
- 152 -

Advanced Concepts:

22. Type Casting

Converting an expression of a given type into another
type is known as type-casting. We have already seen
some ways to type cast:

Implicit conversion

Implicit conversions do not require any operator. They
are automatically performed when a value is copied to
a compatible type. For example:

short a=2000;
int b;
b=a;

Here, the value of a has been promoted from short to
int and we have not had to specify any type-casting
operator. This is known as a standard conversion.
Standard conversions affect fundamental data types,
and allow conversions such as the conversions between
numerical types (short to int, int to float, double
to int...), to or from bool, and some pointer conversions.
Some of these conversions may imply a loss of precision,
which the compiler can signal with a warning. This can be
avoided with an explicit conversion.

Implicit conversions also include constructor or operator
conversions, which affect classes that include specific
constructors or operator functions to perform conversions.
For example:

class A {};
class B { public: B (A a) {} };

A a;
B b=a;

Here, a implicit conversion happened between objects
of class A and class B, because B has a constructor
that takes an object of class A as parameter. Therefore
implicit conversions from A to B are allowed.

Explicit conversion

- 153 -

C++ is a strong-typed language. Many conversions,
specially those that imply a different interpretation of the
value, require an explicit conversion. We have already
seen two notations for explicit type conversion:
functional and c-like casting:

short a=2000;
int b;
b = (int) a; // c-like cast notation
b = int (a); // functional notation

The functionality of these explicit conversion operators
is enough for most needs with fundamental data types.
However, these operators can be applied indiscriminately
on classes and pointers to classes, which can lead to
code that while being syntactically correct can cause
runtime errors. For example, the following code is
syntactically correct:

// class type-casting
#include <iostream>
using namespace std;

class CDummy {
 float i,j;
};

class CAddition {
 int x,y;
 public:
 CAddition (int a, int b)
{ x=a; y=b; }
 int result() { return
x+y;}
};

int main () {
 CDummy d;
 CAddition * padd;
 padd = (CAddition*) &d;
 cout << padd->result();
 return 0;
}

The program declares a pointer to CAddition, but then
it assigns to it a reference to an object of another
incompatible type using explicit type-casting:

padd = (CAddition*) &d;

Traditional explicit type-casting allows to convert any
pointer into any other pointer type, independently of the
types they point to. The subsequent call to member
result will produce either a run-time error or an
unexpected result.

In order to control these types of conversions between
classes, we have four specific casting operators:
dynamic_cast, reinterpret_cast, static_cast and

- 154 -

const_cast. Their format is to follow the new type
enclosed between angle-brackets (<>) and immediately
after, the expression to be converted between
parentheses.

dynamic_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)
static_cast <new_type> (expression)
const_cast <new_type> (expression)

The traditional type-casting equivalents to these
expressions would be:

(new_type) expression
new_type (expression)

but each one with its own special characteristics:

dynamic_cast

dynamic_cast can be used only with pointers and
references to objects. Its purpose is to ensure that the
result of the type conversion is a valid complete object
of the requested class.

Therefore, dynamic_cast is always successful when we
cast a class to one of its base classes:

class CBase { };
class CDerived: public CBase { };

CBase b; CBase* pb;
CDerived d; CDerived* pd;

pb = dynamic_cast<CBase*>(&d);

// ok: derived-to-base
pd = dynamic_cast<CDerived*>(&b);

// wrong: base-to-derived

The second conversion in this piece of code would
produce a compilation error since base-to-derived
conversions are not allowed with dynamic_cast unless
the base class is polymorphic.

When a class is polymorphic, dynamic_cast performs a
special checking during runtime to ensure that the
expression yields a valid complete object of the
requested class:

// dynamic_cast
#include <iostream>
#include <exception>
using namespace std;

class CBase { virtual void dummy()
{} };
class CDerived: public CBase { int
a; };

- 155 -

int main () {
 try {
 CBase * pba = new CDerived;
 CBase * pbb = new CBase;
 CDerived * pd;

 pd =
dynamic_cast<CDerived*>(pba);
 if (pd==0) cout << "Null
pointer on first type-cast" <<
endl;

 pd =
dynamic_cast<CDerived*>(pbb);
 if (pd==0) cout << "Null
pointer on second type-cast" <<
endl;

 } catch (exception& e) {cout <<
"Exception: " << e.what();}
 return 0;
}
Null pointer on second type-cast

Compatibility note: dynamic_cast requires the Run-Time
Type Information (RTTI) to keep track of dynamic types.
Some compilers support this feature as an option which
is disabled by default. This must be enabled for runtime
type checking using dynamic_cast to work properly.

The code tries to perform two dynamic casts from pointer
objects of type CBase* (pba and pbb) to a pointer object
of type CDerived*, but only the first one is successful.
Notice their respective initializations:

CBase * pba = new CDerived;
CBase * pbb = new CBase;

Even though both are pointers of type CBase*, pba
points to an object of type CDerived, while pbb points
to an object of type CBase. Thus, when their respective
type-castings are performed using dynamic_cast, pba
is pointing to a full object of class CDerived, whereas
pbb is pointing to an object of class CBase, which is an
incomplete object of class CDerived.

