
 - 165 -

C++ Standard Library:

24. Input/Output
 with Files

C++ provides the following classes to perform output and
input of characters to/from files:

• ofstream: Stream class to write on files

• ifstream: Stream class to read from files

• fstream: Stream class to both read and write
from/to files.

These classes are derived directly or indirectly from the
classes istream, and ostream. We have already used
objects whose types were these classes: cin is an object
of class istream and cout is an object of class ostream.
Therfore, we have already been using classes that are
related to our file streams. And in fact, we can use our
file streams the same way we are already used to use

cin and cout, with the only difference that we have to
associate these streams with physical files.
Let's see an example:

// basic file operations
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 ofstream myfile;
 myfile.open ("example.txt");
 myfile << "Writing this to a
file.\n";
 myfile.close();
 return 0;
}

[file example.txt]
Writing this to a file

This code creates a file called example.txt and inserts a
sentence into it in the same way we are used to do with
cout, but using the file stream myfile instead.

But let's go step by step:

Open a file

The first operation generally performed on an object of

 - 166 -

one of these classes is to associate it to a real file. This
procedure is known as to open a file. An open file is
represented within a program by a stream object (an
instantiation of one of these classes, in the previous
example this was myfile) and any input or output
operation performed on this stream object will be
applied to the physical file associated to it.

In order to open a file with a stream object we use its
member function open():

open (filename, mode);

Where filename is a null-terminated character sequence
of type const char * (the same type that string literals
have) representing the name of the file to be opened, and
mode is an optional parameter with a combination of the
following flags:

ios::in Open for input operations.
ios::out Open for output operations.
ios::binary Open in binary mode.

ios::ate
Set the initial position at the end of the file.
If this flag is not set to any value, the initial
position is the beginning of the file.

ios::app

All output operations are performed at the end
of the file, appending the content to the current
content of the file. This flag can only be used in
streams open for output-only operations.

ios::trunc
If the file opened for output operations already
existed before, its previous content is deleted
and replaced by the new one.

All these flags can be combined using the bitwise operator
 OR(|). For example, if we want to open the file
example.bin in binary mode to add data we could do it
by the following call to member function open():

ofstream myfile;
myfile.open ("example.bin",

 ios::out | ios::app | ios::binary);

Each one of the open() member functions of the classes
ofstream, ifstream and fstream has a default mode
that is used if the file is opened without a second
argument:

class default mode parameter
ofstream ios::out
ifstream ios::in
fstream ios::in | ios::out

 - 167 -

For ifstream and ofstream classes, ios::in and
ios::out are automatically and respectivelly assumed,
even if a mode that does not include them is passed as
second argument to the open() member function.

The default value is only applied if the function is called
without specifying any value for the mode parameter. If
the function is called with any value in that parameter
the default mode is overridden, not combined.

File streams opened in binary mode perform input and
output operations independently of any format
considerations. Non-binary files are known as text files,
and some translations may occur due to formatting of
some special characters (like newline and carriage
return characters).

Since the first task that is performed on a file stream
object is generally to open a file, these three classes
include a constructor that automatically calls the
open() member function and has the exact same
parameters as this member. Therefor, we could also have
declared the previous myfile object and conducted the
same opening operation in our previous example by
writing:

ofstream myfile ("example.bin",

 ios::out | ios::app | ios::binary);

Combining object construction and stream opening in a
single statement. Both forms to open a file are valid and
equivalent.

To check if a file stream was successful opening a file,
you can do it by calling to member is_open() with no
arguments. This member function returns a bool value of
true in the case that indeed the stream object is associated
with an open file, or false otherwise:

if (myfile.is_open())

 { /* ok, proceed with output */ }

Closing a file

When we are finished with our input and output
operations on a file we shall close it so that its resources
become available again. In order to do that we have to

 - 168 -

call the stream's member function close(). This
member function takes no parameters, and what it does
is to flush the associated buffers and close the file:

myfile.close();

Once this member function is called, the stream object
can be used to open another file, and the file is available
again to be opened by other processes.

