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Basic Idea of Gaussian Elimination

A = [aij]NxN , i = the i
th row, j = the jth column

⇀

b =



b1
...
bN



Nx1

We first merge A and
⇀

b as an augmented matrix and then perform ele-
mentary operations so that A is transformed to an upper triangular matrix
(all entries lying below the diagonal entries are zero):

[
A |

⇀

b
]
NxN+1

Elementary Operations
−−−−−−−−−−−−−−−−−→




× × · · · · · · ×

0 × × · · ·
...

... 0
. . . ×

...
...
... 0 × ×

0 · · · · · · 0 ×

∣∣∣∣∣∣∣∣∣∣∣∣

b̃



(2.1)

Elementary Operations
(1) cEi → Ei: Multiply the ith row by a constant c.
(2) (Ej + cEi)→ Ej: Add cEi to Ej.
(3) Ei ←→ Ej: Exchange Ei and Ej.

E1 : x1 − x2 + 2x3 − x4 = −8

E2 : 2x1 − 2x2 + 3x3 − 3x4 = −20

E3 : x1 + x2 + x3 = −2

E4 : −3x1 − x2 + x3 + 3x4 = 4

[
A |

⇀

b
]
=




1 −1 2 −1
2 −2 3 −3
1 1 1 0
−3 −1 1 3

∣∣∣∣∣∣∣∣

−8
−20
−2
4



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(−2E1 + E2)→ E2
(−E1 + E3)→ E3
(3E1 + E4)→ E4

−−−−−−−−−−−−−−−→




1 −1 2 −1
0 0 −1 −1
0 2 −1 1
0 −4 7 0

∣∣∣∣∣∣∣∣

−8
−4
6
−20




E2 ←→ E3
(2E2 + E4)→ E4
(5E3 + E4)→ E4
−−−−−−−−−−−−−→




1 −1 2 −1
0 2 −1 1
0 0 −1 −4
0 0 0 −18

∣∣∣∣∣∣∣∣

−8
6
−4
−28




We thus have the transformed system

x1 − x2 + 2x3 − x4 = −8

2x2 − x3 + x4 = 6

−x3 − 4x4 = −4

18x4 = 28

=⇒ Backward substitution

=⇒ Solution: x4 =
14

9
, x3 =

−20

9
, x2 = . . . , x1 = . . .

Algorithm GE: Gaussian Elimination Solve A
⇀
x =

⇀

b .

Input: N : Number of unknowns and equations; aij: Entries of A, i, j =

1 · · ·N ; bi: Entries of
⇀

b , i = 1 · · ·N .

Output: xi: Entries of
⇀
x (Solution) or Error Message.

Step 1. For i = 1, · · · , N − 1 do Step 2-4 (Elimination Process).

Step 2. Let p be the smallest integer i ≤ p ≤ N and api 	= 0. If no integer
p can be found then OUTPUT (”Error: No Unique Solution Exists”),
STOP.

Step 3. If p 	= i then perform (Ep ↔ Ei).

Step 4. For k = i+ 1, · · · ,N do Step 5-6.

Step 5. If aki = 0 then go to Step 4, else set mki = aki/aii. (N − i times)

Step 6. Perform (Ek −mkiEi)→ Ek. ((N − i+ 2)(N − i) times)
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Step 7. If aNN = 0 then OUTPUT (“Error: No Unique Solution Exists”),
STOP.

Step 8. Set xN =
bN
aNN

. (1 time)

Step 9. For i = N−1, N−2, · · · , 1, set xi =

(
bi −

N∑
j=i+1

aijxj

)
/aii. ((N−

i+ 1) times)

Step 10. OUTPUT (x1, · · · , xN ); “Procedure completed successfully”), STOP.

Complexity of the GE Algorithm

Total number of × or÷ operations

= 1 +
N−1∑

i=1

[(N − i) + (N − i+ 2)(N − i) + (N − i+ 1)(N − 1)]

=
N3

3
+N2 −

N

3
= O(N3) (2.2)

Operation ∗ or ÷ is the most time consuming part of operations on a
computer. We say that the computational complexity of the Gaussian elimi-
nation algorithm is O(N3), which means that the CPU time needed to solve

A
⇀
x =

⇀

b by GE is approximately proportional to N3. You can think of
O(N3) = cN3 as N →∞ where c is a constant.

Question 2.1. If a computer solving A
⇀
x =

⇀

b with N = 100 by GE
spends 1 second, how much time will it spend for N = 10000?

Project 2.1. Consider the 1D Poisson Problem (1.1) (with f(x) = 2, gD =
0, and gN = 0) and implement the methods FDM and GE. Given a
total number of nodes N , the mesh size ∆x = h = 1

N−1
. The maximum

error of an approximate solution U(x) is defined as

Eu = ||e(x)||∞ = ||u(x)− U(x)||∞

= max
1≤i≤N

|ei| = max
1≤i≤N

|ui − Ui| = O(h
α). (2.3)
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In general, ||e(x)||∞ is expressed as O(h
α) where α is called the order

of convergence of the numerical method (FDM here). With different h,
we thus have

Eu1 ∝ (h1)
α

Eu2 ∝ (h2)
α

Eu1
Eu2

= (
h1
h2
)α

α =
log(Eu1 )− log(E

u
2 )

log(h1)− log(h2)
(2.4)

Input: N

Output:

N Eu α
5
9
17
33
65
129

.

HW 2.1. Consider 1D Poisson’s equation (1.1a) with the Dirichlet
boundary conditions u(0) = α and u(1) = β. This is the same problem
(2.6) and (2.7) in LeVeque-FDM-2005.pdf. This problem is solved by us-
ing the central finite difference method to obtain an approximation solution
U(x). (A) Show that the local truncation error of the approximation solution
is of O(h2). (B) Show that the method is stable. (C) Show that the con-
vergence order of the method is O(h2). (See LeVeque-FDM-2005.pdf for the
definitions of local truncation error, stability, consistence, and convergence
and the proofs for these results.)
HW 2.2. Consider 1D Poisson’s equation (1.1a) with the Dirichlet-

Neumann boundary conditions u′(0) = σ and u(1) = β (See (2.33) in
LeVeque-FDM-2005.pdf.) (A) Show that the local truncation error of our ap-
proximation (1.16) is O(h1). (B) Use the central approximation to u′(0) = σ
as given by (2.36) in LeVeque-FDM-2005.pdf. Show that the local truncation
error is now O(h2).

9


