
- 14 -

Basics of C++:

3. Constants

Constants are expressions with a fixed value.

Literals

Literals are used to express particular values within the
source code of a program. We have already used these
previously to give concrete values to variables or to
express messages we wanted our programs to print out,
for example, when we wrote:

a = 5;

the 5 in this piece of code was a literal constant.

Literal constants can be divided in Integer Numerals,
Floating-Point Numerals, Characters, Strings and
Boolean Values.

Integer Numerals

1776
707
-273

They are numerical constants that identify integer decimal
values. Notice that to express a numerical constant we
do not have to write quotes (") nor any special character.
There is no doubt that it is a constant: whenever we write
1776 in a program, we will be referring to the value 1776.

In addition to decimal numbers (those that all of us are
used to use every day) C++ allows the use as literal
constants of octal numbers (base 8) and hexadecimal
numbers (base 16). If we want to express an octal number
we have to precede it with a 0 (zero character). And in
order to express a hexadecimal number we have to
precede it with the characters 0x (zero, x). For example,
the following literal constants are all equivalent to
each other:

75 // decimal
0113 // octal
0x4b // hexadecimal

- 15 -

All of these represent the same number: 75 (seventy-five)
expressed as a base-10 numeral, octal numeral and
hexadecimal numeral, respectively.

Literal constants, like variables, are considered to have a
specific data type. By default, integer literals are of type
int. However, we can force them to either be unsigned
by appending the u character to it, or long by appending l:

75 // int
75u // unsigned int
75l // long
75ul // unsigned long

In both cases, the suffix can be specified using either
upper or lowercase letters.

Floating Point Numbers

They express numbers with decimals and/or exponents.
They can include either a decimal point, an e character
(that expresses "by ten at the Xth height", where X is
an integer value that follows the e character), or both
a decimal point and an e character:

3.14159 // 3.14159
6.02e23 // 6.02 x 1023
1.6e-19 // 1.6 x 10-19
3.0 // 3.0

These are four valid numbers with decimals expressed
in C++. The first number is PI, the second one is the
number of Avogadro, the third is the electric charge of
an electron (an extremely small number) -all of them
approximated- and the last one is the number three
expressed as a floating-point numeric literal.

The default type for floating point literals is double. If
you explicitly want to express a float or long double
numerical literal, you can use the f or l suffixes
respectively:

3.14159L // long double
6.02e23f // float

Any of the letters than can be part of a floating-point
numerical constant (e, f, l) can be written using either
lower or uppercase letters without any difference in
their meanings.

Character and string literals

There also exist non-numerical constants, like:
'z'
'p'

- 16 -

"Hello world"
"How do you do?"

The first two expressions represent single character
constants, and the following two represent string literals
composed of several characters. Notice that to represent
a single character we enclose it between single quotes
(') and to express a string (which generally consists of
more than one character) we enclose it between double
quotes (").

When writing both single character and string literals,
it is necessary to put the quotation marks surrounding
them to distinguish them from possible variable identifiers
or reserved keywords. Notice the difference between
these two expressions:

x
'x'

x alone would refer to a variable whose identifier is x,
whereas 'x' (enclosed within single quotation marks)
would refer to the character constant 'x'.

Character and string literals have certain peculiarities,
like the escape codes. These are special characters that
are difficult or impossible to express otherwise in the
source code of a program, like newline (\n) or tab (\t).
All of them are preceded by a backslash (\). Here you
have a list of some of such escape codes:

\nnewline
\r carriage return
\t tab
\vvertical tab
\bbackspace
\f form feed (page feed)
\aalert (beep)
\' single quote (')

\"double quote (")

\?question mark (?)

\\backslash (\)

For example:

'\n'
'\t'
"Left \t Right"
"one\ntwo\nthree"

Additionally, you can express any character by its
numerical ASCII code by writing a backslash character (\)
followed by the ASCII code expressed as an octal (base-8)
or hexadecimal (base-16) number. In the first case (octal)

- 17 -

the digits must immediately follow the backslash
(for example \23 or \40), in the second case (hexadecimal),
an x character must be written before the digits
themselves (for example \x20 or \x4A).

String literals can extend to more than a single line of
code by putting a backslash sign (\) at the end of each
unfinished line.

"string expressed in \
two lines"

You can also concatenate several string constants
separating them by one or several blank spaces,
tabulators, newline or any other valid blank character:

"this forms" "a single" "string" "of characters"

Finally, if we want the string literal to be explicitly made
of wide characters (wchar_t), instead of narrow characters
(char), we can precede the constant with the L prefix:

L"This is a wide character string"

Wide characters are used mainly to represent non-English
or exotic character sets.

Boolean literals

There are only two valid Boolean values: true and false.
These can be expressed in C++ as values of type bool
by using the Boolean literals true and false.

Defined constants (#define)

You can define your own names for constants that you
use very often without having to resort to
memory-consuming variables, simply by using the
#define preprocessor directive. Its format is:

#define identifier value

For example:

#define PI 3.14159265
#define NEWLINE '\n'

This defines two new constants: PI and NEWLINE. Once
they are defined, you can use them in the rest of the code
as if they were any other regular constant, for example:

// defined constants: calculate
circumference

- 18 -

#include <iostream>
using namespace std;

#define PI 3.14159
#define NEWLINE '\n'

int main ()
{
 double r=5.0; // radius
 double circle;

 circle = 2 * PI * r;
 cout << circle;
 cout << NEWLINE;

 return 0;
}
31.4159

In fact the only thing that the compiler preprocessor does
when it encounters #define directives is to literally
replace any occurrence of their identifier (in the previous
example, these were PI and NEWLINE) by the code to
which they have been defined (3.14159265 and '\n'
respectively).

The #define directive is not a C++ statement but a
directive for the preprocessor; therefore it assumes the
entire line as the directive and does not require a
semicolon (;) at its end. If you append a semicolon
character (;) at the end, it will also be appended in all
occurrences within the body of the program that the
preprocessor replaces.

Declared constants (const)

With the const prefix you can declare constants with a
specific type in the same way as you would do
with a variable:

const int pathwidth = 100;
const char tabulator = '\t';

Here, pathwidth and tabulator are two typed constants.
They are treated just like regular variables except that their
values cannot be modified after their definition.

	Basics of C++:
	3. Constants
	Literals
	Integer Numerals
	Floating Point Numbers
	Character and string literals
	Boolean literals

	Defined constants (#define)
	Declared constants (const)

