
- 69 -

Compound Data Types:

11. Pointers

We have already seen how variables are seen as
memory cells that can be accessed using their identifiers.
This way we did not have to care about the physical
location of our data within memory, we simply used its
identifier whenever we wanted to refer to our variable.

The memory of your computer can be imagined as a
succession of memory cells, each one of the minimal size
that computers manage (one byte). These single-byte
memory cells are numbered in a consecutive way, so as,
within any block of memory, every cell has the same
number as the previous one plus one.

This way, each cell can be easily located in the memory
because it has a unique address and all the memory
cells follow a successive pattern. For example, if we are
looking for cell 1776 we know that it is going to be right
between cells 1775 and 1777, exactly one thousand
cells after 776 and exactly one thousand cells before
cell 2776.

Reference operator (&)

As soon as we declare a variable, the amount of memory
needed is assigned for it at a specific location in memory
(its memory address). We generally do not actively
decide the exact location of the variable within the panel
of cells that we have imagined the memory to be
- Fortunately, that is a task automatically performed by
the operating system during runtime. However, in some
cases we may be interested in knowing the address
where our variable is being stored during runtime in
order to operate with relative positions to it.

The address that locates a variable within memory is
what we call a reference to that variable. This reference
to a variable can be obtained by preceding the identifier
of a variable with an ampersand sign (&), known as
reference operator, and which can be literally translated
as "address of". For example:

ted = &andy;

This would assign to ted the address of variable andy,
since when preceding the name of the variable andy with

- 70 -

the reference operator (&) we are no longer talking about
the content of the variable itself, but about its reference
(i.e., its address in memory).

For now on we are going to assume that andy is placed
during runtime in the memory address 1776. This number
(1776) is just and arbitrary assumption we are inventing
right now in order to help clarify some concepts in this
tutorial, but in reality, we cannot know before runtime
the real value the address of a variable will have in
memory.

Consider the following code fragment:

andy = 25;
fred = andy;
ted = &andy;

The values contained in each variable after the execution
of this, are shown in the following diagram:

First, we have assigned the value 25 to andy (a variable
whose address in memory we have assumed to be 1776).

The second statement copied to fred the content of
variable andy (which is 25). This is a standard
assignment operation, as we have done so many
times before.

Finally, the third statement copies to ted not the value
contained in andy but a reference to it (i.e., its address,
which we have assumed to be 1776). The reason is that
in this third assignment operation we have preceded the
identifier andy with the reference operator (&), so we
were no longer referring to the value of andy but to its
reference (its address in memory).

The variable that stores the reference to another variable
(like ted in the previous example) is what we call
a pointer. Pointers are a very powerful feature of the
C++ language that has many uses in advanced
programming. Farther ahead, we will see how this type
of variable is used and declared.

Dereference operator (*)

We have just seen that a variable which stores a
reference to another variable is called a pointer. Pointers

- 71 -

are said to "point to" the variable whose reference they
store.

Using a pointer we can directly access the value stored
in the variable which it points to. To do this, we simply
have to precede the pointer's identifier with an asterisk
(*), which acts as dereference operator and that can be
literally translated to "value pointed by".

Therefore, following with the values of the previous
example, if we write:

beth = *ted;

(that we could read as: "beth equal to value pointed
by ted") beth would take the value 25, since ted is
1776, and the value pointed by 1776 is 25.

You must clearly differentiate that the expression ted
refers to the value 1776, while *ted (with an asterisk
* preceding the identifier) refers to the value stored at
address 1776, which in this case is 25. Notice the
difference of including or not including the dereference
operator (I have included an explanatory commentary
of how each of these two expressions could be read):

beth = ted; // beth equal to ted (1776)
beth = *ted; // beth equal to value pointed by ted (25)

Notice the difference between the reference and
dereference operators:

• & is the reference operator and can be read
as "address of"

• * is the dereference operator and can be read
as "value pointed by"

Thus, they have complementary (or opposite) meanings.
A variable referenced with & can be dereferenced with *.

Earlier we performed the following two assignment
operations:

- 72 -

andy = 25;
ted = &andy;

Right after these two statements, all of the following
expressions would give true as result:

andy == 25
&andy == 1776
ted == 1776
*ted == 25

The first expression is quite clear considering that the
assignment operation performed on andy was andy=25.
The second one uses the reference operator (&), which
returns the address of variable andy, which we assumed
it to have a value of 1776. The third one is somewhat
obvious since the second expression was true and the
assignment operation performed on ted was ted=&andy.
The fourth expression uses the dereference operator (*)
that, as we have just seen, can be read as "value
pointed by", and the value pointed by ted is indeed 25.

