
- 126 -

Object Oriented Programming:

18. Polymorphism

Before getting into this section, it is recommended that
you have a proper understanding of pointers and class
inheritance. If any of the following statements seem
strange to you, you should review the indicated
sections:

Statement: Explained in:
int a::b(c) {}; Classes
a->b Pointers
class a: public b; Friendship and inheritance

Pointers to base class

One of the key features of derived classes is that a
pointer to a derived class is type-compatible with a
pointer to its base class. Polymorphism is the art of
taking advantage of this simple but powerful and
versatile feature, that brings Object Oriented
Methodologies to its full potential.

We are going to start by rewriting our program about the
rectangle and the triangle of the previous section taking
into consideration this pointer compatibility property:

// pointers to base class
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int
b)
 { width=a; height=b; }
 };

class CRectangle: public
CPolygon {
 public:
 int area ()
 { return (width *
height); }
 };

- 127 -

class CTriangle: public CPolygon
{
 public:
 int area ()
 { return (width * height /
2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 cout << rect.area() << endl;
 cout << trgl.area() << endl;
 return 0;
}
20
10

In function main, we create two pointers that point to
objects of class CPolygon (ppoly1 and ppoly2). Then
we assign references to rect and trgl to these
pointers, and because both are objects of classes
derived from CPolygon, both are valid assignations.

The only limitation in using *ppoly1 and *ppoly2 instead
of rect and trgl is that both *ppoly1 and *ppoly2 are
of type CPolygon* and therefore we can only use these
pointers to refer to the members that CRectangle and
CTriangle inherit from CPolygon. For that reason
when we call the area() members at the end of the
program we have had to use directly the objects rect
and trgl instead of the pointers *ppoly1 and *ppoly2.

In order to use area() with the pointers to class
CPolygon, this member should also have been declared
in the class CPolygon, and not only in its derived classes,
but the problem is that CRectangle and CTriangle
implement different versions of area, therefore we
cannot implement it in the base class. This is when
virtual members become handy:

Virtual members

A member of a class that can be redefined in its derived
classes is known as a virtual member. In order to declare
a member of a class as virtual, we must precede its
declaration with the keyword virtual:

// virtual members
#include <iostream>
using namespace std;

class CPolygon {
 protected:

- 128 -

 int width, height;
 public:
 void set_values (int a, int
b)
 { width=a; height=b; }
 virtual int area ()
 { return (0); }
 };

class CRectangle: public
CPolygon {
 public:
 int area ()
 { return (width *
height); }
 };

class CTriangle: public CPolygon
{
 public:
 int area ()
 { return (width * height /
2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon poly;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 CPolygon * ppoly3 = &poly;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 ppoly3->set_values (4,5);
 cout << ppoly1->area() <<
endl;
 cout << ppoly2->area() <<
endl;
 cout << ppoly3->area() <<
endl;
 return 0;
}
20
10
0

Now the three classes (CPolygon, CRectangle and
CTriangle) have all the same members: width, height,
set_values() and area().

The member function area() has been declared as
virtual in the base class because it is later redefined in
each derived class. You can verify if you want that if you
remove this virtual keyword from the declaration of
area() within CPolygon, and then you run the program
the result will be 0 for the three polygons instead of 20,
10 and 0. That is because instead of calling the
corresponding area() function for each object

- 129 -

(CRectangle::area(), CTriangle::area() and
CPolygon::area(), respectively), CPolygon::area()
will be called in all cases since the calls are via a pointer
whose type is CPolygon*.

Therefore, what the virtual keyword does is to allow
a member of a derived class with the same name as one
in the base class to be appropriately called from a pointer,
and more precisely when the type of the pointer is a
pointer to the base class but is pointing to an object of
the derived class, as in the above example.

A class that declares or inherits a virtual function is
called a polymorphic class.

Note that despite of its virtuality, we have also been
able to declare an object of type CPolygon and to call
its own area() function, which always returns 0.

