

The SOR is devised by applying extrapolation to GS. This extrapolation takes the form of a weighted average between the previous iterate and the current GS iterate successively for each component

$$x_i^{(k)} = \omega \overline{x_i}^{(k)} + (1 - \omega) x_i^{(k-1)}$$
(5.1)

where $\overline{x_i}^{(k)}$ denotes a GS iterate for the *i*th component of $\overline{x}^{(k)} = (\overline{x_1}^{(k)}, \overline{x_2}^{(k)}, \cdots, \overline{x_N}^{(k)})^T$, and ω is the extrapolation (weighting) factor. The idea is to choose a value for ω that will accelerate the rate of convergence

(5.1)
$$\Leftrightarrow D\overrightarrow{x}^{(k)} = \omega D\overline{x}^{(k)} + (1-\omega)D\overrightarrow{x}^{(k-1)}$$
 (5.2)

$$\therefore \quad D\overrightarrow{x}^{(k)} = \omega[\overrightarrow{b} - L\overrightarrow{x}^{(k)} - U\overrightarrow{x}^{(k-1)}] + (1-\omega)D\overrightarrow{x}^{(k-1)}$$
(5.3)

In matrix form, the SOR is written as

$$[D + \omega L]\overrightarrow{x}^{(k)} = \omega \overrightarrow{b} + [-\omega U + (1 - \omega)D]\overrightarrow{x}^{(k-1)}$$
(5.4)

$$\overrightarrow{x}^{(k)} = B\overrightarrow{x}^{(k-1)} + \overrightarrow{c}$$
(5.5)

and hence

$$B = [D + \omega L]^{-1}[(1 - \omega)D - \omega U], \qquad \overrightarrow{c} = \omega [D + \omega L]^{-1} \overrightarrow{b}.$$
(5.6)

- Case 1 $\omega = 1 \Rightarrow SOR = GS$
- Case 2 $\omega = 0 \Rightarrow No \ iteration$
- **Case 3** $0 < \omega < 1 \Rightarrow$ Underrelaxation
- Case 4 $1 < \omega < 2 \text{ or } 0 < \omega < 2 \Rightarrow Overrelaxation$
- Case 5 $\omega \ge 2 \Rightarrow Divergent$

Algorithm SOR: Successive Overrelaxation Method Solve $A\vec{x} = \vec{b}$.

Input: N: Number of unknowns and equations; a_{ij} : Entries of A, $i, j = 1 \cdots N$; b_i : Entries of $\vec{b}, i = 1 \cdots N$. TOL: Error Tolerance; $\omega = 1.3$ (for example).

Output: $x_i^{(k)}$: Entries of $\vec{x}^{(k)}$ (approximate solution) or Error Message.

- **Step 1.** Choose an initial guess $\vec{x}^{(0)}$ to the solution \vec{x} .
- **Step 2.** For $k = 1, 2, 3 \cdots, k_{\max}$
- **Step 3.** For $i = 1, 2, \dots, N$
- Step 4. $\sigma = 0$
- **Step 5.** For $j = 1, 2, \dots, i 1$
- Step 6. $\sigma = \sigma + a_{ij} x_j^{(k)}$
- Step 7. End j loop
- **Step 8.** For j = i + 1, ..., N
- Step 9. $\sigma = \sigma + a_{ij} x_j^{(k-1)}$
- Step 10. End j loop
- Step 11. $\sigma = (b_i \sigma)/a_{ii}$ $[\sigma = \overline{x_i}^{(k)} \text{ in } (5.1)]$
- **Step 12.** $x_i^{(k)} = \omega \sigma + (1 \omega) x_i^{(k-1)}$
- Step 13. End i loop
- Step 14. If $||\vec{r}^{(k)}||_{\infty} < \text{TOL} = 10^{-6}$ then Stop otherwise Set $\vec{x}^{(k-1)} = \frac{1}{x}$ and Go To Step 2.
- Step 15. End k loop
- **Step 16.** Error: Not convergent with the max number of iterations k_{max} and TOL.

Project 5.1. Consider the 1D Poisson Problem (1.1) (with f(x) = 2, $g_D = 0$, and $g_N = 0$) and implement the methods FDM and SOR.

Input: $N, A, \vec{b}, k_{\text{max}}$, TOL, ω (write the input in the program).

Output:	N	k	$E^{\overrightarrow{x}}$	E^u	α
	5				
	9				
	17				
	33				
	65				
	129				