
 - 159 -

Advanced Concepts:

23. Preprocessor Directives

Preprocessor directives are lines included in the code of
our programs that are not program statements but
directives for the preprocessor. These lines are always
preceded by a pound sign (#). The preprocessor is
executed before the actual compilation of code begins,
therefore the preprocessor digests all these directives
before any code is generated by the statements.

These preprocessor directives extend only across a
single line of code. As soon as a newline character is
found, the preprocessor directive is considered to end.
No semicolon (;) is expected at the end of a preprocessor
directive. The only way a preprocessor directive can
extend through more than one line is by preceding the
newline character at the end of the line by a backslash (\).

macro definitions (#define, #undef)

To define preprocessor macros we can use #define.
Its format is:

#define identifier replacement

When the preprocessor encounters this directive, it
replaces any occurrence of identifier in the rest of
the code by replacement. This replacement can be
an expression, a statement, a block or simply anything.
The preprocessor does not understand C++, it simply
replaces any occurrence of identifier by
replacement.

#define TABLE_SIZE 100
int table1[TABLE_SIZE];
int table2[TABLE_SIZE];

After the preprocessor has replaced TABLE_SIZE, the
code becomes equivalent to:

int table1[100];
int table2[100];

This use of #define as constant definer is already known
by us from previuos tutorials, but #define can work also
with parameters to define function macros:

 - 160 -

#define getmax(a,b) a>b?a:b

This would replace any occurrence of getmax followed
by two arguments by the replacement expression, but
also replacing each argument by its identifier, exactly as
you would expect if it was a function:

// function macro
#include <iostream>
using namespace std;

#define getmax(a,b)
((a)>(b)?(a):(b))

int main()
{
 int x=5, y;
 y= getmax(x,2);
 cout << y << endl;
 cout << getmax(7,x) << endl;
 return 0;
}

5
7

Defined macros are not affected by block structure. A
macro lasts until it is undefined with the #undef
preprocessor directive:

#define TABLE_SIZE 100
int table1[TABLE_SIZE];
#undef TABLE_SIZE
#define TABLE_SIZE 200
int table2[TABLE_SIZE];

This would generate the same code as:

int table1[100];
int table2[200];

Function macro definitions accept two special operators
(# and ##) in the replacement sequence: If the operator
is used before a parameter is used in the replacement
sequence, that parameter is replaced by a string literal
(as if it were enclosed between double quotes)

#define str(x) #x
cout << str(test);

This would be translated into:

cout << "test";

The operator ## concatenates two arguments leaving
no blank spaces between them:

 - 161 -

#define glue(a,b) a ## b
glue(c,out) << "test";

This would also be translated into:

cout << "test";

Because preprocessor replacements happen before any
C++ syntax check, macro definitions can be a tricky
feature, but be careful: code that relies heavily on
complicated macros may result obscure to other
programmers, since the syntax they expect is on many
occasions different from the regular expressions
programmers expect in C++.

Conditional inclusions (#ifdef,
#ifndef, #if, #endif, #else and #elif)

These directives allow to include or discard part of the
code of a program if a certain condition is met.

#ifdef allows a section of a program to be compiled
only if the macro that is specified as the parameter has
been defined, no matter which its value is. For example:

#ifdef TABLE_SIZE
int table[TABLE_SIZE];
#endif

In this case, the line of code int table[TABLE_SIZE];
is only compiled if TABLE_SIZE was previously defined
with #define, independently of its value. If it was not
defined, that line will not be included in the program
compilation.

#ifndef serves for the exact opposite: the code between
#ifndef and #endif directives is only compiled if the
specified identifier has not been previously defined.
For example:

#ifndef TABLE_SIZE
#define TABLE_SIZE 100
#endif
int table[TABLE_SIZE];

In this case, if when arriving at this piece of code, the
TABLE_SIZE macro has not been defined yet, it would
be defined to a value of 100. If it already existed it would
keep its previous value since the #define directive
would not be executed.

