
- 83 -

Compound Data Types:

12. Dynamic Memory

Until now, in all our programs, we have only had as
much memory available as we declared for our variables,
having the size of all of them to be determined in the
source code, before the execution of the program. But,
what if we need a variable amount of memory that can
only be determined during runtime? For example, in the
case that we need some user input to determine the
necessary amount of memory space.

The answer is dynamic memory, for which C++ integrates
the operators new and delete.

Operators new and new[]

In order to request dynamic memory we use the operator
new. new is followed by a data type specifier and -if a
sequence of more than one element is required- the
number of these within brackets []. It returns a pointer
to the beginning of the new block of memory allocated.
Its form is:

pointer = new type
pointer = new type [number_of_elements]

The first expression is used to allocate memory to
contain one single element of type type. The second one
is used to assign a block (an array) of elements of type
type, where number_of_elements is an integer value
representing the amount of these. For example:

int * bobby;
bobby = new int [5];

In this case, the system dynamically assigns space for
five elements of type int and returns a pointer to the
first element of the sequence, which is assigned to bobby.
Therefore, now, bobby points to a valid block of memory
with space for five elements of type int.

- 84 -

The first element pointed by bobby can be accessed
either with the expression bobby[0] or the expression
*bobby. Both are equivalent as has been explained in
the section about pointers. The second element can be
accessed either with bobby[1] or *(bobby+1) and
so on...

You could be wondering the difference between declaring
a normal array and assigning dynamic memory to a pointer,
as we have just done. The most important difference is
that the size of an array has to be a constant value,
which limits its size to what we decide at the moment
of designing the program, before its execution, whereas
the dynamic memory allocation allows us to assign
memory during the execution of the program (runtime)
using any variable or constant value as its size.

The dynamic memory requested by our program is
allocated by the system from the memory heap. However,
computer memory is a limited resource, and it can be
exhausted. Therefore, it is important to have some
mechanism to check if our request to allocate memory
was successful or not.

C++ provides two standard methods to check if the
allocation was successful:

One is by handling exceptions. Using this method an
exception of type bad_alloc is thrown when the
allocation fails. Exceptions are a powerful C++ feature
explained later in these tutorials. But for now you should
know that if this exception is thrown and it is not
handled by a specific handler, the program execution
is terminated.

This exception method is the default method used by
new, and is the one used in a declaration like:

bobby = new int [5];

 // if it fails an exception is thrown

The other method is known as nothrow, and what
happens when it is used is that when a memory
allocation fails, instead of throwing a bad_alloc
exception or terminating the program, the pointer
returned by new is a null pointer, and the program
continues its execution.

This method can be specified by using a special object
called nothrow as parameter for new:

bobby = new (nothrow) int [5];

In this case, if the allocation of this block of memory
failed, the failure could be detected by checking if bobby
took a null pointer value:

- 85 -

int * bobby;
bobby = new (nothrow) int [5];
if (bobby == 0) {
 // error assigning memory. Take measures.
 };

This nothrow method requires more work than the
exception method, since the value returned has to be
checked after each and every memory allocation, but I
will use it in our examples due to its simplicity. Anyway
this method can become tedious for larger projects,
where the exception method is generally preferred. The
exception method will be explained in detail later in this
tutorial.

Operator delete and delete[]

Since the necessity of dynamic memory is usually limited
to specific moments within a program, once it is no longer
needed it should be freed so that the memory becomes
available again for other requests of dynamic memory.
This is the purpose of the operator delete,
whose format is:

delete pointer;
delete [] pointer;

The first expression should be used to delete memory
allocated for a single element, and the second one for
memory allocated for arrays of elements.

The value passed as argument to delete must be either
a pointer to a memory block previously allocated with
new, or a null pointer (in the case of a null pointer,
delete produces no effect).

// rememb-o-matic
#include <iostream>
using namespace std;

int main ()
{
 int i,n;
 int * p;
 cout << "How many numbers
would you like to type? ";
 cin >> i;
 p= new (nothrow) int[i];
 if (p == 0)
 cout << "Error: memory could
not be allocated";
 else
 {
 for (n=0; n<i; n++)
 {
 cout << "Enter number: ";
 cin >> p[n];
 }

- 86 -

 cout << "You have entered:
";
 for (n=0; n<i; n++)
 cout << p[n] << ", ";
 delete[] p;
 }
 return 0;
}
How many numbers would you like
to type? 5
Enter number : 75
Enter number : 436
Enter number : 1067
Enter number : 8
Enter number : 32
You have entered: 75, 436, 1067,
8, 32,

Notice how the value within brackets in the new
statement is a variable value entered by the user
(i), not a constant value:

p= new (nothrow) int[i];

But the user could have entered a value for i so big that
our system could not handle it. For example, when I
tried to give a value of 1 billion to the "How many
numbers" question, my system could not allocate that
much memory for the program and I got the text message
we prepared for this case (Error: memory could not
be allocated). Remember that in the case that we
tried to allocate the memory without specifying the
nothrow parameter in the new expression, an exception
would be thrown, which if it's not handled terminates
the program.

It is a good practice to always check if a dynamic memory
block was successfully allocated. Therefore, if you use
the nothrow method, you should always check the
value of the pointer returned. Otherwise, use the
exception method, even if you do not handle the
exception. This way, the program will terminate at that
point without causing the unexpected results of
continuing executing a code that assumes a block of
memory to have been allocated when in fact it has not.

Dynamic memory in ANSI-C

Operators new and delete are exclusive of C++. They
are not available in the C language. But using pure C
language, dynamic memory can also be used through
the functions malloc, calloc, realloc and free, defined in
the <cstdlib> header file, and since C++ is a superset
of C, these functions are also available to C++
programmers (see cstdlib for more info).

The memory blocks allocated by these functions are not
necessarily compatible with those returned by new, so

http://www.cplusplus.com/malloc
http://www.cplusplus.com/calloc
http://www.cplusplus.com/realloc
http://www.cplusplus.com/free
http://www.cplusplus.com/cstdlib

- 87 -

each one should be manipulated with its own set of
functions or operators.

	12. Dynamic Memory
	Operators new and new[]
	Operator delete and delete[]
	Dynamic memory in ANSI-C