So, after all that, you may also infer that for as long as
the address pointed by ted remains unchanged the
following expression will also be true:

*ted == andy

Declaring variables of pointer types

Due to the ability of a pointer to directly refer to the
value that it points to, it becomes necessary to specify
in its declaration which data type a pointer is going
point to. It is not the same thing to point to a char than
to point to an int or a float.

The declaration of pointers follows this format:

type * name;

where type is the data type of the value that the pointer
is intended to point to. This type is not the type of the
pointer itself! but the type of the data the pointer points
to. For example:

int * number;
char * character;
float * greatnumber;

These are three declarations of pointers. Each one is
intended to point to a different data type, but in fact all
of them are pointers and all of them will occupy the same
amount of space in memory (the size in memory of a
pointer depends on the platform where the code is going
to run). Nevertheless, the data to which they point to do
not occupy the same amount of space nor are of the

- 73 -

same type: the first one points to an int, the second
one to a char and the last one to a float. Therefore,
although these three example variables are all of them
pointers which occupy the same size in memory, they
are said to have different types: int*, char* and
float* respectively, depending on the type they
point to.

I want to emphasize that the asterisk sign (*) that we
use when declaring a pointer only means that it is a
pointer (it is part of its type compound specifier), and
should not be confused with the dereference operator
that we have seen a bit earlier, but which is also written
with an asterisk (*). They are simply two different things
represented with the same sign.

Now have a look at this code:

// my first pointer
#include <iostream>
using namespace std;

int main ()
{
 int firstvalue, secondvalue;
 int * mypointer;

 mypointer = &firstvalue;
 *mypointer = 10;
 mypointer = &secondvalue;
 *mypointer = 20;
 cout << "firstvalue is " <<
firstvalue << endl;
 cout << "secondvalue is " <<
secondvalue << endl;
 return 0;
}
firstvalue is 10
secondvalue is 20

Notice that even though we have never directly set a
value to either firstvalue or secondvalue, both end
up with a value set indirectly through the use of
mypointer. This is the procedure:

First, we have assigned as value of mypointer a
reference to firstvalue using the reference operator
(&). And then we have assigned the value 10 to the
memory location pointed by mypointer, that because
at this moment is pointing to the memory location of
firstvalue, this in fact modifies the value
of firstvalue.

In order to demonstrate that a pointer may take several
different values during the same program I have
repeated the process with secondvalue and that same
pointer, mypointer.

- 74 -

Here is an example a little bit more elaborated:

// more pointers
#include <iostream>
using namespace std;

int main ()
{
 int firstvalue = 5,
secondvalue = 15;
 int * p1, * p2;

 p1 = &firstvalue; // p1 =
address of firstvalue
 p2 = &secondvalue; // p2 =
address of secondvalue
 *p1 = 10; // value
pointed by p1 = 10
 *p2 = *p1; // value
pointed by p2 = value pointed by
p1
 p1 = p2; // p1 = p2
(value of pointer is copied)
 *p1 = 20; // value
pointed by p1 = 20

 cout << "firstvalue is " <<
firstvalue << endl;
 cout << "secondvalue is " <<
secondvalue << endl;
 return 0;
}
firstvalue is 10
secondvalue is 20

I have included as a comment on each line how the code
can be read: ampersand (&) as "address of" and asterisk
(*) as "value pointed by".

Notice that there are expressions with pointers p1 and p2,
both with and without dereference operator (*). The
meaning of an expression using the dereference
operator (*) is very different from one that does not:
When this operator precedes the pointer name, the
expression refers to the value being pointed, while
when a pointer name appears without this operator,
it refers to the value of the pointer itself (i.e. the
address of what the pointer is pointing to).

Another thing that may call your attention is the line:

int * p1, * p2;

This declares the two pointers used in the previous
example. But notice that there is an asterisk (*) for each
pointer, in order for both to have type int* (pointer
to int).

- 75 -

Otherwise, the type for the second variable declared in
that line would have been int (and not int*) because
of precedence relationships. If we had written:

int * p1, p2;

p1 would indeed have int* type, but p2 would have
type int (spaces do not matter at all for this purpose).
This is due to operator precedence rules. But anyway,
simply remembering that you have to put one asterisk
per pointer is enough for most pointer users.

