
- 65 -

Compound Data Types:

10. Character Sequences

As you may already know, the C++ Standard Library
implements a powerful string class, which is very useful
to handle and manipulate strings of characters. However,
because strings are in fact sequences of characters, we
can represent them also as plain arrays of char
elements.

For example, the following array:

char jenny [20];

is an array that can store up to 20 elements of type
char. It can be represented as:

Therefore, in this array, in theory, we can store
sequences of characters up to 20 characters long. But
we can also store shorter sequences. For example,
jenny could store at some point in a program either the
sequence "Hello" or the sequence
"Merry christmas", since both are shorter than
20 characters.

Therefore, since the array of characters can store shorter
sequences than its total length, a special character is
used to signal the end of the valid sequence:
the null character, whose literal constant can be
written as '\0' (backslash, zero).

Our array of 20 elements of type char, called jenny,
can be represented storing the characters sequences
"Hello" and "Merry Christmas" as:

Notice how after the valid content a null character ('\0')
has been included in order to indicate the end of the
sequence. The panels in gray color represent char

http://www.cplusplus.com/string

- 66 -

elements with undetermined values.

Initialization of null-terminated
character sequences

Because arrays of characters are ordinary arrays they
follow all their same rules. For example, if we want to
initialize an array of characters with some predetermined
sequence of characters we can do it just like any
other array:

char myword[] = { 'H', 'e', 'l', 'l', 'o', '\0' };

In this case we would have declared an array of 6
elements of type char initialized with the characters that
form the word "Hello" plus a null character '\0' at
the end. But arrays of char elements have an additional
method to initialize their values: using string literals.

In the expressions we have used in some examples in
previous chapters, constants that represent entire
strings of characters have already showed up several
times. These are specified enclosing the text to become
a string literal between double quotes ("). For example:

"the result is: "

is a constant string literal that we have probably
used already.

Double quoted strings (") are literal constants whose
type is in fact a null-terminated array of characters. So
string literals enclosed between double quotes always
have a null character ('\0') automatically appended
at the end.

Therefore we can initialize the array of char elements
called myword with a null-terminated sequence of
characters by either one of these two methods:

char myword [] = { 'H', 'e', 'l', 'l', 'o', '\0' };
char myword [] = "Hello";

In both cases the array of characters myword is declared
with a size of 6 elements of type char: the 5 characters
that compose the word "Hello" plus a final null character
('\0') which specifies the end of the sequence and that,
in the second case, when using double quotes (") it is
appended automatically.

Please notice that we are talking about initializing an
array of characters in the moment it is being declared,
and not about assigning values to them once they have
already been declared. In fact because this type of
null-terminated arrays of characters are regular arrays
we have the same restrictions that we have with any

- 67 -

other array, so we are not able to copy blocks of data
with an assignment operation.

Assuming mystext is a char[] variable, expressions
within a source code like:

mystext = "Hello";
mystext[] = "Hello";

would not be valid, like neither would be:

mystext = { 'H', 'e', 'l', 'l', 'o', '\0' };

The reason for this may become more comprehensible
once you know a bit more about pointers, since then it
will be clarified that an array is in fact a constant pointer
pointing to a block of memory.

Using null-terminated
sequences of characters

Null-terminated sequences of characters are the natural
way of treating strings in C++, so they can be used as
such in many procedures. In fact, regular string literals
have this type (char[]) and can also be used in most
cases.

For example, cin and cout support null-terminated
sequences as valid containers for sequences of
characters, so they can be used directly to extract
strings of characters from cin or to insert them into
cout. For example:

// null-terminated sequences of
characters
#include <iostream>
using namespace std;

int main ()
{
 char question[] = "Please,
enter your first name: ";
 char greeting[] = "Hello, ";
 char yourname [80];
 cout << question;
 cin >> yourname;
 cout << greeting << yourname
<< "!";
 return 0;
}
Please, enter your first name:
John
Hello, John!

- 68 -

As you can see, we have declared three arrays of char
elements. The first two were initialized with string literal
constants, while the third one was left uninitialized. In
any case, we have to speficify the size of the array: in
the first two (question and greeting) the size was
implicitly defined by the length of the literal constant
they were initialized to. While for yourname we have
explicitly specified that it has a size of 80 chars.

Finally, sequences of characters stored in char arrays
can easily be converted into string objects just by
using the assignment operator:

string mystring;
char myntcs[]="some text";
mystring = myntcs;

	10. Character Sequences
	Initialization of null-terminated �character sequences
	Using null-terminated �sequences of characters

