
- 6 -

Basics of C++:

2. Variables. Data Types.

The usefulness of the "Hello World" programs shown in the
previous section is quite questionable. We had to write
several lines of code, compile them, and then execute the
resulting program just to obtain a simple sentence written
on the screen as result. It certainly would have been much
faster to type the output sentence by ourselves. However,
programming is not limited only to printing simple texts on
the screen. In order to go a little further on and to become
able to write programs that perform useful tasks that really
save us work we need to introduce the concept of variable.

Let us think that I ask you to retain the number 5 in your
mental memory, and then I ask you to memorize also the
number 2 at the same time. You have just stored two
different values in your memory. Now, if I ask you to
add 1 to the first number I said, you should be retaining
the numbers 6 (that is 5+1) and 2 in your memory. Values
that we could now for example subtract and obtain 4
as result.

The whole process that you have just done with your
mental memory is a simile of what a computer can do with
two variables. The same process can be expressed in C++
with the following instruction set:

a = 5;
b = 2;
a = a + 1;
result = a - b;

Obviously, this is a very simple example since we have
only used two small integer values, but consider that your
computer can store millions of numbers like these at the
same time and conduct sophisticated mathematical
operations with them.

Therefore, we can define a variable as a portion of
memory to store a determined value.

Each variable needs an identifier that distinguishes it from
the others, for example, in the previous code the variable
identifiers were a, b and result, but we could have called
the variables any names we wanted to invent, as long as
they were valid identifiers.

Identifiers

- 7 -

A valid identifier is a sequence of one or more letters,
digits or underscore characters (_). Neither spaces nor
punctuation marks or symbols can be part of an identifier.
Only letters, digits and single underscore characters are
valid. In addition, variable identifiers always have to
begin with a letter. They can also begin with an underline
character (_), but in some cases these may be reserved
for compiler specific keywords or external identifiers,
as well as identifiers containing two successive
underscore characters anywhere. In no case they can
begin with a digit.

Another rule that you have to consider when inventing
your own identifiers is that they cannot match any keyword
of the C++ language nor your compiler's specific ones,
which are reserved keywords. The standard reserved
keywords are:

asm, auto, bool, break, case, catch, char,
class, const, const_cast, continue, default,
delete, do, double, dynamic_cast, else, enum,
explicit, export, extern, false, float, for,
friend, goto, if, inline, int, long, mutable,
namespace, new, operator, private, protected,
public, register, reinterpret_cast, return,
short, signed, sizeof, static, static_cast,
struct, switch, template, this, throw, true,
try, typedef, typeid, typename, union,
unsigned, using, virtual, void, volatile,
wchar_t, while

Additionally, alternative representations for some
operators cannot be used as identifiers since they are
reserved words under some circumstances:

and, and_eq, bitand, bitor, compl, not,
not_eq, or, or_eq, xor, xor_eq

Your compiler may also include some additional specific
reserved keywords.

Very important: The C++ language is a "case sensitive"
language. That means that an identifier written in capital
letters is not equivalent to another one with the same
name but written in small letters. Thus, for example, the
RESULT variable is not the same as the result variable
or the Result variable. These are three different variable
identifiers.

Fundamental data types

When programming, we store the variables in our
computer's memory, but the computer has to know what
kind of data we want to store in them, since it is not
going to occupy the same amount of memory to store a
simple number than to store a single letter or a large
number, and they are not going to be interpreted the
same way.

- 8 -

byte is the minimum amount of memory that we can
manage in C++. A byte can store a relatively small amount
of data: one single character or a small integer (generally
an integer between 0 and 255). In addition, the computer
can manipulate more complex data types that come from
grouping several bytes, such as long numbers or
non-integer numbers.

Next you have a summary of the basic fundamental data
types in C++, as well as the range of values that can be
represented with each one:

Name Description Size* Range*

char Character or small integer. 1byte
signed: -128 to 127
unsigned: 0 to 255

short int
(short) Short Integer. 2bytes

signed: -32768 to 32767
unsigned: 0 to 65535

int Integer. 4bytes

signed: -2147483648 to
2147483647
unsigned: 0 to
4294967295

long int
(long) Long integer. 4bytes

signed: -2147483648 to
2147483647
unsigned: 0 to
4294967295

bool Boolean value. It can take one of two
values: true or false.

1byte true or false

float Floating point number. 4bytes 3.4e +/- 38 (7 digits)
double Double precision floating point number. 8bytes 1.7e +/- 308 (15 digits)

long double Long double precision floating point
number.

8bytes 1.7e +/- 308 (15 digits)

wchar_t Wide character. 2bytes 1 wide character

* The values of the columns Size and Range depend on
the system the program is compiled for. The values shown
above are those found on most 32-bit systems. But for
other systems, the general specification is that int has
the natural size suggested by the system architecture
(one "word") and the four integer types char, short, int
and long must each one be at least as large as the one
preceding it, with char being always 1 byte in size. The
same applies to the floating point types float, double
and long double, where each one must provide at least
as much precision as the preceding one.

Declaration of variables

In order to use a variable in C++, we must first declare
it specifying which data type we want it to be. The syntax
to declare a new variable is to write the specifier of the
desired data type (like int, bool, float...) followed by a valid
variable identifier. For example:

int a;
float mynumber;

These are two valid declarations of variables. The first
one declares a variable of type int with the identifier a.

