
- 95 -

Compound Data Types:

14. Other Data Types

Defined data types (typedef)

C++ allows the definition of our own types based on
other existing data types. We can do this using the
keyword typedef, whose format is:

typedef existing_type new_type_name ;

where existing_type is a C++ fundamental or
compound type and new_type_name is the name for the
new type we are defining. For example:

typedef char C;
typedef unsigned int WORD;
typedef char * pChar;
typedef char field [50];

In this case we have defined four data types: C, WORD,
pChar and field as char, unsigned int, char* and
char[50] respectively, that we could perfectly use in
declarations later as any other valid type:

C mychar, anotherchar, *ptc1;
WORD myword;
pChar ptc2;
field name;

typedef does not create different types. It only creates
synonyms of existing types. That means that the type of
myword can be considered to be either WORD or
unsigned int, since both are in fact the same type.

typedef can be useful to define an alias for a type that
is frequently used within a program. It is also useful to
define types when it is possible that we will need to
change the type in later versions of our program, or if a
type you want to use has a name that is too long or
confusing.

Unions

Unions allow one same portion of memory to be
accessed as different data types, since all of them are in

- 96 -

fact the same location in memory. Its declaration and
use is similar to the one of structures but its functionality
is totally different:

union union_name {
 member_type1 member_name1;
 member_type2 member_name2;
 member_type3 member_name3;
 .
 .
} object_names;

All the elements of the union declaration occupy the
same physical space in memory. Its size is the one of the
greatest element of the declaration. For example:

union mytypes_t {
 char c;
 int i;
 float f;
 } mytypes;

defines three elements:

mytypes.c
mytypes.i
mytypes.f

each one with a different data type. Since all of them are
referring to the same location in memory, the modification
of one of the elements will affect the value of all of them.
We cannot store different values in them independent
from each other.

One of the uses a union may have is to unite an
elementary type with an array or structures of smaller
elements. For example:

union mix_t {
 long l;
 struct {
 short hi;
 short lo;
 } s;
 char c[4];
} mix;

defines three names that allow to access the same
group of 4 bytes: mix.l, mix.s and mix.c and which
we can use according to how we want to access these
bytes, as if they were a single long-type data, as if
they were two short elements or as an array of char
elements, respectively. I have mixed types, arrays and
structures in the union so that you can see the different
ways that we can access the data. For a little-endian
system (most PC platforms), this union could be
represented as:

- 97 -

The exact alignment and order of the members of a
union in memory is platform dependant. Therefore be
aware of possible portability issues with this type of use.

Anonymous unions

In C++ we have the option to declare anonymous unions.
If we declare a union without any name, the union will
be anonymous and we will be able to access its members
directly by their member names. For example, look at the
difference between these two structure declarations:

structure with regular union structure with anonymous union
struct {
 char title[50];
 char author[50];
 union {
 float dollars;
 int yens;
 } price;
} book;

struct {
 char title[50];
 char author[50];
 union {
 float dollars;
 int yens;
 };
} book;

The only difference between the two pieces of code is
that in the first one we have given a name to the union
(price) and in the second one we have not. The
difference is seen when we access the members
dollars and yens of an object of this type. For an
object of the first type, it would be:

book.price.dollars
book.price.yens

whereas for an object of the second type, it would be:

book.dollars
book.yens

Once again I remind you that because it is a union and
not a struct, the members dollars and yens occupy the
same physical space in the memory so they cannot be
used to store two different values simultaneously. You
can set a value for price in dollars or in yens, but
not in both.

Enumerations (enum)

Enumerations create new data types to contain
something different that is not limited to the values

- 98 -

fundamental data types may take. Its form is the
following:

enum enumeration_name {
 value1,
 value2,
 value3,
 .
 .
} object_names;

For example, we could create a new type of variable
called color to store colors with the following
declaration:

enum colors_t {black, blue, green, cyan,

red, purple, yellow, white};

Notice that we do not include any fundamental data type
in the declaration. To say it somehow, we have created
a whole new data type from scratch without basing it on
any other existing type. The possible values that
variables of this new type color_t may take are the
new constant values included within braces. For example,
once the colors_t enumeration is declared the following
expressions will be valid:

colors_t mycolor;

mycolor = blue;
if (mycolor == green) mycolor = red;

Enumerations are type compatible with numeric
variables, so their constants are always assigned an
integer numerical value internally. If it is not specified,
the integer value equivalent to the first possible value is
equivalent to 0 and the following ones follow a +1
progression. Thus, in our data type colors_t that we
have defined above, black would be equivalent to 0,
blue would be equivalent to 1, green to 2, and so on.

We can explicitly specify an integer value for any of the
constant values that our enumerated type can take.
If the constant value that follows it is not given an
integer value, it is automatically assumed the same value
as the previous one plus one. For example:

enum months_t { january=1, february, march,

 april, may, june, july,

august, september, october,

 november, december} y2k;

In this case, variable y2k of enumerated type months_t
can contain any of the 12 possible values that go from

- 99 -

january to december and that are equivalent to values
between 1 and 12 (not between 0 and 11, since we
have made january equal to 1).

	14. Other Data Types
	Defined data types (typedef)
	Unions
	Anonymous unions
	Enumerations (enum)

