Lecture 2

Gaussian Elimination (GE)

Jinn-Liang Liu

2017/4/18

Basic Idea of Gaussian Elimination

$$
\begin{gathered}
A=\left[a_{i j}\right]_{N x N}, i=\text { the } i^{\text {th }} \text { row, } j=\text { the } j^{\text {th }} \text { column } \\
\vec{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{N}
\end{array}\right]_{N x 1}
\end{gathered}
$$

We first merge A and \vec{b} as an augmented matrix and then perform elementary operations so that A is transformed to an upper triangular matrix (all entries lying below the diagonal entries are zero):

$$
[A \mid \vec{b}]_{N x N+1} \xrightarrow{\text { Elementary Operations }}\left[\begin{array}{ccccc}
\times & \times & \cdots & \cdots & \times \tag{2.1}\\
0 & \times & \times & \cdots & \vdots \\
\vdots & 0 & \ddots & \times & \vdots \\
\vdots & \vdots & 0 & \times & \times \\
0 & \cdots & \cdots & 0 & \times
\end{array}\right]
$$

Elementary Operations
(1) $c E_{i} \rightarrow E_{i}$: Multiply the i th row by a constant c.
(2) $\left(E_{j}+c E_{i}\right) \rightarrow E_{j}$: Add $c E_{i}$ to E_{j}.
(3) $E_{i} \longleftrightarrow E_{j}$: Exchange E_{i} and E_{j}.

$$
\begin{aligned}
E_{1} & : x_{1}-x_{2}+2 x_{3}-x_{4}=-8 \\
E_{2} & : 2 x_{1}-2 x_{2}+3 x_{3}-3 x_{4}=-20 \\
E_{3} & : x_{1}+x_{2}+x_{3}=-2 \\
E_{4} & :-3 x_{1}-x_{2}+x_{3}+3 x_{4}=4 \\
{[A \mid \vec{b}] } & =\left[\begin{array}{cccc|c}
1 & -1 & 2 & -1 & -8 \\
2 & -2 & 3 & -3 & -20 \\
1 & 1 & 1 & 0 & -2 \\
-3 & -1 & 1 & 3 & 4
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
\substack{\left(-2 E_{1}+E_{2}\right) \rightarrow E_{2} \\
\left(-E_{1}+E_{3}\right) \rightarrow E_{3} \\
\left(3 E_{1}+E_{4}\right) \rightarrow E_{4}}
\end{gathered}\left[\begin{array}{cccc|c}
1 & -1 & 2 & -1 & -8 \\
0 & 0 & -1 & -1 & -4 \\
0 & 2 & -1 & 1 & 6 \\
0 & -4 & 7 & 0 & -20
\end{array}\right]
$$

We thus have the transformed system

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3}-x_{4} & =-8 \\
2 x_{2}-x_{3}+x_{4} & =6 \\
-x_{3}-4 x_{4} & =-4 \\
18 x_{4} & =28
\end{aligned}
$$

\Longrightarrow Backward substitution
\Longrightarrow Solution: $x_{4}=\frac{14}{9}, x_{3}=\frac{-20}{9}, x_{2}=\ldots, x_{1}=\ldots$
Algorithm GE: Gaussian Elimination Solve $A \vec{x}=\vec{b}$.
Input: N : Number of unknowns and equations; $a_{i j}$: Entries of $A, i, j=$ $1 \cdots N ; b_{i}$: Entries of $\vec{b}, i=1 \cdots N$.

Output: x_{i} : Entries of \vec{x} (Solution) or Error Message.
Step 1. For $i=1, \cdots, N-1$ do Step 2-4 (Elimination Process).
Step 2. Let p be the smallest integer $i \leq p \leq N$ and $a_{p i} \neq 0$. If no integer p can be found then OUTPUT ("Error: No Unique Solution Exists"), STOP.

Step 3. If $p \neq i$ then perform $\left(E_{p} \leftrightarrow E_{i}\right)$.
Step 4. For $k=i+1, \cdots, N$ do Step 5-6.
Step 5. If $a_{k i}=0$ then go to Step 4, else set $m_{k i}=a_{k i} / a_{i i} . \quad(N-i$ times $)$
Step 6. Perform $\left(E_{k}-m_{k i} E_{i}\right) \rightarrow E_{k} . \quad((N-i+2)(N-i)$ times $)$

Step 7. If $a_{N N}=0$ then OUTPUT ("Error: No Unique Solution Exists"), STOP.