- 9 -

The second one declares a variable of type float with
the identifier mynumber. Once declared, the variables a
and mynumber can be used within the rest of their scope
in the program.

If you are going to declare more than one variable of the
same type, you can declare all of them in a single statement
by separating their identifiers with commas. For example:

int a, b, c;

This declares three variables (a, b and c), all of them of
type int, and has exactly the same meaning as:

int a;
int b;
int c;

The integer data types char, short, long and int can
be either signed or unsigned depending on the range of
numbers needed to be represented. Signed types can
represent both positive and negative values, whereas
unsigned types can only represent positive values (and zero).
This can be specified by using either the specifier
signed or the specifier unsigned before the type name.
For example:

unsigned short int NumberOfSisters;
signed int MyAccountBalance;

By default, if we do not specify either signed or unsigned
most compiler settings will assume the type to be signed,
therefore instead of the second declaration above we could
have written:

int MyAccountBalance;

with exactly the same meaning (with or without the
keyword signed)

An exception to this general rule is the char type, which
exists by itself and is considered a different fundamental
data type from signed char and unsigned char,
thought to store characters. You should use either signed
or unsigned if you intend to store numerical values in a
char-sized variable.

short and long can be used alone as type specifiers.
In this case,they refer to their respective integer
fundamental types: short is equivalent to short int and
long is equivalent to long int. The following two variable
declarations are equivalent:

short Year;
short int Year;

- 10 -

Finally, signed and unsigned may also be used as
standalone type specifiers, meaning the same as signed
int and unsigned int respectively. The following two
declarations are equivalent:

unsigned NextYear;
unsigned int NextYear;

To see what variable declarations look like in action within
a program, we are going to see the C++ code of the
example about your mental memory proposed at the
beginning of this section:

// operating with variables

#include <iostream>
using namespace std;

int main ()
{
 // declaring variables:
 int a, b;
 int result;

 // process:
 a = 5;
 b = 2;
 a = a + 1;
 result = a - b;

 // print out the result:
 cout << result;

 // terminate the program:
 return 0;
}
4

Do not worry if something else than the variable
declarations themselves looks a bit strange to you.
You will see the rest in detail in coming sections.

Scope of variables

All the variables that we intend to use in a program must
have been declared with its type specifier in an earlier
point in the code, like we did in the previous code at the
beginning of the body of the function main when we
declared that a, b, and result were of type int.

A variable can be either of global or local scope. A global
variable is a variable declared in the main body of the
source code, outside all functions, while a local variable
is one declared within the body of a function or a block.

- 11 -

Global variables can be referred from anywhere in the code,
even inside functions, whenever it is after its declaration.

The scope of local variables is limited to the block enclosed
in braces ({}) where they are declared. For example, if
they are declared at the beginning of the body of a function
(like in function main) their scope is between its declaration
point and the end of that function. In the example above,
this means that if another function existed in addition to
main, the local variables declared in main could not be
accessed from the other function and vice versa.

Initialization of variables

When declaring a regular local variable, its value is by
default undetermined. But you may want a variable to
store a concrete value at the same moment that it is
declared. In order to do that, you can initialize the
variable. There are two ways to do this in C++:

The first one, known as c-like, is done by appending an
equal sign followed by the value to which the variable
will be initialized:

type identifier = initial_value ;

For example, if we want to declare an int variable called a
initialized with a value of 0 at the moment in which it is
declared, we could write:

int a = 0;

The other way to initialize variables, known as constructor
initialization, is done by enclosing the initial value between
parentheses (()):

type identifier (initial_value) ;

- 12 -

For example:

int a (0);

Both ways of initializing variables are valid and equivalent
in C++.

// initialization of variables

#include <iostream>
using namespace std;

int main ()
{
 int a=5; //
initial value = 5
 int b(2); //
initial value = 2
 int result; //
initial value undetermined

 a = a + 3;
 result = a - b;
 cout << result;

 return 0;
}
6

Introduction to strings

Variables that can store non-numerical values that are
longer than one single character are known as strings.

The C++ language library provides support for strings
through the standard string class. This is not a
fundamental type, but it behaves in a similar way as
fundamental types do in its most basic usage.

A first difference with fundamental data types is that in
order to declare and use objects (variables) of this type
we need to include an additional header file in our source
code: <string> and have access to the std namespace
(which we already had in all our previous programs thanks
to the using namespace statement).

// my first string
#include <iostream>
#include <string>
using namespace std;

int main ()
{
 string mystring = "This is a
string";
 cout << mystring;
 return 0;
}

- 13 -

This is a string

As you may see in the previous example, strings can be
initialized with any valid string literal just like numerical
type variables can be initialized to any valid numerical
literal. Both initialization formats are valid with strings:

string mystring = "This is a string";
string mystring ("This is a string");

Strings can also perform all the other basic operations that
fundamental data types can, like being declared without an
initial value and being assigned values during execution:

// my first string
#include <iostream>
#include <string>
using namespace std;

int main ()
{
 string mystring;
 mystring = "This is the initial
string content";
 cout << mystring << endl;
 mystring = "This is a different
string content";
 cout << mystring << endl;
 return 0;
}

This is the initial string content
This is a different string content

For more details on C++ strings, you can have a look at
the string class reference.

http://www.cplusplus.com/string

	Basics of C++:
	Variables. Data Types.
	Identifiers
	Fundamental data types
	Declaration of variables
	Scope of variables
	Initialization of variables
	Introduction to strings

