
- 143 -

Advanced Concepts:

20. Namespaces

Namespaces allow to group entities like classes, objects
and functions under a name. This way the global scope
can be divided in "sub-scopes", each one with its own
name.

The format of namespaces is:

namespace identifier
{
entities
}

Where identifier is any valid identifier and entities
is the set of classes, objects and functions that are
included within the namespace. For example:

namespace myNamespace
{
 int a, b;
}

In this case, the variables a and b are normal variables
declared within a namespace called myNamespace. In
order to access these variables from outside the
myNamespace namespace we have to use the scope
operator ::. For example, to access the previous
variables from outside myNamespace we can write:

myNamespace::a
myNamespace::b

The functionality of namespaces is especially useful in
the case that there is a possibility that a global object
or function uses the same identifier as another one,
causing redefinition errors. For example:

// namespaces
#include <iostream>
using namespace std;

namespace first
{
 int var = 5;
}

- 144 -

namespace second
{
 double var = 3.1416;
}

int main () {
 cout << first::var << endl;
 cout << second::var << endl;
 return 0;
}
5
3.1416

In this case, there are two global variables with the same
name: var. One is defined within the namespace first
and the other one in second. No redefinition errors
happen thanks to namespaces.

using

The keyword using is used to introduce a name from a
namespace into the current declarative region.
For example:

// using
#include <iostream>
using namespace std;

namespace first
{
 int x = 5;
 int y = 10;
}

namespace second
{
 double x = 3.1416;
 double y = 2.7183;
}

int main () {
 using first::x;
 using second::y;
 cout << x << endl;
 cout << y << endl;
 cout << first::y << endl;
 cout << second::x << endl;
 return 0;
}
5
2.7183
10
3.1416

Notice how in this code, x (without any name qualifier)
refers to first::x whereas y refers to second::y,
exactly as our using declarations have specified. We

- 145 -

still have access to first::y and second::x using
their fully qualified names.

The keyword using can also be used as a directive to
introduce an entire namespace:

// using
#include <iostream>
using namespace std;

namespace first
{
 int x = 5;
 int y = 10;
}

namespace second
{
 double x = 3.1416;
 double y = 2.7183;
}

int main () {
 using namespace first;
 cout << x << endl;
 cout << y << endl;
 cout << second::x << endl;
 cout << second::y << endl;
 return 0;
}
5
10
3.1416
2.7183

In this case, since we have declared that we were
using namespace first, all direct uses of x and y
without name qualifiers were referring to their
declarations in namespace first.

using and using namespace have validity only in the
same block in which they are stated or in the entire code
if they are used directly in the global scope. For example,
if we had the intention to first use the objects of one
namespace and then those of another one, we could do
something like:

// using namespace example
#include <iostream>
using namespace std;

namespace first
{
 int x = 5;
}

namespace second
{
 double x = 3.1416;

- 146 -

}

int main () {
 {
 using namespace first;
 cout << x << endl;
 }
 {
 using namespace second;
 cout << x << endl;
 }
 return 0;
}
5
3.1416

Namespace alias

We can declare alternate names for existing namespaces
according to the following format:

namespace new_name = current_name;

Namespace std

All the files in the C++ standard library declare all of its
entities within the std namespace. That is why we have
generally included the using namespace std;
statement in all programs that used any entity defined
in iostream.

	20. Namespaces
	using
	Namespace alias
	Namespace std

