

Basic Idea of Gaussian Elimination

$$A = [a_{ij}]_{NxN}, \ i = \text{the } i^{th} \text{ row}, \ j = \text{the } j^{th} \text{ column}$$
$$\vec{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix}_{Nx1}$$

We first merge A and \vec{b} as an augmented matrix and then perform elementary operations so that A is transformed to an upper triangular matrix (all entries lying below the diagonal entries are zero):

$$\begin{bmatrix} A \mid \vec{b} \end{bmatrix}_{NxN+1} \xrightarrow{\text{Elementary Operations}} \begin{bmatrix} \times & \times & \cdots & \times & \\ 0 & \times & \times & \cdots & \vdots \\ \vdots & 0 & \ddots & \times & \vdots \\ \vdots & \vdots & 0 & \times & \times \\ 0 & \cdots & \cdots & 0 & \times \end{bmatrix}$$
(2.1)

Elementary Operations

(1) $cE_i \to E_i$: Multiply the *i*th row by a constant *c*.

- (2) $(E_j + cE_i) \rightarrow E_j$: Add cE_i to E_j .
- (3) $E_i \longleftrightarrow E_j$: Exchange E_i and E_j .

$$E_{1} : x_{1} - x_{2} + 2x_{3} - x_{4} = -8$$

$$E_{2} : 2x_{1} - 2x_{2} + 3x_{3} - 3x_{4} = -20$$

$$E_{3} : x_{1} + x_{2} + x_{3} = -2$$

$$E_{4} : -3x_{1} - x_{2} + x_{3} + 3x_{4} = 4$$

$$A \mid \vec{b} = \begin{bmatrix} 1 & -1 & 2 & -1 & | & -8 \\ 2 & -2 & 3 & -3 & | & -20 \\ 1 & 1 & 1 & 0 & | & -2 \\ -3 & -1 & 1 & 3 & | & 4 \end{bmatrix}$$

$$\begin{array}{c|c} (-2E_1 + E_2) \to E_2 \\ (-E_1 + E_3) \to E_3 \\ (3E_1 + E_4) \to E_4 \end{array} \begin{bmatrix} 1 & -1 & 2 & -1 & | & -8 \\ 0 & 0 & -1 & -1 & | & -4 \\ 0 & 2 & -1 & 1 & | & 6 \\ 0 & -4 & 7 & 0 & | & -20 \end{bmatrix} \\ \hline \\ E_2 \longleftrightarrow E_3 \\ (2E_2 + E_4) \to E_4 \\ (5E_3 + E_4) \to E_4 \\ (5E_3 + E_4) \to E_4 \\ \end{array} \begin{bmatrix} 1 & -1 & 2 & -1 & | & -8 \\ 0 & 2 & -1 & 1 & | & 6 \\ 0 & 0 & -1 & -4 & | & -4 \\ 0 & 0 & 0 & -18 & | & -28 \end{bmatrix}$$

We thus have the transformed system

$$x_1 - x_2 + 2x_3 - x_4 = -8$$

$$2x_2 - x_3 + x_4 = 6$$

$$-x_3 - 4x_4 = -4$$

$$18x_4 = 28$$

 \implies Backward substitution \implies Solution: $x_4 = \frac{14}{9}, x_3 = \frac{-20}{9}, x_2 = \dots, x_1 = \dots$

Algorithm GE: Gaussian Elimination Solve $A\vec{x} = \vec{b}$.

Input: N: Number of unknowns and equations; a_{ij} : Entries of A, $i, j = 1 \cdots N$; b_i : Entries of $\vec{b}, i = 1 \cdots N$.

Output: x_i : Entries of \vec{x} (Solution) or Error Message.

Step 1. For $i = 1, \dots, N - 1$ do Step 2-4 (Elimination Process).

- **Step 2.** Let p be the smallest integer $i \leq p \leq N$ and $a_{pi} \neq 0$. If no integer p can be found then OUTPUT ("Error: No Unique Solution Exists"), STOP.
- **Step 3.** If $p \neq i$ then perform $(E_p \leftrightarrow E_i)$.
- Step 4. For $k = i + 1, \dots, N$ do Step 5-6.

