
- 100 -

Object Oriented Programming:

15. Classes (I)

A class is an expanded concept of a data structure:
instead of holding only data, it can hold both data and
functions.

An object is an instantiation of a class. In terms of
variables, a class would be the type, and an object
would be the variable.

Classes are generally declared using the keyword class,
with the following format:

class class_name {
 access_specifier_1:
 member1;
 access_specifier_2:
 member2;
 ...
 } object_names;

Where class_name is a valid identifier for the class,
object_names is an optional list of names for objects of
this class. The body of the declaration can contain
members, that can be either data or function declarations,
and optionally access specifiers.

All is very similar to the declaration on data structures,
except that we can now include also functions and
members, but also this new thing called access specifier.
An access specifier is one of the following three
keywords: private, public or protected. These
specifiers modify the access rights that the members
following them acquire:

• private members of a class are accessible only
from within other members of the same class or
from their friends.

• protected members are accessible from
members of their same class and from their friends,
but also from members of their derived classes.

• Finally, public members are accessible from
anywhere where the object is visible.

By default, all members of a class declared with the
class keyword have private access for all its members.
Therefore, any member that is declared before one other
class specifier automatically has private access.

- 101 -

For example:

class CRectangle {
 int x, y;
 public:
 void set_values (int,int);
 int area (void);
 } rect;

Declares a class (i.e., a type) called CRectangle and an
object (i.e., a variable) of this class called rect. This
class contains four members: two data members of type
int (member x and member y) with private access
(because private is the default access level) and two
member functions with public access: set_values()
and area(), of which for now we have only included
their declaration, not their definition.

Notice the difference between the class name and the
object name: In the previous example, CRectangle was
the class name (i.e., the type), whereas rect was an
object of type CRectangle. It is the same relationship
int and a have in the following declaration:

int a;

where int is the type name (the class) and a is the
variable name (the object).

After the previous declarations of CRectangle and rect,
we can refer within the body of the program to any of
the public members of the object rect as if they were
normal functions or normal variables, just by putting the
object's name followed by a dot (.) and then the name
of the member. All very similar to what we did with plain
data structures before. For example:

rect.set_values (3,4);
myarea = rect.area();

The only members of rect that we cannot access from
the body of our program outside the class are x and y,
since they have private access and they can only be
referred from within other members of that same class.

Here is the complete example of class CRectangle:

// classes example
#include <iostream>
using namespace std;

class CRectangle {
 int x, y;
 public:
 void set_values (int,int);
 int area () {return (x*y);}
};

- 102 -

void CRectangle::set_values (int
a, int b) {
 x = a;
 y = b;
}

int main () {
 CRectangle rect;
 rect.set_values (3,4);
 cout << "area: " <<
rect.area();
 return 0;
}
area: 12

The most important new thing in this code is the operator
of scope (::, two colons) included in the definition of
set_values(). It is used to define a member of a class
from outside the class declaration itself.

You may notice that the definition of the member function
area() has been included directly within the definition of
the CRectangle class given its extreme simplicity,
whereas set_values() has only its prototype declared
within the class, but its definition is outside it. In this
outside declaration, we must use the operator of scope
(::) to specify that we are defining a function that is a
member of the class CRectangle and not a regular
global function.

The scope operator (::) specifies the class to which the
member being declared belongs, granting exactly the
same scope properties as if this function definition was
directly included within the class definition. For example,
in the function set_values() of the previous code, we
have been able to use the variables x and y, which are
private members of class CRectangle, which means
they are only accessible from other members of their
class.

The only difference between defining a class member
function completely within its class and to include only
the prototype and later its definition, is that in the first
case the function will automatically be considered an
inline member function by the compiler, while in the
second it will be a normal (not-inline) class member
function, which in fact supposes no difference in behavior.

Members x and y have private access (remember that if
nothing else is said, all members of a class defined with
keyword class have private access). By declaring them
private we deny access to them from anywhere outside
the class. This makes sense, since we have already
defined a member function to set values for those
members within the object: the member function
set_values(). Therefore, the rest of the program does
not need to have direct access to them. Perhaps in a so
simple example as this, it is difficult to see an utility in
protecting those two variables, but in greater projects

- 103 -

it may be very important that values cannot be modified
in an unexpected way (unexpected from the point of
view of the object).

