
- 147 -

Advanced Concepts:

21. Exceptions

Exceptions provide a way to react to exceptional
circumstances (like runtime errors) in our program by
transferring control to special functions called handlers.

To catch exceptions we must place a portion of code
under exception inspection. This is done by enclosing
that portion of code in a try block. When an exceptional
circumstance arises within that block, an exception is
thrown that transfers the control to the exception
handler. If no exception is thrown, the code continues
normally and all handlers are ignored.

A exception is thrown by using the throw keyword from
inside the try block. Exception handlers are declared
with the keyword catch, which must be placed
immediately after the try block:

// exceptions
#include <iostream>
using namespace std;

int main () {
 try
 {
 throw 20;
 }
 catch (int e)
 {
 cout << "An exception
occurred. Exception Nr. " << e <<
endl;
 }
 return 0;
}
An exception occurred. Exception
Nr. 20

The code under exception handling is enclosed in a try
block. In this example this code simply throws an
exception:

throw 20;

A throw expression accepts one parameter (in this case
the integer value 20), which is passed as an argument

- 148 -

to the exception handler.

The exception handler is declared with the catch
keyword. As you can see, it follows immediately the
closing brace of the try block. The catch format is similar
to a regular function that always has at least one
parameter. The type of this parameter is very important,
since the type of the argument passed by the throw
expression is checked against it, and only in the case
they match, the exception is caught.

We can chain multiple handlers (catch expressions), each
one with a different parameter type. Only the handler
that matches its type with the argument specified in the
throw statement is executed.

If we use an ellipsis (...) as the parameter of catch,
that handler will catch any exception no matter what the
type of the throw exception is. This can be used as a
default handler that catches all exceptions not caught by
other handlers if it is specified at last:

try {
 // code here
}
catch (int param) { cout << "int exception"; }
catch (char param) { cout << "char exception"; }
catch (...) { cout << "default exception"; }

In this case the last handler would catch any exception
thrown with any parameter that is neither an int
nor a char.

After an exception has been handled the program
execution resumes after the try-catch block, not after
the throw statement!.

It is also possible to nest try-catch blocks within more
external try blocks. In these cases, we have the
possibility that an internal catch block forwards the
exception to its external level. This is done with the
expression throw; with no arguments. For example:

try {
 try {
 // code here
 }
 catch (int n) {
 throw;
 }
}
catch (...) {
 cout << "Exception occurred";
}

Exception specifications

- 149 -

When declaring a function we can limit the exception
type it might directly or indirectly throw by appending a
throw suffix to the function declaration:

float myfunction (char param) throw (int);

This declares a function called myfunction which takes
one agument of type char and returns an element of
type float. The only exception that this function might
throw is an exception of type int. If it throws an
exception with a different type, either directly or indirectly,
it cannot be caught by a regular int-type handler.

If this throw specifier is left empty with no type, this
means the function is not allowed to throw exceptions.
Functions with no throw specifier (regular functions) are
allowed to throw exceptions with any type:

int myfunction (int param) throw();

 // no exceptions allowed
int myfunction (int param);

 // all exceptions allowed

Standard exceptions

The C++ Standard library provides a base class
specifically designed to declare objects to be thrown as
exceptions. It is called exception and is defined in the
<exception> header file under the namespace std.
This class has the usual default and copy constructors,
operators and destructors, plus an additional virtual
member function called what that returns a
null-terminated character sequence (char *) and that
can be overwritten in derived classes to contain some
sort of description of the exception.

// standard exceptions
#include <iostream>
#include <exception>
using namespace std;

class myexception: public
exception
{
 virtual const char* what() const
throw()
 {
 return "My exception
happened";
 }
} myex;

int main () {
 try
 {
 throw myex;

- 150 -

 }
 catch (exception& e)
 {
 cout << e.what() << endl;
 }
 return 0;
}
My exception happened.

We have placed a handler that catches exception objects
by reference (notice the ampersand & after the type),
therefore this catches also classes derived from
exception, like our myex object of class myexception.

All exceptions thrown by components of the C++
Standard library throw exceptions derived from this
std::exception class. These are:

exception description
bad_alloc thrown by new on allocation failure
bad_cast thrown by dynamic_cast when fails with a referenced type
bad_exception thrown when an exception type doesn't match any catch
bad_typeid thrown by typeid
ios_base::failure thrown by functions in the iostream library

For example, if we use the operator new without
(nothrow) and the memory cannot be allocated, an
exception of type bad_alloc is thrown:

try
{
 int * myarray= new int[1000];
}
catch (bad_alloc&)
{
 cout << "Error allocating memory." << endl;
}

It is recommended to include all dynamic memory
allocations within a try block that catches this type of
exception to perform a clean action instead of an
abnormal program termination, which is what happens
when this type of exception is thrown and not caught.
If you want to force a bad_alloc exception to see it in
action, you can try to allocate a huge array; On my
system, trying to allocate 1 billion ints threw
a bad_alloc exception.

Because bad_alloc is derived from the standard base
class exception, we can handle that same exception
by catching references to the exception class:

// bad_alloc standard exception
#include <iostream>
#include <exception>
using namespace std;

- 151 -

int main () {
 try
 {
 int* myarray= new int[1000];
 }
 catch (exception& e)
 {
 cout << "Standard exception: "
<< e.what() << endl;
 }
 return 0;
}

	21. Exceptions
	Exception specifications
	Standard exceptions