In case that an object is destructed while still associated
with an open file, the destructor automatically calls the
member function close().

Text files

Text file streams are those where we do not include the
ios::binary flag in their opening mode. These files are
designed to store text and thus all values that we input
or output from/to them can suffer some formatting
transformations, which do not necessarily correspond to
their literal binary value.

Data output operations on text files are performed in the
same way we operated with cout:

// writing on a text file
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 ofstream myfile
("example.txt");
 if (myfile.is_open())
 {
 myfile << "This is a
line.\n";
 myfile << "This is another
line.\n";
 myfile.close();
 }
 else cout << "Unable to open
file";
 return 0;
}

[file example.txt]
This is a line.
This is another line.

 - 169 -

Data input from a file can also be performed in the same
way that we did with cin:

// reading a text file
#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main () {
 string line;
 ifstream myfile
("example.txt");
 if (myfile.is_open())
 {
 while (! myfile.eof())
 {
 getline (myfile,line);
 cout << line << endl;
 }
 myfile.close();
 }

 else cout << "Unable to open
file";

 return 0;
}

This is a line.
This is another line.

This last example reads a text file and prints out its
content on the screen. Notice how we have used a new
member function, called eof() that returns true in the
case that the end of the file has been reached. We have
created a while loop that finishes when indeed
myfile.eof() becomes true (i.e., the end of the file
has been reached).

Checking state flags

In addition to eof(), which checks if the end of file has
been reached, other member functions exist to check the
state of a stream (all of them return a bool value):

bad()

Returns true if a reading or writing operation fails.
For example in the case that we try to write to a
file that is not open for writing or if the device
where we try to write has no space left.

fail()
Returns true in the same cases as bad(), but also

 - 170 -

in the case that a format error happens, like when
an alphabetical character is extracted when we are
trying to read an integer number.

eof()
Returns true if a file open for reading has reached
the end.

good()
It is the most generic state flag: it returns false
in the same cases in which calling any of the
previous functions would return true.

In order to reset the state flags checked by any of these
member functions we have just seen we can use the
member function clear(), which takes no parameters.

get and put stream pointers

All i/o streams objects have, at least, one internal stream
pointer:

ifstream, like istream, has a pointer known as the
get pointer that points to the element to be read in the
next input operation.

ofstream, like ostream, has a pointer known as the
put pointer that points to the location where the next
element has to be written.

Finally, fstream, inherits both, the get and the put
pointers, from iostream (which is itself derived from
both istream and ostream).

These internal stream pointers that point to the reading
or writing locations within a stream can be manipulated
using the following member functions:

tellg() and tellp()

These two member functions have no parameters and
return a value of the member type pos_type, which is
an integer data type representing the current position of
the get stream pointer (in the case of tellg) or the put
stream pointer (in the case of tellp).

seekg() and seekp()

These functions allow us to change the position of the get
and put stream pointers. Both functions are overloaded
with two different prototypes. The first prototype is:

seekg (position);
seekp (position);

Using this prototype the stream pointer is changed to the
absolute position position (counting from the beginning
of the file). The type for this parameter is the same as the

 - 171 -

one returned by functions tellg and tellp: the member
type pos_type, which is an integer value.

The other prototype for these functions is:

seekg (offset, direction);
seekp (offset, direction);

Using this prototype, the position of the get or put pointer
is set to an offset value relative to some specific point
determined by the parameter direction. offset is of
the member type off_type, which is also an integer type.
And direction is of type seekdir, which is an
enumerated type (enum) that determines the point from
where offset is counted from, and that can take any of the
following values:

ios::beg offset counted from the beginning of the stream

ios::cur
offset counted from the current position of the
stream pointer

ios::end offset counted from the end of the stream

The following example uses the member functions we
have just seen to obtain the size of a file:

// obtaining file size
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 long begin,end;
 ifstream myfile
("example.txt");
 begin = myfile.tellg();
 myfile.seekg (0, ios::end);
 end = myfile.tellg();
 myfile.close();
 cout << "size is: " << (end-
begin) << " bytes.\n";
 return 0;
}

size is: 40 bytes.