One of the greater advantages of a class is that, as any
other type, we can declare several objects of it. For
example, following with the previous example of class
CRectangle, we could have declared the object rectb
in addition to the object rect:

// example: one class, two
objects
#include <iostream>
using namespace std;

class CRectangle {
 int x, y;
 public:
 void set_values (int,int);
 int area () {return (x*y);}
};

void CRectangle::set_values (int
a, int b) {
 x = a;
 y = b;
}

int main () {
 CRectangle rect, rectb;
 rect.set_values (3,4);
 rectb.set_values (5,6);
 cout << "rect area: " <<
rect.area() << endl;
 cout << "rectb area: " <<
rectb.area() << endl;
 return 0;
}
rect area: 12
rectb area: 30

In this concrete case, the class (type of the objects) to
which we are talking about is CRectangle, of which there
are two instances or objects: rect and rectb. Each one
of them has its own member variables and member
functions.

Notice that the call to rect.area() does not give the
same result as the call to rectb.area(). This is because
each object of class CRectangle has its own variables
x and y, as they, in some way, have also their own
function members set_value() and area() that each
uses its object's own variables to operate.

That is the basic concept of object-oriented programming:
Data and functions are both members of the object. We
no longer use sets of global variables that we pass from
one function to another as parameters, but instead we
handle objects that have their own data and functions

- 104 -

embedded as members. Notice that we have not had to
give any parameters in any of the calls to rect.area or
rectb.area. Those member functions directly used the
data members of their respective objects rect and rectb.

Constructors and destructors

Objects generally need to initialize variables or assign
dynamic memory during their process of creation to
become operative and to avoid returning unexpected
values during their execution. For example, what would
happen if in the previous example we called the member
function area() before having called function
set_values()? Probably we would have gotten an
undetermined result since the members x and y would
have never been assigned a value.

In order to avoid that, a class can include a special
function called constructor, which is automatically
called whenever a new object of this class is created.
This constructor function must have the same name as
the class, and cannot have any return type;
not even void.

We are going to implement CRectangle including a
constructor:

// example: class constructor
#include <iostream>
using namespace std;

class CRectangle {
 int width, height;
 public:
 CRectangle (int,int);
 int area () {return
(width*height);}
};

CRectangle::CRectangle (int a,
int b) {
 width = a;
 height = b;
}

int main () {
 CRectangle rect (3,4);
 CRectangle rectb (5,6);
 cout << "rect area: " <<
rect.area() << endl;
 cout << "rectb area: " <<
rectb.area() << endl;
 return 0;
}
rect area: 12
rectb area: 30

As you can see, the result of this example is identical to

- 105 -

the previous one. But now we have removed the member
function set_values(), and have included instead a
constructor that performs a similar action: it initializes the
values of x and y with the parameters that are
passed to it.

Notice how these arguments are passed to the
constructor at the moment at which the objects of this
class are created:

CRectangle rect (3,4);
CRectangle rectb (5,6);

Constructors cannot be called explicitly as if they were
regular member functions. They are only executed when
a new object of that class is created.

You can also see how neither the constructor prototype
declaration (within the class) nor the latter constructor
definition include a return value; not even void.

The destructor fulfills the opposite functionality. It is
automatically called when an object is destroyed, either
because its scope of existence has finished (for example,
if it was defined as a local object within a function and
the function ends) or because it is an object dynamically
assigned and it is released using the operator delete.

The destructor must have the same name as the class,
but preceded with a tilde sign (~) and it must also
return no value.

The use of destructors is especially suitable when an
object assigns dynamic memory during its lifetime and at
the moment of being destroyed we want to release the
memory that the object was allocated.

// example on constructors and
destructors
#include <iostream>
using namespace std;

class CRectangle {
 int *width, *height;
 public:
 CRectangle (int,int);
 ~CRectangle ();
 int area () {return (*width
* *height);}
};

CRectangle::CRectangle (int a,
int b) {
 width = new int;
 height = new int;
 *width = a;
 *height = b;
}

- 106 -

CRectangle::~CRectangle () {
 delete width;
 delete height;
}

int main () {
 CRectangle rect (3,4), rectb
(5,6);
 cout << "rect area: " <<
rect.area() << endl;
 cout << "rectb area: " <<
rectb.area() << endl;
 return 0;
}
rect area: 12
rectb area: 30

Overloading Constructors

Like any other function, a constructor can also be
overloaded with more than one function that have the
same name but different types or number of parameters.
Remember that for overloaded functions the compiler will
call the one whose parameters match the arguments
used in the function call. In the case of constructors,
which are automatically called when an object is created,
the one executed is the one that matches the arguments
passed on the object declaration:

// overloading class
constructors
#include <iostream>
using namespace std;

class CRectangle {
 int width, height;
 public:
 CRectangle ();
 CRectangle (int,int);
 int area (void) {return
(width*height);}
};

CRectangle::CRectangle () {
 width = 5;
 height = 5;
}

CRectangle::CRectangle (int a,
int b) {
 width = a;
 height = b;
}

int main () {
 CRectangle rect (3,4);
 CRectangle rectb;
 cout << "rect area: " <<
rect.area() << endl;
 cout << "rectb area: " <<

- 107 -

rectb.area() << endl;
 return 0;
}
rect area: 12
rectb area: 25

In this case, rectb was declared without any arguments,
so it has been initialized with the constructor that has no
parameters, which initializes both width and height
with a value of 5.

