
- 111 -

Object Oriented Programming:

16. Classes (II)

Overloading operators

C++ incorporates the option to use standard operators
to perform operations with classes in addition to with
fundamental types. For example:

int a, b, c;
a = b + c;

This is obviously valid code in C++, since the different
variables of the addition are all fundamental types.
Nevertheless, it is not so obvious that we could perform
an operation similar to the following one:

struct {
 string product;
 float price;
} a, b, c;
a = b + c;

In fact, this will cause a compilation error, since we have
not defined the behavior our class should have with
addition operations. However, thanks to the C++ feature
to overload operators, we can design classes able to
perform operations using standard operators. Here is a
list of all the operators that can be overloaded:

Overloadable operators
+ - * / = < > += -= *= /= << >>
<<= >>= == != <= >= ++ -- % & ^ ! |
~ &= ^= |= && || %= [] () , ->* -> new
delete new[] delete[]

To overload an operator in order to use it with classes
we declare operator functions, which are regular functions
whose names are the operator keyword followed by
the operator sign that we want to overload.
The format is:

type operator sign (parameters) { /*...*/ }

Here you have an example that overloads the addition
operator (+). We are going to create a class to store
bidimensional vectors and then we are going to add two
of them: a(3,1) and b(1,2). The addition of two
bidimensional vectors is an operation as simple as adding

- 112 -

the two x coordinates to obtain the resulting x coordinate
and adding the two y coordinates to obtain the resulting
y. In this case the result will be (3+1,1+2) = (4,3).

// vectors: overloading
operators example
#include <iostream>
using namespace std;

class CVector {
 public:
 int x,y;
 CVector () {};
 CVector (int,int);
 CVector operator +
(CVector);
};

CVector::CVector (int a, int b)
{
 x = a;
 y = b;
}

CVector CVector::operator+
(CVector param) {
 CVector temp;
 temp.x = x + param.x;
 temp.y = y + param.y;
 return (temp);
}

int main () {
 CVector a (3,1);
 CVector b (1,2);
 CVector c;
 c = a + b;
 cout << c.x << "," << c.y;
 return 0;
}
4,3

It may be a little confusing to see so many times the
CVector identifier. But, consider that some of them refer
to the class name (type) CVector and some others are
functions with that name (constructors must have the
same name as the class). Do not confuse them:

CVector (int, int);
// function name CVector (constructor)

CVector operator+ (CVector);
// function returns a CVector

The function operator+ of class CVector is the one that
is in charge of overloading the addition operator (+). This
function can be called either implicitly using the operator,
or explicitly using the function name:

- 113 -

c = a + b;
c = a.operator+ (b);

Both expressions are equivalent.

Notice also that we have included the empty constructor
(without parameters) and we have defined it with an
empty block:

CVector () { };

This is necessary, since we have explicitly declared
another constructor:

CVector (int, int);

And when we explicitly declare any constructor, with any
number of parameters, the default constructor with no
parameters that the compiler can declare automatically
is not declared, so we need to declare it ourselves in
order to be able to construct objects of this type without
parameters. Otherwise, the declaration:

CVector c;

included in main() would not have been valid.

Anyway, I have to warn you that an empty block is a bad
implementation for a constructor, since it does not fulfill
the minimum functionality that is generally expected from
a constructor, which is the initialization of all the member
variables in its class. In our case this constructor leaves
the variables x and y undefined. Therefore, a more
advisable definition would have been something
similar to this:

CVector () { x=0; y=0; };

which in order to simplify and show only the point of the
code I have not included in the example.

As well as a class includes a default constructor and a
copy constructor even if they are not declared, it also
includes a default definition for the assignment operator
(=) with the class itself as parameter. The behavior
which is defined by default is to copy the whole content
of the data members of the object passed as argument
(the one at the right side of the sign) to the one at
the left side:

CVector d (2,3);
CVector e;
e = d; // copy assignment operator

- 114 -

operator member function implemented by default.
Of course, you can redefine it to any other functionality
that you want, like for example, copy only certain class
members or perform additional initialization procedures.