Step 8. Set $x_{N}=\frac{b_{N}}{a_{N N}} . \quad$ (1 time)
Step 9. For $i=N-1, N-2, \cdots, 1$, set $x_{i}=\left(b_{i}-\sum_{j=i+1}^{N} a_{i j} x_{j}\right) / a_{i i} . \quad((N-$ $i+1)$ times)

Step 10. OUTPUT $\left(x_{1}, \cdots, x_{N}\right)$; "Procedure completed successfully"), STOP.

Complexity of the GE Algorithm

Total number of \times or \div operations

$$
\begin{align*}
& =1+\sum_{i=1}^{N-1}[(N-i)+(N-i+2)(N-i)+(N-i+1)(N-1)] \\
& =\frac{N^{3}}{3}+N^{2}-\frac{N}{3}=O\left(N^{3}\right) \tag{2.2}
\end{align*}
$$

Operation $*$ or \div is the most time consuming part of operations on a computer. We say that the computational complexity of the Gaussian elimination algorithm is $O\left(N^{3}\right)$, which means that the CPU time needed to solve $A \vec{x}=\vec{b}$ by GE is approximately proportional to N^{3}. You can think of $O\left(N^{3}\right)=c N^{3}$ as $N \rightarrow \infty$ where c is a constant.

Question 2.1. If a computer solving $A \vec{x}=\vec{b}$ with $N=100$ by GE spends 1 second, how much time will it spend for $N=10000$?

Project 2.1. Consider the 1D Poisson Problem (1.1) (with $f(x)=2, g_{D}=$ 0 , and $g_{N}=0$) and implement the methods FDM and GE. Given a total number of nodes N, the mesh size $\Delta x=h=\frac{1}{N-1}$. The maximum error of an approximate solution $U(x)$ is defined as

$$
\begin{align*}
E^{u} & =\|e(x)\|_{\infty}=\|u(x)-U(x)\|_{\infty} \\
& =\max _{1 \leq i \leq N}\left|e_{i}\right|=\max _{1 \leq i \leq N}\left|u_{i}-U_{i}\right|=O\left(h^{\alpha}\right) \tag{2.3}
\end{align*}
$$

In general, $\|e(x)\|_{\infty}$ is expressed as $O\left(h^{\alpha}\right)$ where α is called the order of convergence of the numerical method (FDM here). With different h, we thus have

$$
\begin{align*}
E_{1}^{u} & \propto\left(h_{1}\right)^{\alpha} \\
E_{2}^{u} & \propto\left(h_{2}\right)^{\alpha} \\
\frac{E_{1}^{u}}{E_{2}^{u}} & =\left(\frac{h_{1}}{h_{2}}\right)^{\alpha} \\
\alpha & =\frac{\log \left(E_{1}^{u}\right)-\log \left(E_{2}^{u}\right)}{\log \left(h_{1}\right)-\log \left(h_{2}\right)} \tag{2.4}
\end{align*}
$$

Input: N

Output:

N	E^{u}	α
5		
9		
17		
33		
65		
129		

HW 2.1. Consider 1D Poisson's equation (1.1a) with the Dirichlet boundary conditions $u(0)=\alpha$ and $u(1)=\beta$. This is the same problem (2.6) and (2.7) in LeVeque-FDM-2005.pdf. This problem is solved by using the central finite difference method to obtain an approximation solution $U(x)$. (A) Show that the local truncation error of the approximation solution is of $O\left(h^{2}\right)$. (B) Show that the method is stable. (C) Show that the convergence order of the method is $O\left(h^{2}\right)$. (See LeVeque-FDM-2005.pdf for the definitions of local truncation error, stability, consistence, and convergence and the proofs for these results.)

HW 2.2. Consider 1D Poisson's equation (1.1a) with the DirichletNeumann boundary conditions $u^{\prime}(0)=\sigma$ and $u(1)=\beta$ (See (2.33) in LeVeque-FDM-2005.pdf.) (A) Show that the local truncation error of our approximation (1.16) is $O\left(h^{1}\right)$. (B) Use the central approximation to $u^{\prime}(0)=\sigma$ as given by (2.36) in LeVeque-FDM-2005.pdf. Show that the local truncation error is now $O\left(h^{2}\right)$.

