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1D Poisson’s Problem: Given a function f(x) and two constants gD
and gN , find the solution u(x) satisfying

−u′′ = f(x) , ∀ x ∈ (0, 1) = Ω : Open set (1.1a)

u(0) = gD Dirichlet Boundary Condition (1.1b)

u′(1) = gN Neumann BC (1.1c)

Here Ω is the domain of the problem and ∂Ω is the boundary of Ω, i.e.,∂Ω =
{0, 1} , Ω = Ω ∪ ∂Ω.

This is a simplifiedmathematical model, an ordinary differential equa-
tion with Dirichlet and Neumann boundary conditions (or a boundary value
problem). To study a given complex mathematical model, we usually sim-
plify the problem and then construct an exact (true, analytical) solution to
the simplified problem. With the solution, we can study the main properties
of the problem under investigation. In general, the exact solution of a real-
istic model is impossible to find by analytical method (by hand). We then
resort to a computer to find an approximate solution for us. For this, we
need a variety of numerical methods that can be implemented (written in
a computer programming language such as C++) on the computer. Before
applying the numerical methods to the real problem, we must firstly verify
the methods with a simplified problem for which the exact solution is already
known so that we can check whether our numerical methods are effective and
efficient. This course is meant to teach you standard numerical methods for
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Figure 1: The exact solution graph of Question 1.1(c).

ordinary or partial differential equations (ODEs) or (PDEs) (Part 1) and for
linear algebra (Part 2).
Question 1.1. Look very closely where the variable x is defined (interior

or boundary). (a) What is the unknown in (1.1a)? (b) If f(x) = 2, can you
find a solution (call an exact solution) of (1.1a)? More solutions? Infinitely
many solutions (general solution)? (c) If gD = 0 and gN = 0, how many
solutions you get? Can you draw a picture for your solution(s)? (d) If we
change the conditions u(0) = 0 and u′(1) = 0 to u′(0) = 0 and u′(1) = 0,
how many solutions you get? (e) Now if you are given f(x) = sin x+cosx2+
ln x4 + esinx, can you use your hand to find an exact solution for (1.1a)?

Now another important question is: How do we find an approximate
solution of (1.1) for any arbitrary f(x), gD, and gN? This is the main
purpose of this course to teach you how to find an approximation solution of
an ODE or PDE problem. Here is the simplest method for Problem (1.1) in
Part 1.

Part 1: Numerical Method for PDEs

Finite Difference Method (FDM):

Step 1. Domain Discretization (Mesh Generation)
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Uniform Mesh (Partition): We partition (discretize) the domain Ω =
[0, 1] into N − 1 subintervals (meshes or elements) with uniform mesh size
∆x = h = 1

N−1
and N mesh (grid) points (nodes) xi, i = 1, · · ·N . Hence,

xi = 0 + (i− 1)∆x, xi+1 = 0 + i∆x, xi+1

2

= 0 + (i− 1

2
)∆x etc.

Step 2. Central Difference Approximation

The following is the definition of a derivative that you learn from Calculus.

u′(xi) = lim
∆x→0

u(xi +∆x)− u(xi)

∆x
(Forward) (1.2)

= lim
∆x→0

u(xi)− u(xi −∆x)

∆x
(Backward) (1.3)

= lim
∆x→0

u(x
i+ 1

2

)− u(x
i−

1

2

)

∆x
(Central) (1.4)

≈
u
i+ 1

2

− u
i−

1

2

∆x
(Central Difference) (1.5)

≈
U
i+ 1

2

− U
i−

1

2

∆x
(1.6)

Note the difference between ui (exact) and Ui (approximation), i.e., ui =
u(xi) ≈ U i where U i are unknown scalars that we are looking for.

u′′(xi) = lim
∆x→0

u′
i+

1

2

− u′
i−

1

2

∆x
(1.7)

= lim
∆x→0

lim
∆x→0

ui+1−ui

∆x
− lim
∆x→0

ui−ui−1

∆x

∆x
(1.8)

≈
ui−1 − 2ui + ui+1

(∆x)2
(1.9)

Substituting this expression into (1.1a), we have

−
Ui−1 − 2Ui + Ui+1

(∆x)2
= fi = f(xi), ∀i = 2, ..., N − 1. (1.10)

The Dirichlet BC (1.1b) u(0) = u(x1) = gD implies that

U1 = gD (1.11)

3



whereas the Neumann BC (1.1c) can be approximated by

gN = u′(1) = u′(xN) (1.12)

= lim
∆x→0

u(xN)− u(xN−1)

∆x
(1.13)

≈
UN − UN−1

∆x
⇒ (1.14)

UN − UN−1 = ∆x · gN = h · gN (1.15)

Combining (1.11), (1.10), and (1.12), we obtain the system of linear al-
gebraic equations:

ANxN
−→
U =

−→
b (1.16)

ANxN =






1 0 · · · · · · · · · · · · · · · 0
−1 2 −1 0 · · · · · · · · · 0
0 −1 2 −1 0 · · · · · · 0
...

. . . . . . . . . . . . . . .
...

...
0 · · · 0 −1 2 −1 0 · · ·
... · · ·

...
. . .

...
. . . . . . 0

0 · · · · · · 0 0 −1 2 −1
0 · · · · · · · · · 0 0 −1 1






(1.17)

−→
U =






U1
U2
U3
...
Ui
...
...
UN






−→
b =






gD
h2f2
...
h2fi
...

h2fN−1
hgN






(1.18)

where A is called an N by N coefficient matrix, −→x is an N by 1 unknown

vector, and
−→
b is an N by 1 known vector.

In linear algebra, we usually use the notation A−→x =
−→
b for A

−→
U =

−→
b .

Do not confuse −→x with the grid points xi.

Step 3. Solving the Linear System A−→x =
−→
b (A

−→
U =

−→
b )
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Question 1.2. Write in detail from Domain Discretization to the linear

system A
−→
U =

−→
b with N = 5 for the example

f(x) = 2, gD = 0 and gN = 0.
Homework 1.1. Can you define a (polynomial of degree m) function,

say U(x), such that the graph of U(x) passes through the points (xi, Ui)?
Use the same degree of polynomial to define another function, say uI(x),
such that its graph passes through the points (xi, ui). Draw a picture to
tell the difference between u(x), uI(x), and U(x). We say that uI(x) is a
piecewise linear interpolation of u(x) at x1, x2, · · · , xN if m = 1 and N = 5.

Part 2: Numerical Method for Linear Algebra A−→x =
−→
b

Given A and
−→
b , there are two ways to solve A−→x =

−→
b for the unknown

vector −→x .
(1) Direct Methods: Gaussian Elimination etc. These methods are ap-

propriate for small systems with (N < 10000).
(2) Iterative Methods: Jacobi, Gauss-Seidel, SOR, Conjugate-Gradient,

etc. for very large systems.
We will spend much of our class hours on Part 2 for this course.
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