
- 35 -

Control Structures:

6. Control Structures

A program is usually not limited to a linear sequence of
instructions. During its process it may bifurcate, repeat
code or take decisions. For that purpose, C++ provides
control structures that serve to specify what has to be
done by our program, when and under which
circumstances.

With the introduction of control structures we are going
to have to introduce a new concept: the
compound-statement or block. A block is a group of
statements which are separated by semicolons (;) like
all C++ statements, but grouped together in a block
enclosed in braces: { }:

{ statement1; statement2; statement3; }

Most of the control structures that we will see in this
section require a generic statement as part of its syntax.
A statement can be either a simple statement (a simple
instruction ending with a semicolon) or a compound
statement (several instructions grouped in a block), like
the one just described. In the case that we want the
statement to be a simple statement, we do not need to
enclose it in braces ({}). But in the case that we want
the statement to be a compound statement it must be
enclosed between braces ({}), forming a block.

Conditional structure: if and else

The if keyword is used to execute a statement or block
only if a condition is fulfilled. Its form is:

if (condition) statement

Where condition is the expression that is being
evaluated. If this condition is true, statement is
executed. If it is false, statement is ignored
(not executed) and the program continues right after this
conditional structure. For example, the following code
fragment prints x is 100 only if the value stored in
the x variable is indeed 100:

if (x == 100)
 cout << "x is 100";

- 36 -

If we want more than a single statement to be executed
in case that the condition is true we can specify a block
using braces { }:

if (x == 100)
{
 cout << "x is ";
 cout << x;
}

We can additionally specify what we want to happen if
the condition is not fulfilled by using the keyword else.
Its form used in conjunction with if is:

if (condition) statement1 else statement2

For example:

if (x == 100)
 cout << "x is 100";
else
 cout << "x is not 100";

prints on the screen x is 100 if indeed x has a value
of 100, but if it has not -and only if not- it prints out x
is not 100.

The if + else structures can be concatenated with the
intention of verifying a range of values. The following
example shows its use telling if the value currently stored
in x is positive, negative or none of them (i.e. zero):

if (x > 0)
 cout << "x is positive";
else if (x < 0)
 cout << "x is negative";
else
 cout << "x is 0";

Remember that in case that we want more than a single
statement to be executed, we must group them in a block
by enclosing them in braces { }.

Iteration structures (loops)

Loops have as purpose to repeat a statement a certain
number of times or while a condition is fulfilled.

The while loop

Its format is:

while (expression) statement

- 37 -

and its functionality is simply to repeat statement while
the condition set in expression is true. For example, we
are going to make a program to countdown using a
while-loop:

// custom countdown using while

#include <iostream>
using namespace std;

int main ()
{
 int n;
 cout << "Enter the starting
number > ";
 cin >> n;

 while (n>0) {
 cout << n << ", ";
 --n;
 }

 cout << "FIRE!\n";
 return 0;
}
Enter the starting number > 8
8, 7, 6, 5, 4, 3, 2, 1, FIRE!

When the program starts the user is prompted to insert
a starting number for the countdown. Then the while
loop begins, if the value entered by the user fulfills the
condition n>0 (that n is greater than zero) the block that
follows the condition will be executed and repeated
while the condition (n>0) remains being true.

The whole process of the previous program can be
interpreted according to the following script
(beginning in main):

1. User assigns a value to n

2. The while condition is checked (n>0). At this
point there are two posibilities:
* condition is true: statement is executed
 (to step 3)
* condition is false: ignore statement and
 continue after it (to step 5)

3. Execute statement:
cout << n << ", ";
--n;
(prints the value of n on the screen and
decreases n by 1)

4. End of block. Return automatically to step 2

5. Continue the program right after the block:
print FIRE! and end program.

When creating a while-loop, we must always consider
that it has to end at some point, therefore we must
provide within the block some method to force the
condition to become false at some point, otherwise the

- 38 -

loop will continue looping forever. In this case we have
included --n; that decreases the value of the variable
that is being evaluated in the condition (n) by one - this
will eventually make the condition (n>0) to become false
after a certain number of loop iterations: to be more
specific, when n becomes 0, that is where our while-loop
and our countdown end.

