Lecture 3 Jacobi's Method (JM) $_{_{2017/4/18}}$

Jacobi's method is the easiest iterative method for solving a system of linear equations

$$A_{NxN}\vec{x} = \vec{b} \tag{3.1}$$

For any equation, the i^{th} equation

$$\sum_{j=1}^{N} a_{ij} x_j = b_i \tag{3.2}$$

we solve for the value x_i while assuming that the other entries of $\vec{x} = (x_1, x_2, x_3, \cdots, x_N)^T$ remain fixed and hence we obtain

$$x_{i} = (b_{i} - \sum_{\substack{j=1\\j \neq i}}^{N} a_{ij} x_{j}) / a_{ii}$$
(3.3)

This suggests an iterative method by

$$x_i^{(k)} = (b_i - \sum_{\substack{j=1\\j \neq i}}^N a_{ij} x_j^{(k-1)}) / a_{ii}$$
(3.4)

where $x_i^{(k)}$ means the value of k^{th} iteration for unknown x_i with $k = 1, 2, 3, \cdots$, and $\vec{x}^{(0)}$ is an initial guess vector, e.g., we can guess that

$$\vec{x}^{(0)} = (0, 0, 0, \cdots, 0)^T$$
 (3.5)

This is so called **Jacobi's method**. Note that the order in which the equations are examined is irrelevant.

Example 3.1. Consider the system

$$\begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$
(3.6)

The solution is $\overrightarrow{x} = (x_1, x_2)^T = (1, 1)^T$. Jacobi's Iteration: Let the initial guess be $x_1^{(0)} = x_2^{(0)} = 0$.

$$k = 1, \qquad 3x_1 + 2x_2 = 5$$

$$x_1^{(1)} = (5 - 2x_2^{(0)})/3 = (5 - 2 \cdot 0)/3 = \frac{5}{3}$$

$$x_1 + 5x_2 = 6$$

$$x_2^{(1)} = (6 - x_1^{(0)})/5 = (6 - 0)/5 = \frac{6}{5}$$

$$k = 2, \qquad x_1^{(2)} = (5 - 2x_2^{(1)})/3 = (5 - 2 \cdot \frac{6}{5})/3 = \frac{13}{15}$$

$$x_2^{(2)} = (6 - x_1^{(1)})/5 = (6 - \frac{5}{3})/5 = \frac{13}{15}$$

$$k = 3, \qquad x_1^{(3)} = (5 - 2x_2^{(2)})/3 = (5 - 2 \cdot \frac{13}{15})/3 = \frac{49}{45}$$

$$x_2^{(3)} = (6 - x_1^{(2)})/5 = (6 - \frac{13}{15})/5 = \frac{77}{75}$$

Table 3.1. Jacobi's Iteration									
k	0	1	2	3	•••	∞			
$x_1^{(k)}$	0	513	$\frac{13}{15}$	$\frac{49}{45}$		1			
$x_{2}^{(k)}$	0	$\frac{6}{5}$	$\frac{13}{15}$	$\frac{77}{75}$		1			

 $(x_1^{(3)}, x_2^{(3)}) = (\frac{49}{45}, \frac{77}{75})$ is an approximation of the exact solution $(x_1, x_2) = (1, 1)$.

Jacobi's method is highly parallel.

In matrix form, Jacobi's method can be expressed as

$$\vec{x}^{(k)} = -D^{-1}(L+U)\vec{x}^{(k-1)} + D^{-1}\vec{b}, \qquad k = 1, 2, 3, \cdots$$
 (3.7)

where A = D + L + U. Here D, L, and U are the diagonal, the strictly lower-triangular, and the strictly upper-triangular parts of A, respectively.

Example 3.2.

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix}$$

= $\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$
= $D + L + U$ (3.8)
 $D\vec{x}^{(1)} = -(L + U)\vec{x}^{(0)} + \vec{b}$ (3.9)

$$\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1^{(0)} \\ x_2^{(0)} \end{bmatrix} + \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1^{(0)} \\ x_2^{(0)} \end{bmatrix} + \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$
(3.10)

In general, any iterative method can be expressed as

$$\vec{x}^{(k)} = B\vec{x}^{(k-1)} + \vec{c}, \qquad k = 1, 2, 3, \cdots$$
 (3.11)

Hence, for JM, we have

$$B = -D^{-1}(L+U) , \vec{c} = D^{-1}\vec{b}$$
 (3.12)

Algorithm JM: Jacobi's Method Solve $A\vec{x} = \vec{b}$.

Input: N: Number of unknowns and equations; a_{ij} : Entries of A, $i, j = 1 \cdots N$; b_i : Entries of $\vec{b}, i = 1 \cdots N$; TOL: Error Tolerance.

Output: $x_i^{(k)}$: Entries of $\vec{x}^{(k)}$ (approximate solution) or Error Message.

- **Step 1.** Choose an arbitrary initial guess $\vec{x}^{(0)} = \left(x_1^{(0)}, \cdots, x_N^{(0)}\right)^T$ to the solution \vec{x} .
- **Step 2.** For $k = 1, 2, 3 \cdots, k_{\text{max}}$
- **Step 3.** For $i = 1, 2, \dots, N$
- **Step 4.** sum = 0 (sum represents a summation \sum)

Step 5. For $j = 1, 2, \dots, i - 1, i + 1, \dots, N$

- Step 6. $\operatorname{sum} = \operatorname{sum} + a_{ij} x_j^{(k-1)}$
- Step 7. End j loop
- **Step 8.** $x_i^{(k)} = (b_i \text{sum})/a_{ii}$
- Step 9. End i loop
- **Step 10.** $\vec{x}^{(k)} = (x_1^{(k)}, \cdots, x_N^{(k)})^T$
- Step 11. If $||\vec{r}^{(k)}||_{\infty} < \text{TOL} = 10^{-6}$ then Stop otherwise Set $\vec{x}^{(k-1)} = \vec{x}^{(k)}$ and Go To Step 2.
- Step 12. End k loop
- **Step 13.** Error: Not convergent with the max number of iterations k_{max} and TOL.

$$\begin{split} \overrightarrow{x}^{(k)} &\approx \overrightarrow{x} \colon \text{An approximate solution.} \\ \overrightarrow{r}^{(k)} &= A \overrightarrow{x}^{(k)} - \overrightarrow{b} : \text{Residual vector.} \\ E^{\overrightarrow{x}} &= ||\overrightarrow{r}^{(k)}||_{\infty} := \max_{1 \leq i \leq N} |r_i^{(k)}| \colon \text{Residual error in maximum norm.} \end{split}$$

Project 3.1. Consider Example 3.1 and implement the JM.

Input: $N = 2, A, \vec{b}, k_{\text{max}}$, TOL (write the input in the program).

Project 3.2. Consider the 1D Poisson Problem (1.1) (with f(x) = 2, $g_D = 0$, and $g_N = 0$) and implement the methods FDM and JM.

Input: N, A, b, k_{max} , TOL (write the input in the program).

	N	k	$E^{\overrightarrow{x}}$	E^u	α
	5				
	9				
Output:	17				
	33				
	65				
	129				

Summary: Methods for $A\vec{x} = \vec{b}$

- **1.** Direct Methods: GE etc.
- **2.** Iterative Methods:
- (A) Stationary Iterative Methods

Neither B nor \vec{c} depend upon the iteration count k in (3.11).

Eg: JM, Gauss-Seidel Method (GS),

Successive Overrelaxation (SOR) Method,

Symmetric SOR (SSOR) Method

(B) Nonstationary Iterative Method

Eg: Conjugate Gradient (CG) Method