Pointers and arrays

The concept of array is very much bound to the one of
pointer. In fact, the identifier of an array is equivalent
to the address of its first element, as a pointer is
equivalent to the address of the first element that it
points to, so in fact they are the same concept.
For example, supposing these two declarations:

int numbers [20];
int * p;

The following assignment operation would be valid:

p = numbers;

After that, p and numbers would be equivalent and
would have the same properties. The only difference is
that we could change the value of pointer p by another
one, whereas numbers will always point to the first of
the 20 elements of type int with which it was defined.
Therefore, unlike p, which is an ordinary pointer,
numbers is an array, and an array can be considered
a constant pointer. Therefore, the following allocation
would not be valid:

numbers = p;

Because numbers is an array, so it operates as a
constant pointer, and we cannot assign values to
constants.

Due to the characteristics of variables, all expressions
that include pointers in the following example are
perfectly valid:

// more pointers
#include <iostream>
using namespace std;

int main ()
{
 int numbers[5];
 int * p;

- 76 -

 p = numbers; *p = 10;
 p++; *p = 20;
 p = &numbers[2]; *p = 30;
 p = numbers + 3; *p = 40;
 p = numbers; *(p+4) = 50;
 for (int n=0; n<5; n++)
 cout << numbers[n] << ", ";
 return 0;
}
10, 20, 30, 40, 50,

In the chapter about arrays we used brackets ([])
several times in order to specify the index of an element
of the array to which we wanted to refer. Well, these
bracket sign operators [] are also a dereference
operator known as offset operator. They dereference the
variable they follow just as * does, but they also add the
number between brackets to the address being
dereferenced. For example:

a[5] = 0; // a [offset of 5] = 0
*(a+5) = 0; // pointed by (a+5) = 0

These two expressions are equivalent and valid both
if a is a pointer or if a is an array.

Pointer initialization

When declaring pointers we may want to explicitly
specify which variable we want them to point to:

int number;
int *tommy = &number;

The behavior of this code is equivalent to:

int number;
int *tommy;
tommy = &number;

When a pointer initialization takes place we are always
assigning the reference value to where the pointer
points (tommy), never the value being pointed (*tommy).
You must consider that at the moment of declaring a
pointer, the asterisk (*) indicates only that it is a pointer,
it is not the dereference operator (although both use the
same sign: *). Remember, they are two different
functions of one sign. Thus, we must take care not to
confuse the previous code with:

int number;
int *tommy;
*tommy = &number;

that is incorrect, and anyway would not have much
sense in this case if you think about it.

- 77 -

As in the case of arrays, the compiler allows the special
case that we want to initialize the content at which the
pointer points with constants at the same moment the
pointer is declared:

char * terry = "hello";

In this case, memory space is reserved to contain
"hello" and then a pointer to the first character of this
memory block is assigned to terry. If we imagine that
"hello" is stored at the memory locations that start at
addresses 1702, we can represent the previous
declaration as:

It is important to indicate that terry contains the value
1702, and not 'h' nor "hello", although 1702 indeed
is the address of both of these.

The pointer terry points to a sequence of characters
and can be read as if it was an array (remember that
an array is just like a constant pointer). For example,
we can access the fifth element of the array with any
of these two expression:

*(terry+4)
terry[4]

Both expressions have a value of 'o' (the fifth element
of the array).

Pointer arithmetics

To conduct arithmetical operations on pointers is a little
different than to conduct them on regular integer data
types. To begin with, only addition and subtraction
operations are allowed to be conducted with them, the
others make no sense in the world of pointers. But both
addition and subtraction have a different behavior with
pointers according to the size of the data type to which
they point.

When we saw the different fundamental data types,
we saw that some occupy more or less space than
others in the memory. For example, let's assume that in
a given compiler for a specific machine, char takes 1
byte, short takes 2 bytes and long takes 4.

Suppose that we define three pointers in this compiler:

- 78 -

char *mychar;
short *myshort;
long *mylong;

and that we know that they point to memory locations
1000, 2000 and 3000 respectively.

So if we write:

mychar++;
myshort++;
mylong++;

mychar, as you may expect, would contain the value 1001.
But not so obviously, myshort would contain the value
2002, and mylong would contain 3004, even though
they have each been increased only once. The reason
is that when adding one to a pointer we are making it
to point to the following element of the same type with
which it has been defined, and therefore the size in
bytes of the type pointed is added to the pointer.

This is applicable both when adding and subtracting any
number to a pointer. It would happen exactly the same
if we write:

mychar = mychar + 1;
myshort = myshort + 1;
mylong = mylong + 1;

Both the increase (++) and decrease (--) operators
have greater operator precedence than the dereference
operator (*), but both have a special behavior when
used as suffix (the expression is evaluated with the
value it had before being increased). Therefore, the
following expression may lead to confusion:

*p++

Because ++ has greater precedence than *, this

- 79 -

expression is equivalent to *(p++). Therefore, what it
does is to increase the value of p (so it now points to
the next element), but because ++ is used as postfix
the whole expression is evaluated as the value pointed
by the original reference (the address the pointer
pointed to before being increased).