Abstract base classes

Abstract base classes are something very similar to our
CPolygon class of our previous example. The only
difference is that in our previous example we have
defined a valid area() function with a minimal
functionality for objects that were of class CPolygon
(like the object poly), whereas in an abstract base
classes we could leave that area() member function
without implementation at all. This is done by
appending =0 (equal to zero) to the function declaration.

An abstract base CPolygon class could look like this:

// abstract class CPolygon
class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area () =0;
};

Notice how we appended =0 to virtual int area ()
instead of specifying an implementation for the function.
This type of function is called a pure virtual function, and
all classes that contain at least one pure virtual function
are abstract base classes.

The main difference between an abstract base class and
a regular polymorphic class is that because in abstract
base classes at least one of its members lacks
implementation we cannot create instances (objects)
of it.

But a class that cannot instantiate objects is not totally
useless; We can create pointers to it and take
advantage of all its polymorphic abilities. Therefore a

- 130 -

declaration like:

CPolygon poly;

would not be valid for the abstract base class we have
just declared, because tries to instantiate an object.
Nevertheless, the following pointers:

CPolygon * ppoly1;
CPolygon * ppoly2;

would be perfectly valid.

This is so for as long as CPolygon includes a pure virtual
function and therefore it's an abstract base class.
However, pointers to this abstract base class can be
used to point to objects of derived classes.

Here you have the complete example:

// abstract base class
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int
b)
 { width=a; height=b; }
 virtual int area (void) =0;
 };

class CRectangle: public
CPolygon {
 public:
 int area (void)
 { return (width *
height); }
 };

class CTriangle: public CPolygon
{
 public:
 int area (void)
 { return (width * height /
2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 cout << ppoly1->area() <<

- 131 -

endl;
 cout << ppoly2->area() <<
endl;
 return 0;
}
20
10

If you review the program you will notice that we refer
to objects of different but related classes using a unique
type of pointer (CPolygon*). This can be tremendously
useful. For example, now we can create a function
member of the abstract base class CPolygon that is able
to print on screen the result of the area() function even
though CPolygon itself has no implementation for this
function:

// pure virtual members can be
called
// from the abstract base class
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int
b)
 { width=a; height=b; }
 virtual int area (void) =0;
 void printarea (void)
 { cout << this->area() <<
endl; }
 };

class CRectangle: public
CPolygon {
 public:
 int area (void)
 { return (width *
height); }
 };

class CTriangle: public CPolygon
{
 public:
 int area (void)
 { return (width * height /
2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 ppoly1->printarea();

- 132 -

 ppoly2->printarea();
 return 0;
}
20
10

Virtual members and abstract classes grant C++ the
polymorphic characteristics that make object-oriented
programming such a useful instrument in big projects.
Of course, we have seen very simple uses of these
features, but these features can be applied to arrays of
objects or dynamically allocated objects.

Let's end with the same example again, but this time
with objects that are dynamically allocated:

// dynamic allocation and
polymorphism
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int
b)
 { width=a; height=b; }
 virtual int area (void) =0;
 void printarea (void)
 { cout << this->area() <<
endl; }
 };

class CRectangle: public
CPolygon {
 public:
 int area (void)
 { return (width *
height); }
 };

class CTriangle: public CPolygon
{
 public:
 int area (void)
 { return (width * height /
2); }
 };

int main () {
 CPolygon * ppoly1 = new
CRectangle;
 CPolygon * ppoly2 = new
CTriangle;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 ppoly1->printarea();
 ppoly2->printarea();
 delete ppoly1;

- 133 -

 delete ppoly2;
 return 0;
}
20
10

Notice that the ppoly pointers:

CPolygon * ppoly1 = new CRectangle;
CPolygon * ppoly2 = new CTriangle;

are declared being of type pointer to CPolygon but the
objects dynamically allocated have been declared
having the derived class type directly.

	18. Polymorphism
	Pointers to base class
	Virtual members
	Abstract base classes

