioning for environments. If an environment changes, results before and after the change would be
incomparable. To avoid this problem, we guarantee than any changes to an environment will be accompanied by an
increase in version number. For example, the initial version of the CartPole task is named Cartpole-v0, and if its
functionality changes, the name will be updated to Cartpole-v1.
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Figure 1: Images of some environments that are currently part of OpenAI Gym.

Monitoring by default. By default, environments are instrumented with a Monitor, which keeps track of every
time step (one step of simulation) and reset (sampling a new initial state) are called. The Monitor’s behavior is
configurable, and it can record a video periodically. It also is sufficient to produce learning curves. The videos and
learning curve data can be easily posted to the OpenAI Gym website.

4 Environments
OpenAI Gym contains a collection of Environments (POMDPs), which will grow over time. See Figure 1 for
examples. At the time of Gym’s initial beta release, the following environments were included:

• Classic control and toy text: small-scale tasks from the RL literature.

• Algorithmic: perform computations such as adding multi-digit numbers and reversing sequences. Most of
these tasks require memory, and their difficulty can be chosen by varying the sequence length.

• Atari: classic Atari games, with screen images or RAM as input, using the Arcade Learning Environment [5].

• Board games: currently, we have included the game of Go on 9x9 and 19x19 boards, where the Pachi engine
[13] serves as an opponent.

• 2D and 3D robots: control a robot in simulation. These tasks use the MuJoCo physics engine, which was
designed for fast and accurate robot simulation [14]. A few of the tasks are adapted from RLLab [6].

Since the initial release, more environments have been created, including ones based on the open source physics
engine Box2D or the Doom game engine via VizDoom [15].

5 Future Directions
In the future, we hope to extend OpenAI Gym in several ways.

• Multi-agent setting. It will be interesting to eventually include tasks in which agents must collaborate or
compete with other agents.

• Curriculum and transfer learning. Right now, the tasks are meant to be solved from scratch. Later, it will be
more interesting to consider sequences of tasks, so that the algorithm is trained on one task after the other.
Here, we will create sequences of increasingly difficult tasks, which are meant to be solved in order.

• Real-world operation. Eventually, we would like to integrate the Gym API with robotic hardware, validating
reinforcement learning algorithms in the real world.
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