
Lecture 3

Jacobi’s Method (JM)
Jinn-Liang Liu

2017/4/18

Jacobi’s method is the easiest iterative method for solving a system of
linear equations

ANxN
⇀
x =

⇀

b (3.1)

For any equation, the ith equation

N∑

j=1

aijxj = bi (3.2)

we solve for the value xi while assuming that the other entries of
⇀
x =

(x1, x2, x3, · · · , xN)
T remain fixed and hence we obtain

xi = (bi −
N∑

j=1
j �=i

aijxj)/aii (3.3)

This suggests an iterative method by

x(k)i = (bi −
N∑

j=1
j �=i

aijx
(k−1)
j)/aii (3.4)

where x
(k)
i means the value of kth iteration for unknown xi with k =

1, 2, 3, · · · , and
⇀
x
(0)

is an initial guess vector, e.g., we can guess that

⇀
x
(0)
= (0, 0, 0, · · · , 0)T (3.5)

This is so called Jacobi’s method. Note that the order in which the equa-
tions are examined is irrelevant.

Example 3.1. Consider the system
[
3 2
1 5

] [
x1
x2

]
=

[
5
6

]
(3.6)

11

The solution is
⇀
x = (x1, x2)

T = (1, 1)T .

Jacobi’s Iteration: Let the initial guess be x
(0)
1 = x

(0)
2 = 0.

k = 1, 3x1 + 2x2 = 5

x
(1)
1 = (5− 2x

(0)
2)/3 = (5− 2 · 0)/3 =

5
3

x1 + 5x2 = 6

x
(1)
2 = (6− x

(0)
1)/5 = (6− 0)/5 =

6
5

k = 2, x
(2)
1 = (5− 2x

(1)
2)/3 = (5− 2 ·

6
5
)/3 = 13

15

x
(2)
2 = (6− x

(1)
1)/5 = (6−

5
3
)/5 = 13

15

k = 3, x
(3)
1 = (5− 2x

(2)
2)/3 = (5− 2 ·

13
15
)/3 = 49

45

x
(3)
2 = (6− x

(2)
1)/5 = (6−

13
15
)/5 = 77

75

Table 3.1. Jacobi’s Iteration
k 0 1 2 3 · · · ∞

x
(k)
1 0 5

3
13
15

49
45

· · · 1

x(k)2 0 6
5

13
15

77
75

· · · 1
(
x
(3)
1 , x

(3)
2

)
=
(
49
45
, 77
75

)
is an approximation of the exact solution (x1, x2) =

(1, 1).
Jacobi’s method is highly parallel.
In matrix form, Jacobi’s method can be expressed as

⇀
x
(k)
= −D−1(L+ U)

⇀
x
(k−1)

+D−1
⇀

b , k = 1, 2, 3, · · · (3.7)

where A = D + L + U . Here D, L, and U are the diagonal, the strictly
lower-triangular, and the strictly upper-triangular parts of A, respectively.

12

Example 3.2.

A =

[
3 2
1 5

]

=

[
3 0
0 5

]
+

[
0 0
1 0

]
+

[
0 2
0 0

]

= D + L+ U (3.8)

D
⇀
x
(1)

= −(L+ U)
⇀
x
(0)
+
⇀

b (3.9)
[
3 0
0 5

][
x
(1)
1

x(1)2

]

=

[
0 0
−1 0

][
x
(0)
1

x(0)2

]

+

[
0 −2
0 0

][
x
(0)
1

x(0)2

]

+

[
5
6

]
(3.10)

In general, any iterative method can be expressed as

⇀
x
(k)
= B

⇀
x
(k−1)

+
⇀
c , k = 1, 2, 3, · · · (3.11)

Hence, for JM, we have

B = −D−1(L+ U) ,
⇀
c = D−1

⇀

b (3.12)

Algorithm JM: Jacobi’s Method Solve A
⇀
x =

⇀

b .

Input: N : Number of unknowns and equations; aij: Entries of A, i, j =

1 · · ·N ; bi: Entries of
⇀

b , i = 1 · · ·N ; TOL: Error Tolerance.

Output: x
(k)
i : Entries of

⇀
x
(k)

(approximate solution) or Error Message.

Step 1. Choose an arbitrary initial guess
⇀
x
(0)
=
(
x
(0)
1 , · · · , x

(0)
N

)T
to the

solution
⇀
x.

Step 2. For k = 1, 2, 3 · · · , kmax

Step 3. For i = 1, 2, · · · , N

Step 4. sum = 0 (sum represents a summation
∑

)

13

Step 5. For j = 1, 2, · · · , i− 1, i+ 1, · · · ,N

Step 6. sum = sum +aijx
(k−1)
j

Step 7. End j loop

Step 8. x
(k)
i = (bi− sum)/aii

Step 9. End i loop

Step 10.
⇀
x
(k)
= (x

(k)
1 , · · · , x

(k)
N)

T

Step 11. If ||
⇀
r
(k)
||∞ < TOL = 10−6 then Stop otherwise Set

⇀
x
(k−1)

=
⇀
x
(k)

and Go To Step 2.

Step 12. End k loop

Step 13. Error: Not convergent with the max number of iterations kmax and
TOL.

⇀
x
(k)
≈

⇀
x: An approximate solution.

⇀
r
(k)
= A

⇀
x
(k)
−

⇀

b : Residual vector.

E
−→x = ||

⇀
r
(k)
||∞ := max

1≤i≤N
|r
(k)
i |: Residual error in maximum norm.

Project 3.1. Consider Example 3.1 and implement the JM.

Input: N = 2, A,
⇀

b , kmax , TOL (write the input in the program).

Output:

k x
(k)
1 x

(k)
2

0
1
2
...
kmax

Project 3.2. Consider the 1D Poisson Problem (1.1) (with f(x) = 2, gD =
0, and gN = 0) and implement the methods FDM and JM.

Input: N , A,
⇀

b , kmax , TOL (write the input in the program).

14

Output:

N k E
−→x Eu α

5
9
17
33
65
129

Summary: Methods for A
⇀
x =

⇀

b

1. Direct Methods: GE etc.

2. Iterative Methods:

(A) Stationary Iterative Methods

Neither B nor
⇀
c depend upon the iteration count k in (3.11).

Eg: JM, Gauss-Seidel Method (GS),

Successive Overrelaxation (SOR) Method,

Symmetric SOR (SSOR) Method

(B) Nonstationary Iterative Method

Eg: Conjugate Gradient (CG) Method

15

