Special Topics on Numerical Analysis (I) (II)
¼Æ­È¤ÀªR±MÃD(¤@) (¤G)

Spring and Fall 2008


Jinn-Liang Liu

°ª¶¯¤j¾ÇÀ³¼Æ¨t

 

Seminar Schedule

Date

Time

Speaker

Topic

10/22 (Wed)

 

³¯«a¦{

ªL±`¦t

 

 

 

½²©v¿o

®}°¶¬Â

 

¡@

¡@

³¯°û§D

³¯«a¦{

¡@

¡@

¡@

¡@

¡@

 

Coding Schedule
Code: DGET05B2D.rar
What
Who
When
Why

¡@

generator.hpp

class_element.hpp

class_index.hpp

¡@

¡@

¡@

ªL±`¦t

¡@

 

 

 

 

 

 

¡@

complement of others

¡@

¡@

½²©v¿o

¡@

 

 

 

 

 

 

DD_FVM_declarations.hpp

drift_diffusion_FVM.hpp

drift_diffusion_FVM_oxide.hpp

drift_diffusion_FEM.hpp

density_gradient_FVM_oxide.hpp

DG_EB_FVM_oxide_ZnZp.hpp

DG_energy_balance_FVM_oxide.hpp

¡@

¡@

³¯°û§D

 

 

 

 

 

 

¡@

class_compressed_sparse_matrix.hpp

class_matrix.hpp

class_sparse_matrix.hpp

class_sparse_matrix_entries.hpp

class_vector.hpp

declarations.hpp

¡@

¡@

¡@

³¯«a¦{

 

 

 

 

 

 

¡@

DD_FVM_declarations.hpp

drift_diffusion_FVM.hpp

drift_diffusion_FVM_oxide.hpp

drift_diffusion_FEM.hpp

density_gradient_FVM_oxide.hpp

DG_EB_FVM_oxide_ZnZp.hpp

DG_energy_balance_FVM_oxide.hpp

¡@

 

¡@

®}°¶¬Â

¡@

 

 

 

 

 

 

 

 

 

 

 

 

Prerequisite (Study the following in order)

l         2008S C++ Programming

l         2007F¼Æ­È·L¤À¤èµ{

l         1D Example: EE656: Fundamentals of Carrier Transport 

l         1D Algorithm:  ³¯°û§D Report.pdf

 

 

1. Overview

 

l      Classical Computer Device.ppt

l      Science2005-Where Do the Dopants Go.pdf

l      ¥x¿n¹q45©`¦Ì»sµ{ ¥þ²y«e¤T±j.pdf

l       Issues of CMOS Scaling ¡X On and Off the Roadmap Issues of CMOS Kang_WangPeta2Mod.pdf

l      The end of CMOS Scaling.pdf

  

2. Basic Physics

 

l         Mark Miller¡¦s Lectures  Lecture01.pdf  Lecture02.pdf  Lecture03.pdf  Lecture04.pdf  Lecture05.pdf Lecture06.pdf

l         Brief Introduction to Semiconductor Physics.pdf

 

3. Mathematical Models

 

l         Convection-Diffusion-Reaction Model   

l         3D Poisson¡¦s Equation.pdf 

l         Semiconductor Models.pdf

l         A Brief Review on Quantm Hydrodynamic Models.ppt

l         A Quantum-Corrected Energy Transport Model (QCET): 2005jcp-semi.pdf


4. Numerical Methods for PDEs

 

l         Lecture 8. Finite Element Method (FEM) for 1D Poisson¡¦s Problem

l         Adaptive FEM

1.     2003jcam-semi.pdf

2.     2003jcp-semi.pdf

l         Gummel¡¦s Iteration

1.     2005jcp-semi.pdf

l         Singular Perturbation

l         Peclet Number

l         Scharfetter-Gummel (Exponential Fitting) Method

1.      Scharfetter-Gummel Method


5. Numerical Methods for Linear Algebra

 

l         Newton¡¦s Method and Monotone Iterative Methods

1.     2008jcp-semi.pdf

  


6. Implementations  (Computer Programming)

 

l         1D C++ Code:  program1D.zip, result1D.zip

l         2D C++ Code:  program2D.zip, matlab2D.zip

 

7. Projects

 

            All read  1. 2004 Kopteva.pdf  

                             2. 2006 Saito.pdf 

 3. 2003jcam-semi.pdf
 4.
2003jcp-semi.pdf

                             5. 2005jcp-semi.pdf

                             6. 2008jcp-semi.pdf

l         Project 1: QCET with Non-parabolic Band   (Kuang-Zho Chen)

1.     SIAM (2000) Degond.pdf

l         Project 2: Adaptive FEM for QCET   (Chang-Yu Lin)

1.     1998Adaptive.pdf

2.     1996OOP.pdf

3.     SIAM (2004) Holst.pdf

4.     (2005) Kopteva.pdf

5.     (2008) Kopteva.pdf

l         Project 3: Conditioning of QCET   (Tsung-Ying Tsai)

1.     SIAM (1989) Ascher.pdf

l          Project 4: Singular Perturbation Analysis of QCET    (Wan-Ling Chen)

1.     IEEE (1983) Markowich.pdf

l         Project 5: Multiple Solutions of QCET   (We-Ling Xu)

1.     SIAM (2004) Pinnau.pdf

 


8. References

 

l          Finite Element Method: Suli-FEM-2007.pdf

 


9. Team members

l          ³¯¤¯¯Â  ³Õ¤h

l          §õ«T¼w ³Õ¤h

l          ³¢µn³ó

l          ªL±`¦t

l          ½²©v¿o

l          ³¯°û§D

l          ³¯«a¦{

l          ®}°¶¬Â