
- 58 -

Compound Data Types:

9. Arrays

An array is a series of elements of the same type placed
in contiguous memory locations that can be individually
referenced by adding an index to a unique identifier.

That means that, for example, we can store 5 values of
type int in an array without having to declare 5 different
variables, each one with a different identifier. Instead of
that, using an array we can store 5 different values of
the same type, int for example, with a unique identifier.

For example, an array to contain 5 integer values of type
int called billy could be represented like this:

where each blank panel represents an element of the
array, that in this case are integer values of type int.
These elements are numbered from 0 to 4 since in arrays
the first index is always 0, independently of its length.

Like a regular variable, an array must be declared
before it is used. A typical declaration for an array
in C++ is:

type name [elements];

where type is a valid type (like int, float...), name is
a valid identifier and the elements field (which is always
enclosed in square brackets []), specifies how many of
these elements the array has to contain.

Therefore, in order to declare an array called billy as
the one shown in the above diagram it is as simple as:

int billy [5];

NOTE: The elements field within brackets [] which
represents the number of elements the array is going
to hold, must be a constant value, since arrays are
blocks of non-dynamic memory whose size must be
determined before execution. In order to create arrays
with a variable length dynamic memory is needed,

- 59 -

which is explained later in these tutorials.

Initializing arrays.

When declaring a regular array of local scope (within a
function, for example), if we do not specify otherwise,
its elements will not be initialized to any value by default,
so their content will be undetermined until we store some
value in them. The elements of global and static arrays,
on the other hand, are automatically initialized with their
default values, which for all fundamental types this
means they are filled with zeros.

In both cases, local and global, when we declare an
array, we have the possibility to assign initial values to
each one of its elements by enclosing the values in
braces { }. For example:

int billy [5] = { 16, 2, 77, 40, 12071 };

This declaration would have created an array like this:

The amount of values between braces { } must not be
larger than the number of elements that we declare for
the array between square brackets []. For example,
in the example of array billy we have declared that
it has 5 elements and in the list of initial values within
braces { } we have specified 5 values, one for each
element.

When an initialization of values is provided for an array,
C++ allows the possibility of leaving the square brackets
empty []. In this case, the compiler will assume a size
for the array that matches the number of values
included between braces { }:

int billy [] = { 16, 2, 77, 40, 12071 };

After this declaration, array billy would be 5 ints long,
since we have provided 5 initialization values.

Accessing the values of an array.

In any point of a program in which an array is visible, we
can access the value of any of its elements individually
as if it was a normal variable, thus being able to both
read and modify its value. The format is as simple as:

name[index]

Following the previous examples in which billy had 5
elements and each of those elements was of type int,
the name which we can use to refer to each element is

- 60 -

the following:

For example, to store the value 75 in the third element
of billy, we could write the following statement:

billy[2] = 75;

and, for example, to pass the value of the third element
of billy to a variable called a, we could write:

a = billy[2];

Therefore, the expression billy[2] is for all purposes
like a variable of type int.

Notice that the third element of billy is specified
billy[2], since the first one is billy[0], the second
one is billy[1], and therefore, the third one is
billy[2]. By this same reason, its last element is
billy[4]. Therefore, if we write billy[5], we would be
accessing the sixth element of billy and therefore
exceeding the size of the array.

In C++ it is syntactically correct to exceed the valid range
of indices for an array. This can create problems, since
accessing out-of-range elements do not cause compilation
errors but can cause runtime errors. The reason why this
is allowed will be seen further ahead when we begin to
use pointers.

At this point it is important to be able to clearly
distinguish between the two uses that brackets []
have related to arrays. They perform two different tasks:
one is to specify the size of arrays when they are
declared; and the second one is to specify indices for
concrete array elements. Do not confuse these two
possible uses of brackets [] with arrays.

int billy[5]; // declaration of a new array
billy[2] = 75; // access to an element of the array.

If you read carefully, you will see that a type specifier
always precedes a variable or array declaration, while
it never precedes an access.

Some other valid operations with arrays:

billy[0] = a;
billy[a] = 75;
b = billy [a+2];

- 61 -

billy[billy[a]] = billy[2] + 5;

// arrays example
#include <iostream>
using namespace std;

int billy [] = {16, 2, 77, 40,
12071};
int n, result=0;

int main ()
{
 for (n=0 ; n<5 ; n++)
 {
 result += billy[n];
 }
 cout << result;
 return 0;
}
12206

Multidimensional arrays

Multidimensional arrays can be described as "arrays of
arrays". For example, a bidimensional array can be
imagined as a bidimensional table made of elements,
all of them of a same uniform data type.

jimmy represents a bidimensional array of 3 per 5
elements of type int. The way to declare this array in
C++ would be:

int jimmy [3][5];

and, for example, the way to reference the second
element vertically and fourth horizontally in an
expression would be:

jimmy[1][3]

(remember that array indices always begin by zero).