The overload of operators does not force its operation
to bear a relation to the mathematical or usual meaning
of the operator, although it is recommended. For example,
the code may not be very intuitive if you use operator
+ to subtract two classes or operator== to fill with zeros
a class, although it is perfectly possible to do so.

Although the prototype of a function operator+ can
seem obvious since it takes what is at the right side of
the operator as the parameter for the operator member
function of the object at its left side, other operators
may not be so obvious. Here you have a table with a
summary on how the different operator functions have
to be declared (replace @ by the operator in each case):

Expression Operator Member function Global function
@a + - * & ! ~ ++ -- A::operator@() operator@(A)
a@ ++ -- A::operator@(int) operator@(A,int)

a@b
+ - * / % ^ & | < > == != <= >=
<< >> && || ,

A::operator@ (B) operator@(A,B)

a@b
= += -= *= /= %= ^= &= |= <<=
>>= []

A::operator@ (B) -

a(b, c...) ()
A::operator() (B,
C...)

-

a->x -> A::operator->() -

Where a is an object of class A, b is an object of class B
and c is an object of class C.

You can see in this panel that there are two ways to
overload some class operators: as a member function
and as a global function. Its use is indistinct, nevertheless
I remind you that functions that are not members of a
class cannot access the private or protected members of
that class unless the global function is its friend
(friendship is explained later).

The keyword this

The keyword this represents a pointer to the object
whose member function is being executed.
It is a pointer to the object itself.

One of its uses can to check if a parameter passed to a
member function is the object itself. For example,

// this
#include <iostream>
using namespace std;

class CDummy {
 public:
 int isitme (CDummy& param);

- 115 -

};

int CDummy::isitme (CDummy&
param)
{
 if (¶m == this) return
true;
 else return false;
}

int main () {
 CDummy a;
 CDummy* b = &a;
 if (b->isitme(a))
 cout << "yes, &a is b";
 return 0;
}
yes, &a is b

It is also frequently used in operator= member functions
that return objects by reference (avoiding the use of
temporary objects). Following with the vector's examples
seen before we could have written an operator= function
similar to this one:

CVector& CVector::operator= (const CVector& param)
{
 x=param.x;
 y=param.y;
 return *this;
}

In fact this function is very similar to the code that the
compiler generates implicitly for this class if we do not
include an operator= member function to copy objects
of this class.

Static members

A class can contain static members, either data or
functions.

Static data members of a class are also known as
"class variables", because there is only one unique value
for all the objects of that same class. Their content is not
different from one object of this class to another.

For example, it may be used for a variable within a class
that can contain a counter with the number of objects
of that class that have been created, as in the
following example:

// static members in classes
#include <iostream>
using namespace std;

class CDummy {
 public:

- 116 -

 static int n;
 CDummy () { n++; };
 ~CDummy () { n--; };
};

int CDummy::n=0;

int main () {
 CDummy a;
 CDummy b[5];
 CDummy * c = new CDummy;
 cout << a.n << endl;
 delete c;
 cout << CDummy::n << endl;
 return 0;
}
7
6

In fact, static members have the same properties as
global variables but they enjoy class scope. For that
reason, and to avoid them to be declared several times,
we can only include the prototype (its declaration) in the
class declaration but not its definition (its initialization).
In order to initialize a static data-member we must
include a formal definition outside the class, in the global
scope, as in the previous example:

int CDummy::n=0;

Because it is a unique variable value for all the objects
of the same class, it can be referred to as a member of
any object of that class or even directly by the class
name (of course this is only valid for static members):

cout << a.n;
cout << CDummy::n;

These two calls included in the previous example are
referring to the same variable: the static variable n
within class CDummy shared by all objects of this class.

Once again, I remind you that in fact it is a global variable.
The only difference is its name and possible access
restrictions outside its class.

Just as we may include static data within a class, we can
also include static functions. They represent the same:
they are global functions that are called as if they were
object members of a given class. They can only refer to
static data, in no case to non-static members of the class,
as well as they do not allow the use of the keyword this,
since it makes reference to an object pointer and these
functions in fact are not members of any object but direct
members of the class.

	16. Classes (II)
	Overloading operators
	The keyword this
	Static members

