
- 134 -

Object Oriented Programming:

19. Templates

Function templates

Function templates are special functions that can operate
with generic types. This allows us to create a function
template whose functionality can be adapted to more
than one type or class without repeating the entire code
for each type.

In C++ this can be achieved using template parameters.
A template parameter is a special kind of parameter that
can be used to pass a type as argument: just like regular
function parameters can be used to pass values to a
function, template parameters allow to pass also types
to a function. These function templates can use these
parameters as if they were any other regular type.

The format for declaring function templates with type
parameters is:

template <class identifier> function_declaration;
template <typename identifier> function_declaration;

The only difference between both prototypes is the use
of either the keyword class or the keyword typename.
Its use is indistinct, since both expressions have exactly
the same meaning and behave exactly the same way.

For example, to create a template function that returns
the greater one of two objects we could use:

template <class myType>
myType GetMax (myType a, myType b) {
 return (a>b?a:b);
}

Here we have created a template function with myType
as its template parameter. This template parameter
represents a type that has not yet been specified, but
that can be used in the template function as if it were a
regular type. As you can see, the function template
GetMax returns the greater of two parameters of this
still-undefined type.

- 135 -

To use this function template we use the following format
for the function call:

function_name <type> (parameters);

For example, to call GetMax to compare two integer
values of type int we can write:

int x,y;
GetMax <int> (x,y);

When the compiler encounters this call to a template
function, it uses the template to automatically generate
a function replacing each appearance of myType by the
type passed as the actual template parameter (int in
this case) and then calls it. This process is automatically
performed by the compiler and is invisible to the
programmer.

Here is the entire example:

// function template
#include <iostream>
using namespace std;

template <class T>
T GetMax (T a, T b) {
 T result;
 result = (a>b)? a : b;
 return (result);
}

int main () {
 int i=5, j=6, k;
 long l=10, m=5, n;
 k=GetMax<int>(i,j);
 n=GetMax<long>(l,m);
 cout << k << endl;
 cout << n << endl;
 return 0;
}
6
10

In this case, we have used T as the template parameter
name instead of myType because it is shorter and in fact
is a very common template parameter name. But you
can use any identifier you like.

In the example above we used the function template
GetMax() twice. The first time with arguments of type
int and the second one with arguments of type long.
The compiler has instantiated and then called each time
the appropriate version of the function.

As you can see, the type T is used within the GetMax()
template function even to declare new objects of that
type:

- 136 -

T result;

Therefore, result will be an object of the same type as
the parameters a and b when the function template is
instantiated with a specific type.

In this specific case where the generic type T is used as
a parameter for GetMax the compiler can find out
automatically which data type has to instantiate without
having to explicitly specify it within angle brackets (like
we have done before specifying <int> and <long>).
So we could have written instead:

int i,j;
GetMax (i,j);

Since both i and j are of type int, and the compiler can
automatically find out that the template parameter can
only be int. This implicit method produces exactly the
same result:

// function template II
#include <iostream>
using namespace std;

template <class T>
T GetMax (T a, T b) {
 return (a>b?a:b);
}

int main () {
 int i=5, j=6, k;
 long l=10, m=5, n;
 k=GetMax(i,j);
 n=GetMax(l,m);
 cout << k << endl;
 cout << n << endl;
 return 0;
}
6
10

Notice how in this case, we called our function template
GetMax() without explicitly specifying the type between
angle-brackets <>. The compiler automatically determines
what type is needed on each call.

Because our template function includes only one template
parameter (class T) and the function template itself
accepts two parameters, both of this T type, we cannot
call our function template with two objects of different
types as arguments:

int i;
long l;
k = GetMax (i,l);

- 137 -

This would not be correct, since our GetMax function
template expects two arguments of the same type, and
in this call to it we use objects of two different types.

We can also define function templates that accept more
than one type parameter, simply by specifying more
template parameters between the angle brackets.
For example:

template <class T, class U>
T GetMin (T a, U b) {
 return (a<b?a:b);
}

In this case, our function template GetMin() accepts
two parameters of different types and returns an object
of the same type as the first parameter (T) that is
passed. For example, after that declaration we could
call GetMin() with:

int i,j;
long l;
i = GetMin<int,long> (j,l);

or simply:

i = GetMin (j,l);

even though j and l have different types, since the
compiler can determine the apropriate instantiation
anyway.