When dynamic_cast cannot cast a pointer because it
is not a complete object of the required class -as in the
second conversion in the previous example- it returns a
null pointer to indicate the failure. If dynamic_cast is
used to convert to a reference type and the conversion
is not possible, an exception of type bad_alloc is
thrown instead.

dynamic_cast can also cast null pointers even
between pointers to unrelated classes, and can also
cast pointers of any type to void pointers (void*).

- 156 -

static_cast

static_cast can perform conversions between pointers
to related classes, not only from the derived class to its
base, but also from a base class to its derived. This
ensures that at least the classes are compatible if the
proper object is converted, but no safety check is
performed during runtime to check if the object being
converted is in fact a full object of the destination type.
Therefore, it is up to the programmer to ensure that the
conversion is safe. On the other side, the overhead of
the type-safety checks of dynamic_cast is avoided.

class CBase {};
class CDerived: public CBase {};
CBase * a = new CBase;
CDerived * b = static_cast<CDerived*>(a);

This would be valid, although b would point to an
incomplete object of the class and could lead to runtime
errors if dereferenced.

static_cast can also be used to perform any other
non-pointer conversion that could also be performed
implicitly, like for example standard conversion between
fundamental types:

double d=3.14159265;
int i = static_cast<int>(d);

Or any conversion between classes with explicit
constructors or operator functions as described in
"implicit conversions" above.

reinterpret_cast

reinterpret_cast converts any pointer type to any
other pointer type, even of unrelated classes. The
operation result is a simple binary copy of the value
from one pointer to the other. All pointer conversions
are allowed: neither the content pointed nor the
pointer type itself is checked.

It can also cast pointers to or from integer types. The
format in which this integer value represents a pointer
is platform-specific. The only guarantee is that a pointer
cast to an integer type large enough to fully contain it,
is granted to be able to be cast back to a valid pointer.

The conversions that can be performed by
reinterpret_cast but not by static_cast have no
specific uses in C++ are low-level operations, whose
interpretation results in code which is generally
system-specific, and thus non-portable. For example:

class A {};
class B {};

- 157 -

A * a = new A;
B * b = reinterpret_cast<B*>(a);

This is valid C++ code, although it does not make much
sense, since now we have a pointer that points to an
object of an incompatible class, and thus dereferencing
it is unsafe.

const_cast

This type of casting manipulates the constness of an
object, either to be set or to be removed. For example,
in order to pass a const argument to a function that
expects a non-constant parameter:

// const_cast
#include <iostream>
using namespace std;

void print (char * str)
{
 cout << str << endl;
}

int main () {
 const char * c = "sample text";
 print (const_cast<char *>
(c));
 return 0;
}
sample text

typeid

typeid allows to check the type of an expression:

typeid (expression)

This operator returns a reference to a constant object
of type type_info that is defined in the standard
header file <typeinfo>. This returned value can be
compared with another one using operators ==
and != or can serve to obtain a null-terminated character
sequence representing the data type or class name by
using its name() member.

// typeid
#include <iostream>
#include <typeinfo>
using namespace std;

int main () {
 int * a,b;
 a=0; b=0;
 if (typeid(a) != typeid(b))
 {
 cout << "a and b are of

- 158 -

different types:\n";
 cout << "a is: " <<
typeid(a).name() << '\n';
 cout << "b is: " <<
typeid(b).name() << '\n';
 }
 return 0;
}
a and b are of different types:
a is: int *
b is: int

When typeid is applied to classes typeid uses the
RTTI to keep track of the type of dynamic objects. When
typeid is applied to an expression whose type is a
polymorphic class, the result is the type of the most
derived complete object:

// typeid, polymorphic class
#include <iostream>
#include <typeinfo>
#include <exception>
using namespace std;

class CBase { virtual void
f(){} };
class CDerived : public CBase {};

int main () {
 try {
 CBase* a = new CBase;
 CBase* b = new CDerived;
 cout << "a is: " <<
typeid(a).name() << '\n';
 cout << "b is: " <<
typeid(b).name() << '\n';
 cout << "*a is: " <<
typeid(*a).name() << '\n';
 cout << "*b is: " <<
typeid(*b).name() << '\n';
 } catch (exception& e) { cout <<
"Exception: " << e.what() <<
endl; }
 return 0;
}
a is: class CBase *
b is: class CBase *
*a is: class CBase
*b is: class CDerived

Notice how the type that typeid considers for pointers
is the pointer type itself (both a and b are of type class
CBase *). However, when typeid is applied to objects
(like *a and *b) typeid yields their dynamic type (i.e.
the type of their most derived complete object).

If the type typeid evaluates is a pointer preceded by
the dereference operator (*), and this pointer has a null
value, typeid throws a bad_typeid exception.

	22. Type Casting
	Implicit conversion
	Explicit conversion
	dynamic_cast
	static_cast
	reinterpret_cast
	const_cast
	typeid