Step 5. If $a_{ki} = 0$ then go to Step 4, else set $m_{ki} = a_{ki}/a_{ii}$. (N - i times)

Step 6. Perform $(E_k - m_{ki}E_i) \rightarrow E_k$. ((N - i + 2)(N - i) times)

Step 7. If $a_{NN} = 0$ then OUTPUT ("Error: No Unique Solution Exists"), STOP.

Step 8. Set $x_N = \frac{b_N}{a_{NN}}$. (1 time)

Step 9. For $i = N - 1, N - 2, \dots, 1$, set $x_i = \left(b_i - \sum_{j=i+1}^N a_{ij} x_j\right) / a_{ii}$. ((N-i+1) times)

Step 10. OUTPUT (x_1, \dots, x_N) ; "Procedure completed successfully"), STOP.

Complexity of the GE Algorithm

Total number of \times or \div operations

$$= 1 + \sum_{i=1}^{N-1} [(N-i) + (N-i+2)(N-i) + (N-i+1)(N-1)]$$

$$= \frac{N^3}{3} + N^2 - \frac{N}{3} = O(N^3)$$
(2.2)

Operation * or \div is the most time consuming part of operations on a computer. We say that the computational complexity of the Gaussian elimination algorithm is $O(N^3)$, which means that the CPU time needed to solve $A\vec{x} = \vec{b}$ by GE is approximately proportional to N^3 . You can think of $O(N^3) = cN^3$ as $N \to \infty$ where c is a constant.

Question 2.1. If a computer solving $A\vec{x} = \vec{b}$ with N = 100 by GE spends 1 second, how much time will it spend for N = 10000?

Project 2.1. Consider the 1D Poisson Problem (1.1) (with f(x) = 2, $g_D = 0$, and $g_N = 0$) and implement the methods FDM and GE. Given a total number of nodes N, the mesh size $\Delta x = h = \frac{1}{N-1}$. The maximum error of an approximate solution U(x) is defined as

$$E^{u} = ||e(x)||_{\infty} = ||u(x) - U(x)||_{\infty}$$

=
$$\max_{1 \le i \le N} |e_{i}| = \max_{1 \le i \le N} |u_{i} - U_{i}| = O(h^{\alpha}).$$
(2.3)

In general, $||e(x)||_{\infty}$ is expressed as $O(h^{\alpha})$ where α is called the order of convergence of the numerical method (FDM here). With different h, we thus have

$$\begin{array}{rcl}
E_1^u & \propto & (h_1)^\alpha \\
E_2^u & \propto & (h_2)^\alpha \\
\frac{E_1^u}{E_2^u} & = & \left(\frac{h_1}{h_2}\right)^\alpha \\
\alpha & = & \frac{\log(E_1^u) - \log(E_2^u)}{\log(h_1) - \log(h_2)}
\end{array}$$
(2.4)

Input: N

	N	E^u	α
	5		
	9		
Output:	17		
	33		
	65		
	129		

HW 2.1. Consider 1D Poisson's equation (1.1a) with the Dirichlet boundary conditions $u(0) = \alpha$ and $u(1) = \beta$. This is the same problem (2.6) and (2.7) in LeVeque-FDM-2005.pdf. This problem is solved by using the central finite difference method to obtain an approximation solution U(x). (A) Show that the local truncation error of the approximation solution is of $O(h^2)$. (B) Show that the method is stable. (C) Show that the convergence order of the method is $O(h^2)$. (See LeVeque-FDM-2005.pdf for the definitions of local truncation error, stability, consistence, and convergence and the proofs for these results.)

HW 2.2. Consider 1D Poisson's equation (1.1a) with the Dirichlet-Neumann boundary conditions $u'(0) = \sigma$ and $u(1) = \beta$ (See (2.33) in LeVeque-FDM-2005.pdf.) (A) Show that the local truncation error of our approximation (1.16) is $O(h^1)$. (B) Use the central approximation to $u'(0) = \sigma$ as given by (2.36) in LeVeque-FDM-2005.pdf. Show that the local truncation error is now $O(h^2)$.