Class templates

We also have the possibility to write class templates, so
that a class can have members that use template
parameters as types. For example:

template <class T>
class mypair {
 T values [2];
 public:
 mypair (T first, T second)
 {
 values[0]=first; values[1]=second;
 }
};

The class that we have just defined serves to store two
elements of any valid type. For example, if we wanted to
declare an object of this class to store two integer values
of type int with the values 115 and 36 we would write:

mypair<int> myobject (115, 36);

- 138 -

this same class would also be used to create an object
to store any other type:

mypair<double> myfloats (3.0, 2.18);

The only member function in the previous class template
has been defined inline within the class declaration itself.
In case that we define a function member outside the
declaration of the class template, we must always
precede that definition with the template <...> prefix:

// class templates
#include <iostream>
using namespace std;

template <class T>
class mypair {
 T a, b;
 public:
 mypair (T first, T second)
 {a=first; b=second;}
 T getmax ();
};

template <class T>
T mypair<T>::getmax ()
{
 T retval;
 retval = a>b? a : b;
 return retval;
}

int main () {
 mypair <int> myobject (100,
75);
 cout << myobject.getmax();
 return 0;
}
100

Notice the syntax of the definition of member function
getmax:

template <class T>
T mypair<T>::getmax ()

Confused by so many T's? There are three T's in this
declaration: The first one is the template parameter. The
second T refers to the type returned by the function. And
the third T (the one between angle brackets) is also a
requirement: It specifies that this function's template
parameter is also the class template parameter.

Template specialization

If we want to define a different implementation for a

- 139 -

template when a specific type is passed as template
parameter, we can declare a specialization of that
template.

For example, let's suppose that we have a very simple
class called mycontainer that can store one element of
any type and that it has just one member function called
increase, which increases its value. But we find that
when it stores an element of type char it would be more
convenient to have a completely different implementation
with a function member uppercase, so we decide to
declare a class template specialization for that type:

// template specialization
#include <iostream>
using namespace std;

// class template:
template <class T>
class mycontainer {
 T element;
 public:
 mycontainer (T arg)
{element=arg;}
 T increase () {return
++element;}
};

// class template
specialization:
template <>
class mycontainer <char> {
 char element;
 public:
 mycontainer (char arg)
{element=arg;}
 char uppercase ()
 {
 if
((element>='a')&&(element<='z'))
 element+='A'-'a';
 return element;
 }
};

int main () {
 mycontainer<int> myint (7);
 mycontainer<char> mychar
('j');
 cout << myint.increase() <<
endl;
 cout << mychar.uppercase() <<
endl;
 return 0;
}
8
J

This is the syntax used in the class template
specialization:

- 140 -

template <> class mycontainer <char> { ... };

First of all, notice that we precede the class template
name with an emptytemplate<> parameter list. This is
to explicitly declare it as a template specialization.

But more important than this prefix, is the <char>
specialization parameter after the class template name.
This specialization parameter itself identifies the type for
which we are going to declare a template class
specialization (char). Notice the differences between the
generic class template and the specialization:

template <class T> class mycontainer { ... };
template <> class mycontainer <char> { ... };

The first line is the generic template, and the second one
is the specialization.

When we declare specializations for a template class, we
must also define all its members, even those exactly
equal to the generic template class, because there is no
"inheritance" of members from the generic template to
the specialization.

Non-type parameters for templates

Besides the template arguments that are preceded by
the class or typename keywords , which represent
types, templates can also have regular typed parameters,
similar to those found in functions. As an example, have
a look at this class template that is used to contain
sequences of elements:

// sequence template
#include <iostream>
using namespace std;

template <class T, int N>
class mysequence {
 T memblock [N];
 public:
 void setmember (int x, T
value);
 T getmember (int x);
};

template <class T, int N>
void mysequence<T,N>::setmember
(int x, T value) {
 memblock[x]=value;
}

template <class T, int N>
T mysequence<T,N>::getmember
(int x) {
 return memblock[x];
}

- 141 -

int main () {
 mysequence <int,5> myints;
 mysequence <double,5>
myfloats;
 myints.setmember (0,100);
 myfloats.setmember (3,3.1416);
 cout << myints.getmember(0) <<
'\n';
 cout << myfloats.getmember(3)
<< '\n';
 return 0;
}
100
3.1416

It is also possible to set default values or types for class
template parameters. For example, if the previous class
template definition had been:

template <class T=char, int N=10> class mysequence {..};

We could create objects using the default template
parameters by declaring:

mysequence<> myseq;

Which would be equivalent to:

mysequence<char,10> myseq;

Templates and
multiple-file projects

From the point of view of the compiler, templates are
not normal functions or classes. They are compiled on
demand, meaning that the code of a template function
is not compiled until an instantiation with specific
template arguments is required. At that moment, when
an instantiation is required, the compiler generates a
function specifically for those arguments from
the template.

When projects grow it is usual to split the code of a
program in different source code files. In these cases,
the interface and implementation are generally
separated. Taking a library of functions as example, the
interface generally consists of declarations of the
prototypes of all the functions that can be called. These
are generally declared in a "header file" with a .h
extension, and the implementation (the definition of
these functions) is in an independent file with c++ code.

Because templates are compiled when required, this
forces a restriction for multi-file projects: the
implementation (definition) of a template class or
function must be in the same file as its declaration.

- 142 -

That means that we cannot separate the interface
in a separate header file, and that we must include
both interface and implementation in any file that
uses the templates.

Since no code is generated until a template is
instantiated when required, compilers are prepared to
allow the inclusion more than once of the same
template file with both declarations and definitions in
a project without generating linkage errors.

	19. Templates
	Function templates
	Class templates
	Template specialization
	Non-type parameters for templates
	Templates and �multiple-file projects