The #if, #else and #elif (i.e., "else if") directives
serve to specify some condition to be met in order for the

 - 162 -

portion of code they surround to be compiled. The
condition that follows #if or #elif can only evaluate
constant expressions, including macro expressions.
For example:

#if TABLE_SIZE>200
#undef TABLE_SIZE
#define TABLE_SIZE 200

#elif TABLE_SIZE<50
#undef TABLE_SIZE
#define TABLE_SIZE 50

#else
#undef TABLE_SIZE
#define TABLE_SIZE 100
#endif

int table[TABLE_SIZE];

Notice how the whole structure of #if, #elif and #else
chained directives ends with #endif.

The behavior of #ifdef and #ifndef can also be
achieved by using the special operators defined and
!defined respectively in any #if or #elif directive:

#if !defined TABLE_SIZE
#define TABLE_SIZE 100
#elif defined ARRAY_SIZE
#define TABLE_SIZE ARRAY_SIZE
int table[TABLE_SIZE];

Line control (#line)

When we compile a program and some error happen
during the compiling process, the compiler shows an
error message with references to the name of the file
where the error happened and a line number, so it is
easier to find the code generating the error.

The #line directive allows us to control both things,
the line numbers within the code files as well as the file
name that we want that appears when an error takes
place. Its format is:

#line number "filename"

 - 163 -

Where number is the new line number that will be
assigned to the next code line. The line numbers of
successive lines will be increased one by one from this
point on.

"filename" is an optional parameter that allows to
redefine the file name that will be shown. For example:

#line 20 "assigning variable"
int a?;

This code will generate an error that will be shown as
error in file "assigning variable", line 20.

Error directive (#error)

This directive aborts the compilation process when it is
found, generating a compilation the error that can be
specified as its parameter:

#ifndef __cplusplus
#error A C++ compiler is required!
#endif

This example aborts the compilation process if the macro
name __cplusplus is not defined (this macro name is
defined by default in all C++ compilers).

Source file inclusion (#include)

This directive has also been used assiduously in other
sections of this tutorial. When the preprocessor finds an
#include directive it replaces it by the entire content of
the specified file. There are two ways to specify a file to
be included:

#include "file"
#include <file>

The only difference between both expressions is the
places (directories) where the compiler is going to look
for the file. In the first case where the file name is
specified between double-quotes, the file is searched
first in the same directory that includes the file containing
the directive. In case that it is not there, the compiler
searches the file in the default directories where it is
configured to look for the standard header files.
If the file name is enclosed between angle-brackets <>
the file is searched directly where the compiler is
configured to look for the standard header files. Therefore,
standard header files are usually included in angle-brackets,
while other specific header files are included using quotes.

Pragma directive (#pragma)

This directive is used to specify diverse options to the

 - 164 -

compiler. These options are specific for the platform and
the compiler you use. Consult the manual or the reference
of your compiler for more information on the possible
parameters that you can define with #pragma.

If the compiler does not support a specific argument for
#pragma, it is ignored - no error is generated.

Predefined macro names

The following macro names are defined at any time:
macro value

__LINE__
Integer value representing the current line in
the source code file being compiled.

__FILE__
A string literal containing the presumed name
of the source file being compiled.

__DATE__
A string literal in the form "Mmm dd yyyy"
containing the date in which the compilation
process began.

__TIME__
A string literal in the form "hh:mm:ss"
containing the time at which the compilation
process began.

__cplusplus

An integer value. All C++ compilers have this
constant defined to some value. If the compiler
is fully compliant with the C++ standard its
value is equal or greater than 199711L
depending on the version of the standard they comply.

For example:

// standard macro names
#include <iostream>
using namespace std;

int main()
{
 cout << "This is the line number
" << __LINE__;
 cout << " of file " << __FILE__
<< ".\n";
 cout << "Its compilation began "
<< __DATE__;
 cout << " at " << __TIME__ <<
".\n";
 cout << "The compiler gives a
__cplusplus value of " <<
__cplusplus;
 return 0;
}

This is the line number 7 of file
/home/jay/stdmacronames.cpp.
Its compilation began Nov 1 2005
at 10:12:29.
The compiler gives a __cplusplus
value of 1

	
	23. Preprocessor Directives
	macro definitions (#define, #undef)
	Conditional inclusions (#ifdef, �#ifndef, #if, #endif, #else
	Line control (#line)
	Error directive (#error)
	Source file inclusion (#include)
	Pragma directive (#pragma)
	Predefined macro names