Notice the difference with:

(*p)++

Here, the expression would have been evaluated as the
value pointed by p increased by one. The value of p (the
pointer itself) would not be modified (what is being
modified is what it is being pointed to by this pointer).

If we write:

*p++ = *q++;

Because ++ has a higher precedence than *, both p and
q are increased, but because both increase operators
(++) are used as postfix and not prefix, the value
assigned to *p is *q before both p and q are increased.
And then both are increased. It would be roughly
equivalent to:

*p = *q;
++p;
++q;

Like always, I recommend you to use parentheses ()
in order to avoid unexpected results and to give more
legibility to the code.

Pointers to pointers

C++ allows the use of pointers that point to pointers,
that these, in its turn, point to data (or even to other
pointers). In order to do that, we only need to add an
asterisk (*) for each level of reference in their
declarations:

char a;
char * b;
char ** c;
a = 'z';
b = &a;
c = &b;

This, supposing the randomly chosen memory locations
for each variable of 7230, 8092 and 10502, could
be represented as:

- 80 -

The value of each variable is written inside each cell;
under the cells are their respective addresses in memory.

The new thing in this example is variable c, which can be
used in three different levels of indirection, each one of
them would correspond to a different value:

• c has type char** and a value of 8092

• *c has type char* and a value of 7230

• **c has type char and a value of 'z'

void pointers

The void type of pointer is a special type of pointer. In
C++, void represents the absence of type, so void
pointers are pointers that point to a value that has no
type (and thus also an undetermined length and
undetermined dereference properties).

This allows void pointers to point to any data type, from
an integer value or a float to a string of characters. But
in exchange they have a great limitation: the data
pointed by them cannot be directly dereferenced (which
is logical, since we have no type to dereference to), and
for that reason we will always have to change the type
of the void pointer to some other pointer type that
points to a concrete data type before dereferencing it.
This is done by performing type-castings.

One of its uses may be to pass generic parameters
to a function:

// increaser
#include <iostream>
using namespace std;

void increase (void* data, int
size)
{
 switch (size)
 {
 case sizeof(char) :
(*((char*)data))++; break;
 case sizeof(int) :
(*((int*)data))++; break;
 }
}

int main ()

- 81 -

{
 char a = 'x';
 int b = 1602;
 increase (&a,sizeof(a));
 increase (&b,sizeof(b));
 cout << a << ", " << b <<
endl;
 return 0;
}
y, 1603

sizeof is an operator integrated in the C++ language
that returns the size in bytes of its parameter. For
non-dynamic data types this value is a constant.
Therefore, for example, sizeof(char) is 1, because
char type is one byte long.

Null pointer

A null pointer is a regular pointer of any pointer type
which has a special value that indicates that it is not
pointing to any valid reference or memory address. This
value is the result of type-casting the integer value zero
to any pointer type.

int * p;
p = 0; // p has a null pointer value

Do not confuse null pointers with void pointers. A null
pointer is a value that any pointer may take to
represent that it is pointing to "nowhere", while a
void pointer is a special type of pointer that can point
to somewhere without a specific type. One refers to the
value stored in the pointer itself and the other to the
type of data it points to.

Pointers to functions

C++ allows operations with pointers to functions. The
typical use of this is for passing a function as an
argument to another function, since these cannot be
passed dereferenced. In order to declare a pointer to a
function we have to declare it like the prototype of the
function except that the name of the function is
enclosed between parentheses () and an asterisk (*)
is inserted before the name:

// pointer to functions
#include <iostream>
using namespace std;

int addition (int a, int b)
{ return (a+b); }

int subtraction (int a, int b)
{ return (a-b); }

int operation (int x, int y, int

- 82 -

(*functocall)(int,int))
{
 int g;
 g = (*functocall)(x,y);
 return (g);
}

int main ()
{
 int m,n;
 int (*minus)(int,int) =
subtraction;

 m = operation (7, 5,
addition);
 n = operation (20, m, minus);
 cout <<n;
 return 0;
}
8

In the example, minus is a pointer to a function that has
two parameters of type int. It is immediately assigned
to point to the function subtraction, all in a single line:

int (* minus)(int,int) = subtraction;

	11. Pointers
	Reference operator (&)
	Dereference operator (*)
	Declaring variables of pointer types
	Pointers and arrays
	Pointer initialization
	Pointer arithmetics
	Pointers to pointers
	void pointers
	Null pointer
	Pointers to functions