- 62 -

Multidimensional arrays are not limited to two indices
(i.e., two dimensions). They can contain as many indices
as needed. But be careful! The amount of memory
needed for an array rapidly increases with each
dimension. For example:

char century [100][365][24][60][60];

declares an array with a char element for each second
in a century, that is more than 3 billion chars. So this
declaration would consume more than 3 gigabytes of
memory!

Multidimensional arrays are just an abstraction for
programmers, since we can obtain the same results with
a simple array just by putting a factor between its indices:

int jimmy [3][5]; // is equivalent to
int jimmy [15]; // (3 * 5 = 15)

With the only difference that with multidimensional
arrays the compiler remembers the depth of each
imaginary dimension for us. Take as example these two
pieces of code, with both exactly the same result. One
uses a bidimensional array and the other one uses
a simple array:

multidimensional array pseudo-multidimensional array
#define WIDTH 5
#define HEIGHT 3

int jimmy [HEIGHT][WIDTH];
int n,m;

int main ()
{
 for (n=0;n<HEIGHT;n++)
 for (m=0;m<WIDTH;m++)
 {
 jimmy[n][m]=(n+1)*(m+1);
 }
 return 0;
}

#define WIDTH 5
#define HEIGHT 3

int jimmy [HEIGHT * WIDTH];
int n,m;

int main ()
{
 for (n=0;n<HEIGHT;n++)
 for (m=0;m<WIDTH;m++)
 {
 jimmy[n*WIDTH+m]=(n+1)*(m+1);
 }
 return 0;
}

None of the two source codes above produce any output
on the screen, but both assign values to the memory
block called jimmy in the following way:

We have used "defined constants" (#define) to simplify
possible future modifications of the program. For example,
in case that we decided to enlarge the array to a height

- 63 -

of 4 instead of 3 it could be done simply by changing
the line:

#define HEIGHT 3

to:

#define HEIGHT 4

with no need to make any other modifications to
the program.

Arrays as parameters

At some moment we may need to pass an array to a
function as a parameter. In C++ it is not possible to
pass a complete block of memory by value as a
parameter to a function, but we are allowed to pass
its address. In practice this has almost the same
effect and it is a much faster and more efficient operation.

In order to accept arrays as parameters the only thing
that we have to do when declaring the function is to
specify in its parameters the element type of the array,
an identifier and a pair of void brackets []. For example,
the following function:

void procedure (int arg[])

accepts a parameter of type "array of int" called arg.
In order to pass to this function an array declared as:

int myarray [40];

it would be enough to write a call like this:

procedure (myarray);

Here you have a complete example:

// arrays as parameters
#include <iostream>
using namespace std;

void printarray (int arg[], int
length) {
 for (int n=0; n<length; n++)
 cout << arg[n] << " ";
 cout << "\n";
}

int main ()
{
 int firstarray[] = {5, 10,
15};

- 64 -

 int secondarray[] = {2, 4, 6,
8, 10};
 printarray (firstarray,3);
 printarray (secondarray,5);
 return 0;
}
5 10 15
2 4 6 8 10

As you can see, the first parameter (int arg[]) accepts
any array whose elements are of type int, whatever its
length. For that reason we have included a second
parameter that tells the function the length of each array
that we pass to it as its first parameter. This allows
the for loop that prints out the array to know the range
to iterate in the passed array without going out of range.

In a function declaration it is also possible to include
multidimensional arrays. The format for a tridimensional
array parameter is:

base_type[][depth][depth]

for example, a function with a multidimensional array as
argument could be:

void procedure (int myarray[][3][4])

Notice that the first brackets [] are left blank while the
following ones are not. This is so because the compiler
must be able to determine within the function which is
the depth of each additional dimension.

Arrays, both simple or multidimensional, passed as
function parameters are a quite common source of errors
for novice programmers. I recommend the reading of the
chapter about Pointers for a better understanding on
how arrays operate.

	9. Arrays
	Initializing arrays.
	Accessing the values of an array.
	Multidimensional arrays
	Arrays as parameters