Important: Notice how if we declare a new object and
we want to use its default constructor (the one without
parameters), we do not include parentheses ():

CRectangle rectb; // right
CRectangle rectb(); // wrong!

Default constructor

If you do not declare any constructors in a class definition,
the compiler assumes the class to have a default
constructor with no arguments. Therefore, after declaring
a class like this one:

class CExample {
 public:
 int a,b,c;
 void multiply (int n, int m) { a=n; b=m; c=a*b; };
 };

The compiler assumes that CExample has a default
constructor, so you can declare objects of this class by
simply declaring them without any arguments:

CExample ex;

But as soon as you declare your own constructor for a
class, the compiler no longer provides an implicit default
constructor. So you have to declare all objects of that
class according to the constructor prototypes you
defined for the class:

class CExample {
 public:
 int a,b,c;
 CExample (int n, int m) { a=n; b=m; };
 void multiply () { c=a*b; };
 };

Here we have declared a constructor that takes two
parameters of type int. Therefore the following object
declaration would be correct:

CExample ex (2,3);

- 108 -

But,

CExample ex;

Would not be correct, since we have declared the class
to have an explicit constructor, thus replacing the default
constructor.

But the compiler not only creates a default constructor
for you if you do not specify your own. It provides three
special member functions in total that are implicitly
declared if you do not declare your own. These are the
copy constructor, the copy assignment operator, and the
default destructor.

The copy constructor and the copy assignment operator
copy all the data contained in another object to the data
members of the current object. For CExample, the copy
constructor implicitly declared by the compiler would be
something similar to:

CExample::CExample (const CExample& rv) {
 a=rv.a; b=rv.b; c=rv.c;
 }

Therefore, the two following object declarations would
be correct:

CExample ex (2,3);
CExample ex2 (ex); // copy constructor (data copied from ex)

Pointers to classes

It is perfectly valid to create pointers that point to classes.
We simply have to consider that once declared, a class
becomes a valid type, so we can use the class name as
the type for the pointer. For example:

CRectangle * prect;

is a pointer to an object of class CRectangle.

As it happened with data structures, in order to refer
directly to a member of an object pointed by a pointer
we can use the arrow operator (->) of indirection. Here
is an example with some possible combinations:

// pointer to classes example
#include <iostream>
using namespace std;

class CRectangle {
 int width, height;
 public:
 void set_values (int, int);

- 109 -

 int area (void) {return
(width * height);}
};

void CRectangle::set_values (int
a, int b) {
 width = a;
 height = b;
}

int main () {
 CRectangle a, *b, *c;
 CRectangle * d = new
CRectangle[2];
 b= new CRectangle;
 c= &a;
 a.set_values (1,2);
 b->set_values (3,4);
 d->set_values (5,6);
 d[1].set_values (7,8);
 cout << "a area: " << a.area()
<< endl;
 cout << "*b area: " << b-
>area() << endl;
 cout << "*c area: " << c-
>area() << endl;
 cout << "d[0] area: " <<
d[0].area() << endl;
 cout << "d[1] area: " <<
d[1].area() << endl;
 delete[] d;
 delete b;
 return 0;
}
a area: 2
*b area: 12
*c area: 2
d[0] area: 30
d[1] area: 56

Next you have a summary on how can you read some
pointer and class operators (*, &, ., ->, []) that appear
in the previous example:

expression can be read as
*x pointed by x
&x address of x
x.y member y of object x
x->y member y of object pointed by x
(*x).y member y of object pointed by x (equivalent to the previous one)
x[0] first object pointed by x
x[1] second object pointed by x
x[n] (n+1)th object pointed by x

Be sure that you understand the logic under all of these
expressions before proceeding with the next sections.
If you have doubts, read again this section and/or

- 110 -

data structures.

Classes defined with struct and union

Classes can be defined not only with keyword class,
but also with keywords struct and union.

The concepts of class and data structure are so similar
that both keywords have in C++ the exact same
functionality except that the members of classes
declared with keyword struct have public access by
default, instead of private access, as classes declared
with keyword class have. That is the only difference.
For all other purposes both keywords are equivalent.

The concept under unions is different from than of
struct and class, since unions only store one data
member at a time, but they are also classes and thus can
also hold function members. The default access in
union classes is public.

	15. Classes (I)
	Constructors and destructors
	Overloading Constructors
	Default constructor
	Pointers to classes
	Classes defined with struct and union