Of course this is such a simple action for our computer
that the whole countdown is performed instantly without
any practical delay between numbers.

The do-while loop

Its format is:

do statement while (condition);

Its functionality is exactly the same as the while loop,
except that condition in the do-while loop is evaluated
after the execution of statement instead of before,
granting at least one execution of statement even if
condition is never fulfilled. For example, the following
example program echoes any number you enter
until you enter 0.

// number echoer

#include <iostream>
using namespace std;

int main ()
{
 unsigned long n;
 do {
 cout << "Enter number (0 to
end): ";
 cin >> n;
 cout << "You entered: " << n
<< "\n";
 } while (n != 0);
 return 0;
}
Enter number (0 to end): 12345
You entered: 12345
Enter number (0 to end): 160277
You entered: 160277
Enter number (0 to end): 0
You entered: 0

The do-while loop is usually used when the condition
that has to determine the end of the loop is determined
within the loop statement itself, like in the previous case,
where the user input within the block is what is used to
determine if the loop has to end. In fact if you never
enter the value 0 in the previous example you can be
prompted for more numbers forever.

- 39 -

The for loop

Its format is:

for (initialization; condition; increase)
statement;

and its main function is to repeat statement while
condition remains true, like the while loop. But in
addition, the for loop provides specific locations to
contain an initialization statement and an increase
statement. So this loop is specially designed to perform
a repetitive action with a counter which is initialized and
increased on each iteration.

It works in the following way:

1. initialization is executed. Generally it is an
initial value setting for a counter variable.
This is executed only once.

2. condition is checked. If it is true the loop
continues, otherwise the loop ends and
statement is skipped (not executed).

3. statement is executed. As usual, it can be either
a single statement or a block enclosed
in braces { }.

4. finally, whatever is specified in the increase field
is executed and the loop gets back to step 2.

Here is an example of countdown using a for loop:

// countdown using a for loop
#include <iostream>
using namespace std;
int main ()
{
 for (int n=10; n>0; n--) {
 cout << n << ", ";
 }
 cout << "FIRE!\n";
 return 0;
}
10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
FIRE!

The initialization and increase fields are optional.
They can remain empty, but in all cases the semicolon
signs between them must be written. For example we
could write: for (;n<10;) if we wanted to specify no
initialization and no increase; or for (;n<10;n++) if
we wanted to include an increase field but no
initialization (maybe because the variable was already
initialized before).

Optionally, using the comma operator (,) we can specify
more than one expression in any of the fields included
in a for loop, like in initialization, for example.

- 40 -

The comma operator (,) is an expression separator,
it serves to separate more than one expression where
only one is generally expected. For example, suppose
that we wanted to initialize more than one variable
in our loop:

for (n=0, i=100 ; n!=i ; n++, i--)
{
 // whatever here...
}

This loop will execute for 50 times if neither n or i are
modified within the loop:

n starts with a value of 0, and i with 100, the condition
is n!=i (that n is not equal to i). Because n is increased
by one and i decreased by one, the loop's condition will
become false after the 50th loop, when both n and i will
be equal to 50.

Jump statements.

The break statement

Using break we can leave a loop even if the condition
for its end is not fulfilled. It can be used to end an infinite
loop, or to force it to end before its natural end.
For example, we are going to stop the count down before
its natural end (maybe because of an engine check failure?):

// break loop example

#include <iostream>
using namespace std;

int main ()
{
 int n;
 for (n=10; n>0; n--)
 {
 cout << n << ", ";
 if (n==3)
 {
 cout << "countdown
aborted!";
 break;
 }
 }
 return 0;
}
10, 9, 8, 7, 6, 5, 4, 3,
countdown aborted!

- 41 -

The continue statement

The continue statement causes the program to skip the
rest of the loop in the current iteration as if the end of
the statement block had been reached, causing it to
jump to the start of the following iteration. For example,
we are going to skip the number 5 in our countdown:

// continue loop example
#include <iostream>
using namespace std;

int main ()
{
 for (int n=10; n>0; n--) {
 if (n==5) continue;
 cout << n << ", ";
 }
 cout << "FIRE!\n";
 return 0;
}
10, 9, 8, 7, 6, 4, 3, 2, 1,
FIRE!

