Exam 1 Numerical Analysis Fall 2014

Oct. 16, 2014
(Total of 100 points.)

1. 1D Poisson's problem states that given a function $f(x)$ and two constants g_{D} and g_{N}, find the solution $u(x)$ satisfying

$$
\begin{align*}
-u^{\prime \prime}(x) & =f(x) \text { for all } x \in(0,1) \tag{1}\\
u^{\prime}(0) & =g_{N} \tag{2}\\
u(1) & =g_{D} \tag{3}
\end{align*}
$$

(I) Let $g_{N}=0$ and $g_{D}=0$. The finite difference method for solving this problem consists of the following steps:

Step 1. (5\%) Domain Discretization. Let's use a uniform partition on the domain with the number of subintervals being $N-1$. Sketch the partition with proper notations indicating the grid nodes and the mesh size.
Step 2. (10%) For any grid point x_{i}, write down the central difference approximation formulas of

$$
\begin{aligned}
u^{\prime}\left(x_{i}\right) & \approx \\
u^{\prime \prime}\left(x_{i}\right) & \approx
\end{aligned}
$$

Step 3. (A) (10\%) Write down the system of difference equations with the unknown scalars U_{i} after applying the central difference formulas to (1).
(B) (5%) What is the difference between U_{i} and $u_{i} \equiv u\left(x_{i}\right)$?
(C) (5%) How do you write the approximation equations for (2) and (3)?
(D) (10%) Combine (A) and (C) to a linear system $A \vec{U}=\vec{b}$ and write clearly the definition of the symbols A, \vec{U}, and \vec{b}.
(II) (A) (10%) Let $f(x)=2, g_{N}=1$, and $g_{D}=0$. Find the (unique) solution $u(x)$ of this problem.
(B) (5%) Write down the system $A \vec{U}=\vec{b}$ for the problem of (A) with only two subintervals, i.e., $N=3$ (you should write element values of A and \vec{b}).
(C) (5%) Will you get a unique solution if (3) is replaced by $u^{\prime}(1)=$ 0 ?
2. (10%) Consider the linear system $A \vec{x}=\vec{b}$ where $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ -1 & 3 & 0 \\ 1 & 0 & -2\end{array}\right]$, $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right]$. Solve the system by Jacobi's Method (JM) to the first 2 iterates and fill your answers in the following table. Use the rational number such as $\frac{1}{3}$ do NOT use 0.333 .

Table. JM Iteration			
k	0	1	2
$x_{1}^{(k)}$	0		
$x_{2}^{(k)}$	0		
$x_{3}^{(k)}$	0		

3. (15%) Write an algorithm for JM.
4. (10%) For solving the linear system $A \vec{x}=\vec{b}$, the JM in matrix form is expressed as

$$
\begin{equation*}
\vec{x}^{(k)}=-D^{-1}(L+U) \vec{x}^{(k-1)}+D^{-1} \stackrel{\rightharpoonup}{b}, \quad k=1,2,3, \cdots \tag{4}
\end{equation*}
$$

where $A=D+L+U$ is an $N x N$ matrix, \vec{x} is the exact (unknown) vector, and $\vec{x}^{(k)}$ is an approximate vector of \vec{x}. Here D, L, and U are the diagonal, the strictly lower-triangular, and the strictly uppertriangular parts of A, respectively. The JM written in component form is

$$
\begin{equation*}
x_{i}^{(k)}=\left(b_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{N} a_{i j} x_{j}^{(k-1)}\right) / a_{i i} \tag{5}
\end{equation*}
$$

Prove from (4) to (5).