Binary files

In binary files, to input and output data with the
extraction and insertion operators (<< and >>) and
functions like getline is not efficient, since we do not
need to format any data, and data may not use the
separation codes used by text files to separate elements
(like space, newline, etc...).

File streams include two member functions specifically
designed to input and output binary data sequentially:
write and read. The first one (write) is a member
function of ostream inherited by ofstream. And read

 - 172 -

is a member function of istream that is inherited by
ifstream. Objects of class fstream have both members.
Their prototypes are:

write (memory_block, size);
read (memory_block, size);

Where memory_block is of type "pointer to char"
(char*), and represents the address of an array of
bytes where the read data elements are stored or from
where the data elements to be written are taken. The
size parameter is an integer value that specifies the
number of characters to be read or written from/to the
memory block.

// reading a complete binary file
#include <iostream>
#include <fstream>
using namespace std;

ifstream::pos_type size;
char * memblock;

int main () {
 ifstream file ("example.txt",
ios::in|ios::binary|ios::ate);
 if (file.is_open())
 {
 size = file.tellg();
 memblock = new char [size];
 file.seekg (0, ios::beg);
 file.read (memblock, size);
 file.close();

 cout << "the complete file
content is in memory";

 delete[] memblock;
 }
 else cout << "Unable to open
file";
 return 0;
}

the complete file content is in
memory

In this example the entire file is read and stored in a
memory block. Let's examine how this is done:

First, the file is open with the ios::ate flag, which
means that the get pointer will be positioned at the end
of the file. This way, when we call to member tellg(),
we will directly obtain the size of the file. Notice the type
we have used to declare variable size:

ifstream::pos_type size;

ifstream::pos type is a specific type used for buffer

 - 173 -

and file positioning and is the type returned by
file.tellg(). This type is defined as an integer type,
therefore we can conduct on it the same operations we
conduct on any other integer value, and can safely be
converted to another integer type large enough to contain
the size of the file. For a file with a size under 2GB we
could use int:

int size;
size = (int) file.tellg();

Once we have obtained the size of the file, we request
the allocation of a memory block large enough to hold
the entire file:

memblock = new char[size];

Right after that, we proceed to set the get pointer at the
beginning of the file (remember that we opened the file
with this pointer at the end), then read the entire file,
and finally close it:

file.seekg (0, ios::beg);
file.read (memblock, size);
file.close();

At this point we could operate with the data obtained
from the file. Our program simply announces that the
content of the file is in memory and then terminates.

Buffers and Synchronization

When we operate with file streams, these are associated
to an internal buffer of type streambuf. This buffer is a
memory block that acts as an intermediary between the
stream and the physical file. For example, with an
ofstream, each time the member function put (which
writes a single character) is called, the character is not
written directly to the physical file with which the stream
is associated. Instead of that, the character is inserted in
that stream's intermediate buffer.

When the buffer is flushed, all the data contained in it is
written to the physical medium (if it is an output stream)
or simply freed (if it is an input stream). This process is
called synchronization and takes place under any of the
following circumstances:

• When the file is closed: before closing a file all
buffers that have not yet been flushed are
synchronized and all pending data is written or
read to the physical medium.

• When the buffer is full: Buffers have a certain

 - 174 -

size. When the buffer is full it is automatically
synchronized.

• Explicitly, with manipulators: When certain
manipulators are used on streams, an explicit
synchronization takes place. These manipulators
are: flush and endl.

• Explicitly, with member function sync():
Calling stream's member function sync(), which
takes no parameters, causes an immediate
synchronization. This function returns an int value
equal to -1 if the stream has no associated buffer
or in case of failure. Otherwise (if the stream buffer
was successfully synchronized) it returns 0.

	24. Input/Output � with Files
	Open a file
	Closing a file
	Text files
	Checking state flags
	get and put stream pointers
	tellg() and tellp()
	seekg() and seekp()

	Binary files
	Buffers and Synchronization