The goto statement

goto allows to make an absolute jump to another point
in the program. You should use this feature with caution
since its execution causes an unconditional jump ignoring
any type of nesting limitations. The destination point is
identified by a label, which is then used as an argument
for the goto statement. A label is made of a valid identifier
followed by a colon (:).

Generally speaking, this instruction has no concrete use
in structured or object oriented programming aside from
those that low-level programming fans may find for it.
For example, here is our countdown loop using goto:

// goto loop example

#include <iostream>
using namespace std;

int main ()
{
 int n=10;
 loop:
 cout << n << ", ";
 n--;
 if (n>0) goto loop;
 cout << "FIRE!\n";
 return 0;
}
10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
FIRE!

- 42 -

The exit function

exit is a function defined in the cstdlib library.

The purpose of exit is to terminate the current program
with a specific exit code. Its prototype is:

void exit (int exitcode);

The exitcode is used by some operating systems and
may be used by calling programs. By convention, an exit
code of 0 means that the program finished normally
and any other value means that some error or
unexpected results happened.

The selective structure: switch.

The syntax of the switch statement is a bit peculiar. Its
objective is to check several possible constant values for
an expression. Something similar to what we did at the
beginning of this section with the concatenation of
several if and else if instructions.
Its form is the following:

switch (expression)
{
 case constant1:
 group of statements 1;
 break;
 case constant2:
 group of statements 2;
 break;
 .
 .
 .
 default:
 default group of statements
}

It works in the following way: switch evaluates
expression and checks if it is equivalent to constant1,
if it is, it executes group of statements 1 until it finds
the break statement. When it finds this break
statement the program jumps to the end of
the switch selective structure.

If expression was not equal to constant1 it will be
checked against constant2. If it is equal to this, it will
execute group of statements 2 until a break keyword
is found, and then will jump to the end of the switch
selective structure.

Finally, if the value of expression did not match any
of the previously specified constants (you can include as
many case labels as values you want to check), the
program will execute the statements included after the

- 43 -

default: label, if it exists (since it is optional).

Both of the following code fragments have the same
behavior:

switch example if-else equivalent
switch (x) {
 case 1:
 cout << "x is 1";
 break;
 case 2:
 cout << "x is 2";
 break;
 default:
 cout << "value of x unknown";
 }

if (x == 1) {
 cout << "x is 1";
 }
else if (x == 2) {
 cout << "x is 2";
 }
else {
 cout << "value of x unknown";
 }

The switch statement is a bit peculiar within the C++
language because it uses labels instead of blocks. This
forces us to put break statements after the group of
statements that we want to be executed for a specific
condition. Otherwise the remainder statements -including
those corresponding to other labels- will also be
executed until the end of the switch selective block or
a break statement is reached.

For example, if we did not include a break statement
after the first group for case one, the program will not
automatically jump to the end of the switch selective
block and it would continue executing the rest of
statements until it reaches either a break instruction
or the end of the switch selective block. This makes
unnecessary to include braces { } surrounding the
statements for each of the cases, and it can also be
useful to execute the same block of instructions for
different possible values for the expression being
evaluated. For example:

switch (x) {
 case 1:
 case 2:
 case 3:
 cout << "x is 1, 2 or 3";
 break;
 default:
 cout << "x is not 1, 2 nor 3";
 }

Notice that switch can only be used to compare an
expression against constants. Therefore we cannot put
variables as labels (for example case n: where n is a
variable) or ranges (case (1..3):) because they are
not valid C++ constants.

If you need to check ranges or values that are not
constants, use a concatenation of if and else if
statements.

	Control Structures:
	6. Control Structures
	Conditional structure: if and else
	Iteration structures (loops)
	The while loop
	The do-while loop
	The for loop

	Jump statements.
	The break statement
	The continue statement
	The goto statement
	The exit function

	The selective structure: switch.

